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Abstract-We consider an opportunistic communication 
system in which a transmitter selects one of multiple channels 
over which to schedule a transmission, based on partial 
knowledge of the network state. We characterize a fun­
damental limit on the rate that channel state information 
must be conveyed to the transmitter in order to meet a 
constraint on expected throughput. This problem is modeled 
as a causal rate distortion optimization of a Markov source. 
We introduce a novel distortion metric capturing the impact 
of imperfect channel state information on throughput. We 
compute a closed-form expression for the causal information 
rate distortion function for the case of two channels, as well 
as an algorithmic upper bound on the causal rate distortion 
function. Finally, we characterize the gap between the causal 
information rate distortion and the causal entropic rate­
distortion functions. 

I. INTRODUCTION 

Consider a transmitter and a receiver connected by two 
independent channels. The state of each channel is either 
ON or OFF, where transmissions over an ON channel 
result in a unit throughput, and transmissions over an OFF 
channel fail. Channels evolve over time according to a 
Markov process. At the beginning of each time slot, the 
receiver measures the channel states in the current slot, 
and transmits (some) channel state information (CSI) to 
the transmitter. Based on the CSI sent by the receiver, the 
transmitter chooses over which of the channels to transmit. 

In a system in which an ON channel and OFF channel 
are equally likely to occur, the transmitter can achieve an 
expected per-slot throughput of � without channel state in­
formation, and a per-slot throughput of � if the transmitter 
has full CSI before making scheduling decisions. How­
ever, the transmitter does not need to maintain complete 
knowledge of the channel state in order to achieve high 
throughput; it is sufficient to only maintain knowledge of 
which channel has the best state. Furthermore, the memory 
in the system can be used to further reduce the required 
CSI. We are interested in the minimum rate that CSI must 
be sent to the transmitter in order to guarantee a lower 
bound on expected throughput. This quantity represents a 
fundamental limit on the overhead information required in 
this setting. 
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The above minimization can be formulated as a rate 
distortion optimization with an appropriately designed 
distortion metric. The opportunistic communication frame­
work, in contrast to traditional rate distortion, requires 
that the channel state information sequence be causally 
encoded, as the receiver causally observes the channel 
states. Consequently, restricting the rate distortion problem 
to causal encodings provides a tighter lower bound on the 
required CSI that must be provided to the transmitter. 

Opportunistic scheduling is one of many network con­
trol schemes that requires network state information (NSI) 
in order to make control decisions. The performance of 
these schemes is directly affected by the availability and 
accuracy of this information. If the network state changes 
rapidly, there are more possibilities to take advantage of 
an opportunistic performance gain, albeit at the cost of 
additional overhead. For large networks, this overhead can 
become prohibitive. 

This paper presents a novel rate distortion formulation 
to quantify the fundamental limit on the rate of overhead 
required for opportunistic scheduling. We design a new 
distortion metric for this setting that captures the impact 
on network performance, and incorporate a causality con­
straint to the rate distortion formulation to reflect practical 
constraints of a real-time communication system. We ana­
lytically compute a closed-form expression for the causal 
rate distortion lower bound for a two-channel system. 
Additionally, we propose a practical encoding algorithm 
to achieve the required throughput with limited overhead. 
Moreover, we show that for opportunistic scheduling, there 
is a fundamental gap between the mutual information and 
entropy-rate-based rate distortion functions, and discuss 
scenarios under which this gap vanishes. Proofs have been 
omitted for brevity. 

II. PROBLEM FORMULATION 

Consider a transmitter and a receiver, connected through 
!vI independent channels. Assume a time slotted system, 
where at time-slot t, each channel has a time-varying 
channel state Si(t) E {OFF, ON}, independent from all 
other channels. The notation Si(t) E {a ,  I} is used 
interchangeably. 

