
TCP-Aware Backpressure Routing and Scheduling

Hulya Seferoglu

ECE Department, University of Illinois at Chicago

hulya@uic.edu

Eytan Modiano

LIDS, Massachusetts Institute of Technology

modiano@mit.edu

Abstract—In this work, we explore the performance of back-
pressure routing and scheduling for TCP flows over wireless
networks. TCP and backpressure are not compatible due to a
mismatch between the congestion control mechanism of TCP
and the queue size based routing and scheduling of the back-
pressure framework. We propose a TCP-aware backpressure
routing and scheduling that takes into account the behavior
of TCP flows. TCP-aware backpressure (i) provides throughput
optimality guarantees in the Lyapunov optimization framework,
(ii) gracefully combines TCP and backpressure without making
any changes to the TCP protocol, (iii) improves the throughput
of TCP flows significantly, and (iv) provides fairness across
competing TCP flows.

I. INTRODUCTION

The backpressure routing and scheduling paradigm has

emerged from the pioneering work [1], [2], which showed that,

in wireless networks where nodes route and schedule packets

based on queue backlog differences, one can stabilize the

queues for any feasible traffic. This seminal idea has generated

a lot of research interest. Moreover, it has been shown that

backpressure can be combined with flow control to provide

utility-optimal operation [3].

The strengths of these techniques have recently increased

the interest in the practical implementation of the backpres-

sure framework over wireless networks as summarized in

Section VI. One important practical problem that remains

open, and is the focus of this paper, is the performance of

backpressure with Transmission Control Protocol (TCP) flows.

TCP is the dominant transport protocol in the Internet today

and is likely to remain so for the foreseeable future. Therefore,

it is crucial to exploit throughput improvement potential of

backpressure routing and scheduling for TCP flows. However,

TCP flows are not compatible with backpressure. Their joint

behavior is so detrimental that some flows may never get a

chance to transmit. To better illustrate this point, we first dis-

cuss the operation of backpressure in the following example.

Example 1: Let us consider Fig. 1, which shows an ex-

ample one-hop downlink topology consisting of a transmitter

node I , and two receiver nodes; R1 and R2. The two flows;

1 and 2 are destined to R1 and R2, respectively. U1
I (t) and

U2
I (t) are per-flow queue sizes at time t. Let us focus on

Fig. 1(a). At time t, packets from the two flows arrive ac-

cording to random arrival rates; A1(t) and A2(t), respectively.

This work was supported by NSF grant CNS-0915988, ONR grant N00014-
12-1-0064, ARO Muri grant number W911NF-08-1-0238.

This work was conducted when H. Seferoglu was with Laboratory For
Information and Decision Systems at Massachusetts Institute of Technology.

(a) Backpressure with random arrivals

with rates A1(t), A2(t)

(b) Backpressure with TCP arrivals

Fig. 1. Example one-hop downlink topology consisting of a transmitter node I , and
two receiver nodes; R1 and R2. The two flows; 1 and 2 are destined to R1 and R2,
respectively. U1

I (t) and U2
I (t) are per-flow queue sizes at time t. (a) Backpressure with

random arrivals with rates A1(t) and A2(t). (b) Backpressure with TCP arrivals.

The packets are stored in per-flow queues. The backpressure

scheduling algorithm, also known as max-weight scheduling,

determines the queue (hence the flow) from which packets

should be transmitted at time t. The decision is based on queue

backlog differences, i.e., U1
I (t)−U1

R1
(t) and U2

I (t)−U2
R2

(t),
where U1

R1
(t) and U2

R2
(t) are per-flow queue sizes at R1

and R2, respectively. Since R1 and R2 are the destination

nodes, the received packets are immediately passed to the

higher layers, so U1
R1

(t) = U2
R2

(t) = 0, ∀t. Therefore, the

scheduling algorithm makes the scheduling decision based

on U1
I (t) and U2

I (t). In particular, the scheduling decision

is s∗ = argmax{U1
I (t), U

2
I (t)} such that s∗ ∈ {1, 2}. Note

that a packet(s) from flow s∗ is transmitted at time t. It was

shown in [1], [2] that if the arrivals rates A1(t) and A2(t) are

inside the stability region, the scheduling algorithm stabilizes

the queues. Note that the arrival rates A1(t) and A2(t) are

independent from the scheduling decisions, i.e., the scheduling

decisions do not affect A1(t) and A2(t). However, this is not

true if the flows are regulated by TCP as explained next. �
The fundamental goal of TCP, which applies to all TCP

variants, is to achieve as much bandwidth as possible while

maintaining some level of long-term rate fairness across

competing flows. By their very design, all TCP algorithms

(both the widely employed loss-based versions and the delay-

based ones) have their own “clock”, which relies on end-to-

end acknowledgement (ACK) packets. Based on the received

ACKs, TCP determines whether and how many packets should

be injected into the network by updating its window size.