Let X(t) = Xt = {Sl (t) , S2(t) , . . .  , SM(t)} represent 
the system state at time slot t. At each time slot, the 
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Fig. 1: Markov chain describing the channel state evolution of 
each independent channel. 

transmitter chooses a channel over which to transmit, 
with the goal of opportunistically transmitting over an ON 
channel. Channel states evolve over time according to a 
Markov process described by the chain in Figure 1, with 
transition probabilities p and q satisfying p -s: � and q -s: �, 
corresponding to channels with "positive memory. " 

The transmitter does not observe the state of the system. 
Instead, the receiver causally encodes the sequence of 
channel states Xl into the sequence Zl and sends the 
encoded sequence to the transmitter, where Xl is used to 
denote the vector of random variables [X(l), . . .  , X(n)]. 
The encoding Z(t) = Zt E {I , . . .  , M} represents the 
index of the channel over which to transmit. Since the 
throughput-optimal transmission decision is to transmit 
over the channel with the best state, it is sufficient for 
the transmitter to restrict its knowledge to the index of the 
channel with the best state at each time. 

The expected throughput earned in slot t is lE[thpt(t)] = 

S Z (t) (t), since the transmitter uses channeli = Z (t), 
and receives a throughput of 1 if that channel is ON, 
and 0 otherwise. Clearly, a higher throughput is attainable 
with more accurate CSI, determined by the quality of 
the encoding Zl' The average distortion between the 
sequences xl and zl is defined in terms of the per-letter 
distortion, 

(1) 

where d(Xi' Zi) is the per-letter distortion between the 'ith 
source symbol and the 'ith encoded symbol at the transmit­
ter. For the opportunistic communication framework, the 
per-letter distortion is defined as 

d(Xi' Zi) � 1 -lE[thpt(t)] = 1 - SZ(t) (t), (2) 

where SZ(t) is the state of the channel indexed by Z(t). 
Thus, an upper bound on expected distortion translates 
to a lower bound on expected throughput. Note that the 
traditional Hamming distortion metric is inappropriate in 
this setting, since the transmitter does not need to know 
the channel states of channels it will not transmit over. 

A. Problem Statement 

The goal in this work is to determine the minimum rate 
that CSI must be conveyed to the transmitter to achieve 
a lower bound on expected throughput. In this setting, 
CSI must be conveyed to the transmitter casually, in other 
words, the 'ith encoding can only depend on the channel 
state at time 'i, and previous channel states and encodings. 
Let Qc(D) be the family of causal encodings q(zllxl) 

satisfying 

(3) 
where p(xI) is the PDF of the source, and the causality 
constraint: 

VXr, yr S.t. xl = yl, (4) 

Mathematically, the minimum rate that CSI must be trans­
mitted is given by 

1 
R�G(D) = lim inf -H(Zf) (5) 

n---+oo qEQ,(D) n 

where � H (Zl) is the entropy rate of the encoded se­
quence in bits. Equation (5) is the causal rate distortion 
function, as defined by Neuhoff and Gilbert [1], and 
is denoted using the superscript NC. This quantity is 
an entropy rate distortion function, in contrast to the 
information rate distortion function [2], [3], [4], which will 
be discussed in Section III. The decision to formulate this 
problem as a minimization of entropy rate is based on the 
intuition that the entropy rate should capture the average 
number of bits per channel use required to convey channel 
state information. 

B. Previous Work 

Among the earliest theoretical works to study commu­
nication overhead in networks is Gallager's seminal paper 
[5], where fundamental lower bounds on the amount of 
overhead needed to keep track of source and destination 
addresses and message starting and stopping times are 
derived using rate-distortion theory. A discrete-time analog 
of Gallager's model is considered in [6]. A similar frame­
work was considered in [7] and [8] for different forms of 
network state information. 

The traditional rate-distortion problem [9] has been 
extended to bounds for Markov Sources in [10], [11], 
[12]. Additionally, researchers have considered the causal 
source coding problem due to its application to real-time 
processing. One of the first works in this field was [1], 
in which Neuhoff and Gilbert show that the best causal 
encoding of a memory less source is a memory less coding, 
or a time sharing between two memory less codes. Neuhoff 
and Gilbert focus on the minimization of entropy rate, as 
in (5). The work in [13] studied the optimal finite-horizon 
sequential quantization problem, and showed that the 
optimal encoder for a kth-order Markov source depends 
on the last k source symbols and the present state of the 
decoder's memory (i.e. the history of decoded symbols). 

A causal (sequential) rate distortion theory was intro­
duced in [3] and [14] for stationary sources. They show 
that the sequential rate distortion function lower bounds 
the entropy rate of a causally encoded sequence, but this 
inequality is strict in general. Despite this, operational 
significance for the causal rate distortion function is de­
veloped in [3]. Lastly, [4] studies the causal rate distortion 
function as a minimization of directed mutual information, 
and computes the form of the optimal causal kernels. 
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III. RATE DISTORTION LOWER BOUND 

To begin, we review the traditional rate distortion 
problem, and define the causal information rate distortion 
function, a minimization of mutual information, which is 
known to lower bound R;,C(D) [14], and hence provides 
a lower bound on the required rate at which CSI must 
be conveyed to the transmitter to meet the throughput 
requirement. 

A. Traditional Rate Distortion 

Consider the well known rate distortion problem, in 
which the goal is to find the minimum number of bits per 
source symbol necessary to encode a source while meet­
ing a fidelity constraint. Consider a discrete memoryless 
source {X;}�l' where X/s are i.i.d. random variables 
taking values in the set X, according to distribution px (x). 
This source sequence is encoded into a sequence {Zi}�l' 
with Zi taking values in Z. The distortion between a 
block of source symbols and encoded symbols is defined in 
(1) with per-letter distortion d(Xi, Zi). Define Q(D) to be 
the family of conditional probability distributions q(zlx) 
satisfying an expected distortion constraint (3). 

Shannon's rate-distortion theory states that the mini­
mum rate R at which the source can be encoded with 
average distortion less than D is given by the information 
rate distortion function R(D), where 

R(D) � min I(X; Z), 
q(zlx)EQ(D) 

(6) 

and 1(· i .) represents mutual information. 

B. Causal Rate Distortion for Opportunistic Scheduling 

Consider the problem formulation in Section II. As 
discussed above, the information rate distortion is a min­
imization of mutual information over all stochastic ker­
nels satisfying a distortion constraint. For opportunistic 
scheduling, this minimization is further constrained to 
include only causal kernels. Let Qc(D) be the set of all 
stochastic kernels q(zllx'l) satisfying (3) and (4). The 
causal information rate distortion function is defined as 

1 
Rc(D) = lim inf -I(Xfi Zf)· (7) 

n---+ooq(zi'lx,')EQ,(D) n 

The function Rc(D) is a lower bound on the Neuhofl­
Gilbert rate distortion function R;'c (D) in (5), and hence 
a lower bound on the rate of CSI that needs to be conveyed 
to the transmitter to ensure expected per-slot throughput 
is greater than 1 - D. In the traditional (non-causal) rate 
distortion framework, this bound is tight; however, in the 
causal setting this lower bound is potentially strict. Note 
that for memoryless sources, Rc(D) = R(D), where 
R(D) is the traditional rate distortion function; however, 
for most memoryless sources, R(D) < R;'C(D). 

The optimization problem in (7) is solved using a 
geometric programming dual as in [15]. The following 
result gives the structure of the optimal stochastic kernel. 
Note that this result is also obtained in the work [4] for a 
similar formulation. 