Example 1 - continued: Let us consider Fig. 1(b) to illus-

trate the interaction of backpressure and TCP. In Fig. 1(b),

packet arrivals are controlled by TCP. Let us consider that

a loss-based TCP version, e.g., TCP-Reno or TCP-SACK, is

2

Fig. 2. Sample paths that show the evolution of W1,W2 and U1
I , U2

I over time. Note
that W1,W2 are the congestion window size of the TCP flows, and U1

I , U2
I are the

corresponding queue sizes for the example presented in Fig. 1(b). Due to backpressure,
W1 does not increase and U1

I does not receive or transmit any packets, and its size
stays the same; U1

I (t) = 1, ∀t.

employed. Assume that at time t, the TCP congestion window

size of the first flow, i.e., W1(t), is small, e.g., W1(t) = 1
segment, (note that 1-segment window size may be seen at

the beginning of a connection or after a re-transmit timeout),

while the TCP congestion window size of the second flow

is W2(t) > 1 (e.g., it may be the case that flow 2 has been

transmitting for some time until t, and it has already increased

its window size). As depicted in the figure, the example

queue occupancies at time t are U1
I (t) = 1 and U2

I (t) = 3.

Since, U2
I (t) > U1

I (t), a packet(s) from the second flow is

transmitted. R2 receives the transmitted packet, and passes it

to TCP. TCP generates an ACK, and transmits it back to node

I . TCP source of flow 2 at node I increases window size

after receiving an ACK. Therefore, more packets are passed

to U2
I (t). On the other hand, since U1

I (t) < U2
I (t), no packets

are transmitted from flow 1. Thus, TCP does not receive any

ACKs for the 1st flow, does not increase its window size, and

no (or sporadic) new packets are passed to U1
I (t). Eventually,

the size of U1
I (t) almost never increases, so no packets are

transmitted from flow 1. Possible sample paths showing the

evolution of W1 and W2 as well as U1
I and U2

I over time

are shown in Fig. 2. As can be seen, the joint behavior of

TCP and backpressure is so detrimental that flow 1 does not

get any chance to transmit. We confirm this observation via

simulations in Section V. �
The incompatibility of backpressure is not limited to the

loss-based versions of TCP. The delay-based TCP flavors,

e.g., TCP Vegas is also incompatible with backpressure, as

TCP-Vegas has its own clock, which relies on end-to-end

ACK packets to calculate round-trip-times (RTTs). If some

packets are trapped in buffers due to backpressure as in the

above example, sporadic or no ACK packets are received.

This increases RTTs, and reduces end-to-end rate of TCP

Vegas as there is inverse relationship between RTT and rate.

Furthermore, backpressure leads to timeouts which reduce

the end-to-end rate in both loss-based and delay-based TCP

versions, including new TCP versions; TCP-Compound [4]

and TCP-Cubic [5].

In this paper, we propose “TCP-aware backpressure” that

helps TCP and backpressure operate in harmony. In particular,

TCP-aware backpressure takes into account the behavior of

TCP flows, and gives transmission opportunity to flows with

short queues. This makes all TCP flows transmit their pack-

ets, so the TCP clock, which relies on packet transmissions

and end-to-end ACKs, continues to operate. Furthermore,

the throughput of TCP flows improves by exploiting the

performance of the backpressure routing and scheduling. We

note that backpressure introduces additional challenges when

combined with TCP such as out of order delivery, high jitter in

RTTs, and packet losses due to corruption over wireless links.

However, these challenges are not specific to backpressure,

and exist when a multiple path routing scheme over wireless

networks is combined with TCP. We address these challenges

by employing network coding (in Section IV). Yet, the main

focus of this paper is the incompatibility of TCP and backpres-

sure and developing a TCP-aware backpressure framework.

The following are the key contributions of this work:

• We identify the mismatch between TCP and the backpres-

sure framework; i.e., their joint behavior is so detrimental

that some flows may never get a chance to transmit. In

order to address the mismatch between TCP and back-

pressure, we develop “TCP-aware backpressure routing

and scheduling”.

• We show that (i) TCP-aware backpressure routing and

scheduling stabilizes queues for any feasible traffic as

the classical backpressure [1], [2], (ii) TCP-aware back-

pressure routing and scheduling provides the same utility-

optimal operation guarantee when combined with a flow

control algorithm as the classical backpressure [3].

• We provide implementation details and explain how to

tune TCP-aware backpressure in practice so that it com-

plies with TCP. Moreover, we combine network coding

and TCP-aware backpressure to address the additional

challenges such as out of order delivery, packet loss, and

jitter. Thanks to employing network coding, which makes

TCP flows sequence agnostic (with respect to packet IDs),

TCP-aware backpressure fully complies with TCP.

• We evaluate our schemes in a multi-hop setting, using

ns-2 [6]. The simulation results (i) confirm the mismatch

of TCP and backpressure, (ii) show that TCP-aware

backpressure is compatible with TCP, and significantly

improves throughput as compared to existing adaptive

routing schemes, (iii) demonstrate that TCP-aware back-

pressure provides fairness across competing TCP flows.

The structure of the rest of the paper is as follows. Sec-

tion II gives an overview of the system model. Section III

presents TCP-aware backpressure design and analysis. Sec-

tion IV presents the implementation details of TCP-aware

backpressure as well as its interaction with TCP. Section V

presents simulation results. Section VI presents related work.

Section VII concludes the paper.