Theorem 1. The optimal kernel q(zllx'l) satisfies 

( .1 i-1 i ) _ Q(zilz�-l)exp(-Ad(Xi, Zi)) q Z2 Zl , Xl - i-1 ( ) LZi Q(zilz1 ) exp - Ad(Xi, Zi) 

where for all zL Q(zilzr1) and A satisfy 
(8) 

1 = L 
P(xl) exp ( - L�=l Ad(Xi, Zi)) 

(9) 
n rr�=l Lz Q(zilz�-l) exp ( - Ad(Xi, Zi)) 

Xl I 

Equation (9) holds for all zl' and gives a system of 
equations from which one can solve for Q(zilz�-l). Note 
this holds in general for any number of Markovian chan­
nels, and can be numerically solved to determine Rc(D). 
Observe in (8) that q(zilzr1, xl) = q(zilzr1, Xi). In 
other words, the solution to the rate distortion optimization 
is a distribution which generates Zi depending only on the 
source sequence through the current source symbol. 
C. Analytical Solution for Two-Channel System 

Consider the system in Section II with two channels 
(NI = 2), and a symmetric channel state Markov chain. 

Theorem 2. For the aforementioned system, the causal 
information rate distortion function is given by 

Rc(D) = !Hb(2p - 4pD + 2D - !) - !Hb(2D - !) 
(10) 

for all D satisfying i � D � !. 

This result follows from evaluating (8) and (9) for a 
two channel system, and showing the stationarity of the 
optimal kernel. The information rate distortion function in 
(10) is a lower bound on the rate that information needs 
to be conveyed to the transmitter. A distortion Dmin = i 
represents a lossless encoding, since i of the time slots, 
both channels are OFF, and no throughput can be obtained. 
Additionally, Drnax = ! corresponds to an oblivious 
encoder, as transmitting over an arbitrary channel requires 
no rate, and achieves distortion equal to !. The function 
Rc(D) is plotted in Figure 2 as a function of D. 

IV. HEURISTIC UPP ER BOUND 

In this section, we propose an algorithmic upper bound 
to the Neuhofl-Gilbert rate distortion function in (5). For 
simplicity, assume that p = q, and that !vI = 2, i.e. 
the transmitter has two symmetric channels over which to 
transmit. Therefore, X (t) E {OO, 01, 10, 1 1  }. Observe that 
when X(t) = 1 1, no distortion is accumulated regardless 
of the encoding Z(t), and a unit distortion is always 
accumulated when X (t) = 00. The minimum possible 
average distortion is Dmin = i, since the state of the 
system is 00 for a fraction i of the time. 

A. Minimum Distortion Encoding Algorithm 

Recall that a causal encoder f ( .) satisfies Z (t) 
f(Xi, Zi-1). Consider the following encoding policy: { Z (t - 1) if X ( t ) = 00 or X ( t) = 1 1  

Z(t) = 1 if X(t) = 10 
2 if X (t ) = 01 

(11 ) 
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Note that Z(t) is a function of Z(t - 1) and X(t), and is 
therefore a causal encoding as defined in (4). The above 
encoding achieves expected distortion equal to -?t, the 
minimum distortion achievable. Note that the transmitter is 
unaware of the channel state; conveying full CSI requires 
additional rate at no reduction to distortion. Let K be a 
random variable denoting the number of time slots since 
the last change in the sequence Z(i), i.e., 

K = min{j < ilZ(i - j) =1= Z(i - j - I)}. (12) 
J 

Thus, the transmitter can infer the state of the system K 
slots ago. Since the channel state is Markovian, the entropy 
rate of the sequence Z'{' is expressed as 

l I n . 
lim -H(Zf) = lim - L H(Z(i)IZrl) (13) 

n--+oo n n--+oo n i=l 
= H(Z(i)IZ(i - 1), K) (14) 

00 
= L IP'(K = k)Hb(IP'(Z(i) =1= Z(i - 1)IK = k)) (15) 

k=l 
where Hb(') is the binary entropy function. Note by 
definition, Z(i - 1) = Z(i - K) in (14). Equation (15) 
can be computed in terms of the transition probabilities of 
the Markov chain in Figure 1. 