II. SYSTEM MODEL

We consider a general network model presented in Fig. 3,

where flows may originate from a source in the Internet

and traverse multiple hops to reach their destination in a

wireless network. An end-to-end TCP connection is set up

for each flow. Our goal in this paper is to develop TCP-aware

backpressure routing and scheduling algorithms that operate

in the wireless network. In this direction, we first develop

our algorithms using the Lyapunov optimization framework

(which is presented in Section III) by taking into account

3

Fig. 3. A general network model that we consider in this paper. A flow may originate
from a source in the Internet and traverse multiple hops to reach its destination in a
wireless network. An end-to-end TCP connection is set up for each flow. We explore the
performance of backpressure for TCP flows in the wireless network.

the incompatibility of TCP and classical backpressure. In this

section, we provide an overview of the system model and as-

sumptions that we use to develop the TCP-aware backpressure.

Note that the interaction and implementation of TCP-aware

backpressure routing and scheduling with actual TCP flows

are presented in Section IV.

Wireless Network Setup: The wireless network consists of

N nodes and L links, where N is the set of nodes and L is

the set of links in the network. In this setup, each wireless

node is able to perform routing and scheduling. Let S be the

set of unicast flows between source-destination pairs in the

network.We consider in our formulation and analysis that time

is slotted, and t refers to the beginning of slot t.
Channel Model: At slot t, C(t) = {C1(t), ..., Cl(t),

..., CL(t)} is the channel state vector, where l represents the

edges such that l = (i, j), (i, j) ∈ L and i �= j. For the

sake of analysis, we assume that Cl(t) is the state of link l at

time t and takes values from the set {ON,OFF} according

to a probability distribution which is i.i.d. over time slots.

If Cl(t) = ON , packets can be transmitted with rate Rl.

Otherwise; (i.e., if Cl(t) = OFF), no packets are transmitted.

Note that our analysis can be extended to more general channel

state models [7]. We also consider a Rayleigh fading model

in our simulations.

Let ΓC(t) denote the set of the link transmission rates feasi-

ble at time slot t, for channel state C(t), and considering inter-

ference among wireless links. In particular, at every time slot t,
the link transmission vector f(t) = {f1(t), ..., fl(t), ...fL(t)}
should be constrained such that f(t) ∈ ΓC(t). Hence, fl(t)
takes a value from the set {Rl, 0} depending on the channel

state and interference among multiple wireless nodes. Also

note that f(t) is determined by the scheduling algorithm.

Stability Region: Let (λs) be the vector of arrival rates ∀s ∈
S . The network stability region Λ is defined as the closure

of all arrival rate vectors that can be stably transmitted in

the network, considering all possible routing and scheduling

policies [1], [2], [3]. Λ is fixed and depends only on channel

statistics and interference.

Flow Rates and Queue Evolution: Each flow s ∈ S is

generated at its source node according to an arrival process

As(t), ∀s ∈ S at time slot t. The arrivals are i.i.d. over

the slots and λs = E[As(t)], ∀s ∈ S . We assume that

E[As(t)] and E[As(t)
2] are finite. Note that we make i.i.d.

arrivals assumption for the purpose of designing and analyzing

our algorithms in the Lyapunov optimization framework. This

assumption is relaxed in the practical setup when we combine

our algorithms with TCP flows in Section IV.

Each node i constructs a per-flow queue Us
i for each flow

s ∈ S . The size of the per-flow queue Us
i at time t is Us

i (t).
Let o(s) be the source node of flow s. The packets generated

according to the arrival process As(t) are inserted in the per-

flow queue at node o(s), i.e., in Us
o(s). These queues only

store packets from flow s ∈ S . Each node i such that i ∈ N
and i �= o(s), may receive packets from its neighboring nodes

and insert them in Us
i . The transmission rate of flow s from

node i to node j is fs
i,j(t). Since the link transmission rate

over link (i, j) is fi,j(t) at time t, multiple flows could share

the available rate, i.e.,
∑

s∈S fs
i,j(t) ≤ fi,j(t). Accordingly,

at every time slot t, the size of per-flow queues, i.e., Us
i (t)

evolves according to the following dynamics.

Us
i (t+ 1) ≤ max[Us

i (t)−
∑

j∈N
fs
i,j(t), 0] +

∑

j∈N
fs
j,i(t)

+As(t)1[i=o(s)], (1)

where 1[i=o(s)] is an indicator function, which is 1 if i = o(s),
and 0, otherwise. Note that Eq. (1) is inequality, because the

number of packets in the queue Us
j (t) may be less than fs

j,i(t).

III. TCP-AWARE BACKPRESSURE: DESIGN AND ANALYSIS

In this section, we design and analyze the TCP-aware

backpressure scheme. In particular, we provide a stochastic

control strategy including routing and scheduling to address

the incompatibility between TCP and classical backpressure.

TCP-Aware Backpressure:
• Routing & Intra-Node Scheduling. The routing & intra-

node scheduling part of TCP-aware backpressure deter-

mines a flow s from which packets should be transmitted

at slot t from node i, as well as the next hop node j
to which packets from flow s should be forwarded. The

algorithm works as follows.

Node i observes per-flow queue backlogs in all neigh-

boring nodes at time t, and determines queue backlog

difference according to:

Ds
i,j(t) = max{K,Us

i (t)} − Us
j (t), (2)

where K is a non-negative finite constant. Let l = (i, j)
s.t. j ∈ N and j �= i. The maximum queue backlog

difference among all flows over link l ∈ L is;

D∗
l (t) = max

[s∈S|l∈Ls]
{Ds

l (t)}. (3)

The flow that maximizes the queue backlog differences

over link l is s∗l (t) and expressed as;

s∗l (t) = argmax
[s∈S|l∈Ls]

{Ds
l (t)}. (4)

At time slot t, one or more packets are selected from the

queue Us∗l (t)
i if D∗

l (t) > 0 and Us∗l (t)
i has enough packets

for transmission. The transmission of the selected pack-

ets depends on the channel conditions and interference

constraints, and determined by inter-node scheduling.

4

Note that TCP-aware backpressure uses queue backlog

difference max{K,Us
i (t)} − Us

j (t) in Eq. (2) instead of

Us
i (t)−Us

j (t) which is used in the classical backpressure.

The advantage of using Eq. (2) in TCP-aware backpres-

sure is that node i may select packets from flow s even

if queue size Us
i (t) is small.1 This advantage is clarified

through an illustrative example later in this section.

• Inter-Node Scheduling. The inter-node scheduling (as

also called resource allocation [3]) part of TCP-aware

backpressure determines link transmission rates consider-

ing the link state information and interference constraints.

Each node i observes the channel state C(t) at time t,
and determines a transmission vector f(t) = {f1(t), ...,
fl(t), ...fL(t)} by maximizing

∑
l∈L D∗

l (t)fl(t). Note

that f(t) should be constrained such that f(t) ∈ ΓC(t),

i.e., interference among multiple nodes should be taken

into account. The resulting transmission rate fl(t) is used

to transmit packets of flow s∗l (t) over link l.

Theorem 1: If channel states are i.i.d. over time slots, the

arrival rates λs, ∀s ∈ S are interior to the stability region

Λ, and K is a non-negative finite constant, then TCP-aware

backpressure stabilizes the network and the total average queue

size is bounded.

Proof: The proof is provided in [8]. �
Example 2: Let us consider again Fig. 1(b) for the oper-

ation of TCP-aware backpressure. The example queue occu-

pancies at time t are U1
I (t) = 1 and U2

I (t) = 3. Assume that

K in Eq. (2) is chosen as K = 10. According to TCP-aware

backpressure, the scheduling algorithm makes a decision based

on the rule s∗ = argmax{max{K,U1
I (t)},max {K,U2

I (t)}}
such that s∗ ∈ {1, 2}. Since max {K,Us

I (t)} = 10, s = 1, 2,

both flows get equal chance for transmission. Thus, congestion

window sizes of both TCP flows evolve in time, and the TCP

flows can transmit their packets. We note that one can extend

this example for the case; U1
I (t) = 7 and U2

I (t) = 12. In

this case, since K = 10, packets from the first flow may not

get any chance for transmission. Therefore, it is crucial to

determine K in practice, which we explain in Section IV. �
Note that we propose TCP-aware backpressure; its routing,

intra-node scheduling, and inter-node scheduling parts to work

with TCP and TCP’s end-to-end flow control mechanism. In

the next section, we provide implementation details. However,

TCP-aware backpressure can also be combined with flow

control schemes other than TCP’s, which is important for two

reasons: (i) it may be possible or preferable to use person-

alized flow control mechanisms instead of TCP’s in some

systems, (ii) there may be both TCP and non-TCP flows in

some systems, where a TCP-friendly flow control mechanism

combined with non-TCP flows is crucial to accommodate both

TCP and non-TCP flows. We consider the following flow

control algorithm, developed in [3], to complement TCP-aware

backpressure for non-TCP flows.

1Note that place-holder backlogs, such as using Us
i (t) + K instead of Us

i (t) has
been considered in the literature [7]. Although place-holder algorithms are beneficial to
improve end-to-end delay, they do not solve the problem we consider in this paper as
they do not give transmission opportunity to small queues.

Fig. 4. TCP-aware backpressure operations at edge-points and intermediate nodes.
The inter-node scheduling and routing and intra-node scheduling parts of TCP are
implemented on top of 802.11 MAC and in the network layer, respectively. The NC layer
is implemented as a slim layer above the network layer at the edge points. Transport
layer, i.e., TCP, only exists if the edge point is a TCP source.

The flow control algorithm at node i determines the number

of packets from flow s that should be passed to the per-flow

queues; Us
i at every time slot t according to;

max
x

∑

[s∈S|i=o(s)]

[Mgs(xs(t))− Us
i (t)xs(t)]

s.t.
∑

[s∈S|i=o(s)]

xs(t) ≤ Rmax
i (5)

where Rmax
i is a constant larger than the maximum outgoing

rate from node i, M is a positive constant, xs(t) is the rate

of packets that will be inserted to the per-flow queue Us
i , and

gs(.) is the utility function of flow s.

Theorem 2: If there are only non-TCP flows in the system

and they employ the flow control algorithm in Eq. (5) and

TCP-aware backpressure (with non-negative finite value of K
in Eq. (2)), then the admitted flow rates converges to the utility

optimal operating point (as the classical backpressure) in the

stability region Λ with increasing M .