B. Threshold-based Encoding Algorithm 

In order to further reduce the rate of the encoded 
sequence using the encoder in (11), a higher expected 
distortion is required. A new algorithm is obtained by 
introducing a parameter T, and modifying the encoding 
algorithm in (11) as follows: If K :::; T, then Z(i) = 

Z(i - 1), and if K > T, then Z(i) is assigned according 
to (11). As a result, for the first T slots after the Z(i) 
sequence changes value, the transmitter can determine the 
next element of the sequence deterministically, and hence 
the sequence can be encoded with zero rate. After T slots, 
the entropy in the Z(i) process is similar to that of the 
original encoding algorithm. As expected, this reduction in 
entropy rate comes at an increase in distortion. In the first 
T slots after a change to Z (i) = 1, every visit to state 
X (i) = 01 or X (i) = 00 incurs a unit distortion. The 
accumulated distortion is equal to the number of visits to 
those states in an interval of T slots. 

Clearly, as the parameter T increases, the entropy rate 
decreases, and the expected distortion increases. Conse­
quently, T parameterizes the rate-distortion curve; how­
ever, due to the integer restriction, only a countable 
number of rate-distortion pairs are achievable by varying 
T, and time sharing is used to interpolate between these 
points. An example curve is shown in Figure 2. Note that 
as T increases, the corresponding points on the R( D) 
curve become more dense. Furthermore, for the region 
of R(D) parameterized by large T, the function R(D) 
is linear. The slope of this linear region is characterized 
by the following result. 

Proposition 1. Let R(T) and D(T) denote the rate 
and expected distortion as functions of the parameter 

Lower and Upper Bounds on Required Overhead Rate 
0.5�-�------'------� 

0.45-
0.4-

0 35\
, 

� 0:: \ ......... . 0.15 ��� 

0.1 ..... " ...... 
0,05 

825 0.3 0.35 

-Encoding Upper Bound 

0 4  0.45 0.5 

Fig. 2: Plots the causal information rate distortion function 
Rc(D) (Section III) and the upper bound to the rate distortion 
function (Section IV), computed using Monte Carlo Simulation. 

T respectively. For large T, the achievable R(D) curve 
for the above encoding algorithm, denoted by the points 
(D(T), R(T)) has slope 

lim 
R(T + 1) - R(T) 

= 
-H(M) 

T--+oo D(T + 1) - D(T) c + -?tlE[M] , 
(16) 

where !vI is a random variable denoting the expected 
number of slots after the initial T slots until the Zi 
sequence changes value, and c is a constant given by 

T 

C = � (lE[li(Xi = 00 or Xi = 01)] 

-lE[li(Xi = 00 or Xi = O1)IXo = 10]) . (17) 

The constant in (17) represents the difference in ex­
pected accumulated distortion over an interval of T slots of 
the state processes beginning in steady state and Xo = 10. 
Proposition 1 shows that the slope of R(D) is independent 
of T for T sufficiently large, as illustrated in Figure 2. 

V. CAUSAL RATE DISTORTION GAP 

Figure 2 shows a gap between the causal information 
rate distortion function, and the heuristic upper bound to 
the Neuhoff-Gilbert rate distortion function computed in 
Section IV. In this section, we prove that for a class of 
distortion metrics including the throughput metric in (2), 
there exists a gap between the information and Neuhotl­
Gilbert causal rate distortion functions, even at D = Dmin. 

For example, consider a discrete memoryless source 
{Xd, drawing i.i.d. symbols from the alphabet {O, 1, 2}, 
and an encoding sequence {Zi} drawn from {O, 1, 2}. 
Consider the following distortion metrics: d1 (x, z) = 

li4x and d2(x, z) = liz=x , where li is the indicator 
function. The first metric d1 (x, z) is a simple Hamming 
distortion measure, used to minimize probability of error, 
whereas the second is such that there exist two distortion­
free encodings for each source symbol. The causal rate 
distortion functions Rc(D) for d1(x, z) and d2(x, z) are 

Rl(D) = -Hb(D) - D log � - ( 1 - D) log � 
o :::; D :::; � (18) 

R2(D) = -Hb(D) - D log � - ( 1 - D) log � 
O:::;D:::;� . (19) 
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(a) Distortion d1(x,z). (b) Distortion d2(x,z). 