Proof: The proof is provided in [8]. �

IV. TCP-AWARE BACKPRESSURE: IMPLEMENTATION &

INTERACTION WITH TCP

We present practical implementation details of TCP-aware

backpressure as well as its interaction with different layers in

the protocol stack (summarized in Fig. 4).

A. Implementation

1) Inter-Node Scheduling: The inter-node scheduling part

of TCP-aware backpressure determines which links should be

activated at time t. The inter-node scheduling is a hard prob-

lem, [9], [10], so its practical implementation is challenging.

Therefore, we implement its low complexity version in our

system on top of IEEE 802.11 MAC as seen in Fig. 4. The

implementation details are as follows.

Each node uses 802.11 MAC to access the wireless medium.

When a node i is assigned a channel by the MAC protocol,

inter-node scheduling determines the neighboring node to

which a selected packet should be forwarded. Let us assume

that a packet is selected from flow s∗i,j(t) to be forwarded to

node j by the routing and intra-node scheduling algorithm,

which we explain later in this section. The next hop that the

selected packet should be forwarded is j∗ and determined

5

by j∗ = argmaxj∈N {D∗
i,jR̃i,j(1 − p̃i,j)}, where p̃l and

R̃l are the estimated values of pl (loss probability) and Rl

(link transmission rate) over link l = (i, j), respectively.2

Then, a packet from flow s∗i,j∗(t), i.e., from the network layer

queue U
s∗i,j∗ (t)
i , is removed and passed to the MAC layer for

transmission. The MAC layer transmits the packet to node j∗.
2) Routing and Intra-Node Scheduling: This algorithm de-

termines the next hop(s) to which packets should be forwarded,

and the packets that should be transmitted.
We construct per-flow queues, i.e., Us

i , at the network

layer3, where the routing and intra-node scheduling algorithm

operates as seen in Fig. 4. The algorithm requires each node to

know the queue size of their neighbors. To achieve this, each

node i transmits a message containing the size of its per-flow

queue sizes; Us
i at time t. These messages are piggy-backed

to data packets. If there is no data transmission for some time

duration, our algorithm uses independent control packets to

exchange the queue size information. The transmitted message

is overheard by all nodes in the neighborhood. The queue

size information is extracted from the overheard messages and

recorded for future decisions.
At node i at time t, the queue backlog difference is calcu-

lated according to Eq. (2). Note that, although the algorithm

exactly knows Us
i (t) at time t, it is difficult to exactly know

Us
j (t) at time t. Therefore, the most recent report (until time t)

of the size of Us
j is used instead of Us

j (t). When a transmission

opportunity for link (i, j) arises using inter-node scheduling

algorithm, a packet from flow s∗i,j(t) is selected and passed to

the MAC layer for transmission.
3) Network Coding: Out of order delivery, high jitter in

RTTs, and packet losses over wireless links are among the

challenges when backpressure and TCP are combined. We

address these challenges by employing network coding [13],

[14], [15]. This is an effective solution thanks to the proper-

ties of network coding such as masking wireless losses and

making packets sequence agnostic in terms of packet IDs. We

summarize our implementation in the following.
We implement the generation based network coding [16]

at the edge points of the wireless network (e.g., access point,

base station, proxy, or TCP source itself) as a slim network

coding layer (NC layer) above the network layer as shown in

Fig. 4. Note that we do not make any updates to TCP, which

makes our approach amenable to practical deployment.
The NC layer at the edge point receives and packetizes the

data stream into packets ηs1, η
s
2, ... of flow s ∈ S . The stream of

packets are divided into blocks of size Hs, which is set to TCP

congestion window size (or its average). The packets within

the same block are linearly combined (assuming large enough

field size) to generate Hs network coded packets; as1 = α1,1η
s
1,

as2 = α2,1η
s
1 + α2,2η

s
2, ..., asHs

= αHs,1η
s
1 + ...+ αHs,Hsη

s
Hs

,

2p̃l is calculated as one minus the ratio of successfully transmitted packets over all
transmitted packets during a time interval T on link l. R̃l is calculated as the average
of the recent (over an interval) link rates over link l.

3Note that constructing per-flow queues at each node may not be feasible in some
systems. However, this aspect is orthogonal to the focus of this paper, and the techniques
developed in the literature [11], [12] to address this problem is complementary to our
TCP-aware backpressure framework.

where αi,j , ∀i, j are network coding coefficients from a

finite field. Note that network coded packets are generated

incrementally to avoid coding delay [16], [15]. The NC layer

adds network coding header including block ID, packet ID,

block size, and coding coefficients. The network coded packets

are routed and scheduled by TCP-aware backpressure.

At the receiver node, when the NC layer receives a packet

from a new block, it considers the received packet as the first

packet in the block. It generates an ACK, sends the ACK back

to the NC layer at the edge point, which matches this ACK

to packet η1, converts this ACK to η1’s ACK, and transmits

the ACK information to the TCP source. Similarly, ACKs

are generated at the receiver side for the second, third, etc.

received packets. As long as the NC layer at the receiver

transmits ACKs, the TCP clock moves, and the window

continues to advance.

The NC layer stores the received network coded packets

in a buffer. When the last packet from a block is received,

packets are decoded and passed to the application layer. If

some packets are lost in the wireless network, the receiver

side NC layer makes a request with the block ID and the

number of missing packets, and the edge point side NC layer

generates additional network coded packets from the requested

block, and sends to the receiver. Note that the missing packet

IDs are not mentioned in the request, since the network coding

makes the packets sequence agnostic in terms of packet IDs.