Fig. 3: Rate distortion functions for example systems. 

Additionally, Neuhoff and Gilbert [1] show that for a 
memoryless source, R;!G equals the lower convex enve­
lope of all memoryless encoders for this source. Thus, 

R�f(D) = (1 - �D) log 3 
R�f(D) = (1 - 3D)Hb(�)' 

(20) 

(21) 

The information and Neuhoff-Gilbert rate distortion func­
tions for the two metrics are plotted in Figure 3. Note 
that for both distortion metrics, the causal rate distortion 
function is not operationally achievable. Furthermore, in 
the lossless encoding case (D = Dmin), there is a gap in 
between the Neuhoff-Gilbert and information rate distor­
tion functions when using the second distortion metric. 
This gap arises when for a state x, there exist multiple 
encodings Z that can be used with no distortion penalty. 
This observation is formalized in the following result. 

Theorem 3. Let {Xd represent an i. i. d. discrete memo­
ryless source from alphabet X, encoded into a sequence 

{Zi} taken from alphabet Z, subject to a per-letter dis­
tortion metric d(Xi, Zi). Furthermore, suppose there exists 
Xl, X2, Y E X and Zl, Z2 E Z, such that Zl 01- Z2 and 

a) P(xI) > 0, P(X2) > 0, P(y) > 0, 
b) Zl is the minimizer Zl = arg minzd(xI, Z), 
c) Z2 is the minimizer Z2 = arg minz d(X2, z), 
d) d(y, Zl) = d(y, Z2) = minz d(y, z). 

Then R;!G(Dmin) > Rc(Dmin). 

Proof" By [1], there exists a deterministic function 
f : X -+ Z such that 

(22) R�G(Dmin) = H(f(X)) 
IE[d(X, f(X))] = Dlnin (23) 

Define a randomized encoding q(zlx), where Z = f(x) 
for all X 01- y, and the source symbol y is encoded 
randomly into Zl or Z2 with equal probability. Conse­
quently, H(ZIX) > 0, and H(Z) > Iq(X; Z) under 
encoding q (z I x). Note that the new encoding also satisfies 
IEq[d(X, Z)] = Dlnin. To conclude, 

RNG(Dlnin) = H(f(X)) > Iq(X; Z) 
� R(Dlnin) = Rc(Dlnin) (24) 

• 
Theorem 3 shows that if there exists only one deter-

mlnIstlc mapping f : X -+ Z resulting in mInImum 
distortion, then there will be no gap between the Neuhotl­
Gilbert rate distortion function and the causal information 
rate distortion function at Dmin. However, when there are 
multiple deterministic mappings that achieve minimum 
distortion, a randomized combination of them results in 
lower mutual information, creating a gap between the 
two rate distortion functions. Note that the throughput 
distortion metric in (2) satisfies the conditions of Theorem 
3, as well as any distortion metric such that there exists a 
source symbol such that all per-letter encodings result in 
the same distortion satisfies the theorem statement. 

While the above result proves that the causal infor­
mation rate distortion function is not tight, it is still 
possible to provide an operational interpretation to Rc(D) 
in (10). In [3], the author proves that for a source {Xn,t}, 
which is Markovian across the time index t, yet i.i.d. 
across the spatial index n, there exist blocks of suffi­
ciently large t and n such that the causal rate distortion 
function is operationally achievable, i.e. the information 
and Neuhoff-Gilbert rate distortion functions are equal. In 
the opportunistic scheduling setting, this is equivalent to 
a transmitter sending N messages to the receiver, where 
each transmission is assigned a disjoint subset of the 
channels over which to transmit. However, this restriction 
can result in a reduced throughput. 
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