Network coding makes packets sequence agnostic, which

solves out of order delivery problem and reduces jitter. Net-

work coding also corrects packet losses in the wireless network

as explained above. We explain how our system and NC layer

reacts to congestion-based losses later in this section.

B. Interaction with TCP

1) Congestion Control: Now, let us consider the interaction

of TCP congestion control and TCP-aware backpressure using

well-known classical TCP analysis [17], [18]. Using the sim-

ilar approach as in [17], [18], and as detailed in [8], we find

the steady state TCP throughput for flow s as; x2
s =

(1−qso(s))

T 3
s q

s
o(s)

,

where qso(s) is the buffer overflow probability at the TCP

source/edge node o(s), and Ts is constant RTT.4

Note that the steady state TCP throughput depends on the

buffer overflow probability only at the source/edge node dif-

ferent from [17], [18], where TCP throughput depends on the

buffer overflow probability over all nodes over the path of TCP

flow.5 The reason is that congestion in the wireless network is

controlled by TCP-aware backpressure, and we do not expect

losses due to congestion (buffer overflow) at the intermedi-

ate nodes. In particular, as TCP-aware backpressure makes

transmission decisions based on queue backlog differences

according to Eq. (2), it would not transmit packets if the next

4The constant RTT is a common assumption in classical TCP analysis [17], [18], and
also valid in our setup thanks to employing network coding, which reduces jitter in RTT
and makes constant RTT assumption valid.

5Note that steady state TCP throughput does not depend on packet trapping events
thanks to employing Eq. (2). This does not hold for classical backpressure, because some
packets may be trapped in buffers, which reduces TCP throughput, and should be taken
into account in the steady state TCP throughput analysis.

6

hop queue is congested. Therefore, congestion-based losses

only occur at the source/edge node. In our implementation, if

the buffer at the source/edge node is congested, than a packet

from the flow which has the largest queue size is dropped.

This congestion-based loss information is passed to the NC

layer. The NC layer creates a loss event by not masking the

dropped packet so that TCP can detect the congestion-based

loss event and back-off.

2) Selection of K: TCP-aware backpressure uses queue

backlog difference in Eq. (2), which depends on K, to make

routing and scheduling decisions. As noted in Section III,

the selection of K is crucial in practice to make TCP and

backpressure fully comply.

In particular, if K is selected too small, the number of

packets that are trapped in the buffers, i.e., the number of

packets that do not get transmission opportunity, increases.

This reduces TCP throughput. On the other hand, if K is too

large, TCP-aware backpressure may not exploit the throughput

improvement benefit of backpressure routing and scheduling as

the ability of identifying good routing and scheduling policies

reduces with large K values.

Our intuition is that flows passing through node i, i.e.,
s ∈ Si, should share the available buffer fairly. Assume that

Bi is the available buffer size at node i. In order to give

transmission opportunity to all TCP flows and provide some

level of fairness across the competing TCP flows, we set

K = Bi/|Si| at node i. In this setting, if per-flow queue sizes

are smaller than K, it is highly possible that packets from all

TCP flows are transmitted. On the other hand, if some per-

flow queue sizes are larger than K, packets from the flows

with smaller queue sizes may still be trapped in the buffers.

However, in this case, since the total buffer occupancy is large,

buffer overflow probability at the source/edge node increases.

Upon buffer overflow, the TCP flow with larger queue size

reduces its rate (since upon congestion a packet from the

largest per-flow queue is dropped). This reduces the queue

sizes, and packets from all flows could be transmitted again.

Example 2 - continued: Let us consider again Fig. 1(b).

If the queue occupancies are U1
I (t) = 7, U2

I (t) = 12, and

K = 10, packets only from the second flow are transmitted.

Since K = 10 and we set K = BI/|SI |, and |SI | = 2, the

buffer size should be BI = 20. The total queue occupancy is

U1
I (t) + U2

I (t) = 19. This means that the buffer at node I is

about to overflow, which will lead to back-off for the second

flow (since a packet from the largest queue will be dropped).

Thus, the TCP rate and queue size of the second flow will

reduce, and the first flow will get transmission opportunity. �
We have observed through simulations that TCP-aware

backpressure, when K is set to Bi/|Si|, significantly reduces

the number of the trapped packets in the buffers. Yet, very few

packets may still be trapped. Such packets are easily masked

thanks to network coding. Note that network coding does not

help if large number of packets are trapped in the buffers (e.g.,
when K is selected too small), as large number of trapped

packets increases end-to-end delay too much, which leads to

multiple timeouts and reduces TCP throughput.

V. PERFORMANCE EVALUATION

We simulate our scheme, TCP-aware backpressure (TCP-

aware BP) as well as classical backpressure (classical BP),

in ns-2 [6]. The simulation results; (i) confirm the mismatch

of TCP and classical BP, (ii) show that TCP-aware BP is

compatible with TCP, and significantly improves throughput

as compared to existing routing schemes such as Ad-hoc On-

Demand Distance Vector (AODV) [19], (iii) demonstrate that

TCP-aware BP provides fairness across competing TCP flows.

Next, we present the simulator setup and results in detail.

A. Simulation Setup

We consider three topologies: a tree topology, a diamond

topology, and a grid topology shown in Fig. 5. The nodes

are placed over 500m × 500m terrain, and S1, S2 and R1,

R2 are possible source-receiver pairs in the tree and diamond

topologies. In the grid topology, 4× 3 cells are placed over a

800m × 600m terrain. A gateway, which is connected to the

Internet, passes flows to nodes. Each node communicates with

other nodes in its cell or neighboring cells, and there are 12
nodes randomly placed to the cells.

We consider FTP/TCP traffic, and employ TCP-SACK and

TCP-Vegas in our simulations. TCP flows start at random

times within the first 5sec of the simulation and stay on until

the end of the simulation which is 200sec. IEEE 802.11b

is used in the MAC layer. In terms of wireless channel, we

simulated the two-ray path loss model and a Rayleigh fading

channel with average loss rates 0, 20, 30, 40, 50%.Channel

capacity is 2Mbps, the buffer size at each node is set to 100
packets, packet sizes are set to 1000B. We have repeated each

200sec simulation for 10 seeds.

We compare our scheme, TCP-aware BP, to the classical

BP and AODV. For fair comparison, we employ the network

coding mechanism explained in Section IV in the classical BP

as well as in AODV. The comparisons are in terms of per-flow

and total transport level throughput (added over all flows) as

well as fairness. For the fairness calculation, we use Jain’s

fairness index [20]: F =
(
∑

s∈S x̄s)
2

|S|(∑s∈S(x̄s)2)
, where S is the set of

flows and x̄s is the average throughput of flow s.

B. Simulation Results

Fig. 6 shows throughput vs. time results for TCP-aware BP

and classical BP. There are two flows; Flow 1 is transmitted

from node A to node B, and Flow 2 is transmitted from node

A to node D. The are no losses over the links. Fig. 6(a) and

(b) are the results for TCP-SACK, while Fig. 6(c) and (d) are

for TCP-Vegas. Fig. 6(b) shows that while Flow 1 is able to

transmit, Flow 2 does not get any chance for transmission in

classical BP due to the mismatch between congestion window

size update mechanism of TCP and queue size-based routing

and scheduling of backpressure. On the other hand, in TCP-

aware BP, both flows get chance for transmission. In particular,

Flow 1 and Flow 2 achieves average throughput of 205.7 kbps

and 203.3 kbps, respectively. Fig. 6(c) and (d) show throughput

vs. time results of TCP-aware BP and classical BP for TCP-

Vegas. Although classical BP performs better with TCP-Vegas

7

(a) Tree topology (b) Diamond topology (c) Grid topology

Fig. 5. Topologies used in simulations; (a) tree topology, (b) diamond topology, (c) grid topology.

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(a) TCP-Aware BP with TCP-SACK

0 50 100 150 200
0

100

200

300

400

500

600

700

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(b) BP with TCP-SACK

0 50 100 150 200
0

100

200

300

400

500

600

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(c) TCP-Aware BP with TCP-Vegas

0 50 100 150 200
0

200

400

600

800

1000

1200

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(d) BP with TCP-Vegas

Fig. 6. Throughput vs. time in the tree topology for TCP-SACK and TCP-Vegas. There
are two flows; Flow 1 is transmitted from node A to node B, and Flow 2 is transmitted
from node A to node D. There are no losses over the links.

than TCP-SACK due to the delay based mechanism of TCP-

Vegas, its performance is still quite poor as the throughput

of Flow 2 frequently goes to 0 as seen in Fig. 6(d). On the

other hand, TCP-aware BP improves throughput of both flows

as seen in Fig. 6(c), where the flows achieve 469.3 kbps and

324.6 kbps. Similar results are presented in Fig. 7 for the

diamond topology.

Fig. 8 demonstrates throughput and fairness vs. average loss

rate results of TCP-aware BP and AODV in the diamond

topology. There are two flows transmitted from node A to

B (Flow 1) and A to D (Flow 2). There is loss only over

the link A−B. The version of TCP is TCP-SACK. Fig. 8(a)

shows that TCP-aware BP improves throughput significantly as

compared to AODV thanks to adaptive routing and scheduling.

The throughput improvement of TCP-aware BP as compared

to AODV increases as loss probability increases thanks to loss-

aware routing and scheduling mechanism of TCP-aware BP.

Moreover, Fig. 8(b) shows that the fairness index is close to

F = 1 (note that F = 1 is the highest possible fairness index)

when TCP-aware BP is employed. This means that both TCP

flows are able to survive in TCP-aware BP. Note that the

fairness index of TCP-aware BP is 0.94, while the fairness

index of AODV is 0.98 when the packet loss probability is 0.5.

This is due to the fact that TCP-aware BP exploits loss-free

links better, and slightly favors the flows transmitted over such

links. However, the throughput improvement of both flows

as compared to AODV is higher. In particular, TCP-aware

BP improves throughput as compared to AODV by %10 and

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(a) TCP-Aware BP with TCP-SACK

0 50 100 150 200
0

100

200

300

400

500

600

700

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(b) BP with TCP-SACK

0 50 100 150 200
0

100

200

300

400

500

600

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(c) TCP-Aware BP with TCP-Vegas

0 50 100 150 200
0

200

400

600

800

1000

1200

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(d) BP with TCP-Vegas

Fig. 7. Throughput vs. time in the diamond topology for TCP-SACK and TCP-Vegas.
There are two flows; Flow 1 is transmitted from node A to node B, and Flow 2 is
transmitted from node A to node D. There are no losses over the links.

0 0.1 0.2 0.3 0.4 0.5
200

250

300

350

400

450

Loss Probability

To
ta

l T
hr

ou
gh

pu
t (

kb
ps

)

TCP−Aware BP
AODV

(a) Throughput

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Loss Probability

Fa
irn

es
s

TCP−Aware BP
AODV

(b) Fairness

Fig. 8. Throughput and fairness vs. average packet loss rate for TCP-aware BP and
AODV in the diamond topology. There are two TCP flows transmitted from node A to
B (Flow 1) and A to D (Flow 2). Losses occur only over the link A−B. The version
of TCP is TCP-SACK.

%40 for the first and second flows, respectively. These results

confirm the compatibility of TCP and TCP-aware BP.

Let us consider the grid topology shown in Fig. 5. Four

flows are transmitted from the gateway to four distinct nodes,

which are randomly chosen. Half of the links, chosen at ran-

dom, are lossy with loss probability ranging between 0− 0.5.

Fig. 9 shows throughput vs. time graphs for TCP-aware BP

and classical BP. It is seen that all four flows could survive

in TCP-aware BP for both TCP-SACK and TCP-Vegas, while

one or more flows do not survive in classical BP. Fig. 10 shows

throughput and fairness vs. average loss probability results

for TCP-aware BP and AODV for TCP-SACK. TCP-aware

BP improves throughput significantly as compared to AODV

without violating fairness. Fig. 11 shows that TCP-aware BP

improves throughput significantly as compared to AODV when

8

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

(a) TCP-Aware BP with TCP-SACK

0 50 100 150 200
0

100

200

300

400

500

600

700

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

(b) BP with TCP-SACK

0 50 100 150 200
0

50

100

150

200

250

300

350

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

(c) TCP-Aware BP with TCP-Vegas

0 50 100 150 200
0

200

400

600

800

1000

1200

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

(d) BP with TCP-Vegas

Fig. 9. Throughput vs. time in the grid topology for TCP-SACK and TCP-Vegas.
There are four flows and there are no losses over the links.

0 0.1 0.2 0.3 0.4 0.5
200

220

240

260

280

300

320

340

Loss Probability

To
ta

l T
hr

ou
gh

pu
t (

kb
ps

)

TCP−Aware BP
AODV

(a) Throughput

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Loss Probability

Fa
irn

es
s

TCP−Aware BP
AODV

(b) Fairness

Fig. 10. Throughput and fairness vs. average packet loss rate for TCP-aware BP and
AODV in the grid topology. There are four TCP flows transmitted from the gateway
to four distinct nodes. There are losses over half of the links. The version of TCP is
TCP-SACK.

0 0.1 0.2 0.3 0.4 0.5
350

400

450

500

550

600

650

Loss Probability

To
ta

l T
hr

ou
gh

pu
t (

kb
ps

)

TCP−Aware BP
AODV

(a) Throughput

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Loss Probability

Fa
irn

es
s

TCP−Aware BP
AODV

(b) Fairness

Fig. 11. Throughput and fairness vs. average packet loss rate for TCP-aware BP and
AODV in the grid topology. There are four TCP flows transmitted from the gateway
to four distinct nodes. There are losses over half of the links. The version of TCP is
TCP-Vegas.

TCP-Vegas is employed. This shows the effectiveness of our

scheme in delay-based TCP versions.

As mentioned in Section III, there may be both TCP and

non-TCP flows in the system, and non-TCP flows should be

controlled in a TCP-friendly manner so that TCP flows could

survive when non-TCP flows are on. Therefore, a flow control

algorithm is presented in Eq. (5) for non-TCP flows. Now,

we evaluate this scenario in the diamond topology with two

flows. Flow 1 is a TCP flow (TCP-SACK) transmitted from

node A to node B, and Flow 2 is a non-TCP flow transmitted

from node A to node D. In our TCP-aware BP framework,

the non-TCP flow is regulated by Eq. (5). The parameters in

Eq. (5) are set as; M = 50, g(xs(t)) = log(xs(t)), ∀t, s ∈ S .

0 50 100 150 200
0

100

200

300

400

500

600

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(a) TCP-Aware BP

0 50 100 150 200
0

100

200

300

400

500

600

700

800

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s)

Flow 1
Flow 2

(b) Classical BP

0 50 100 150 200
0

100

200

300

400

500

600

700

800

Time (sec)

Th
ro

ug
hp

ut
(k

bp
s) Flow 1

Flow 2

(c) AODV

Fig. 12. Throughput vs. time in the diamond topology for TCP-SACK. There are
two flows; Flow 1 is a TCP flow, transmitted from node A to node B, and Flow 2 is a
non-TCP flow, transmitted from node A to node D. There are no losses over the links.

0 0.1 0.2 0.3 0.4 0.5
200

300

400

500

600

700

800

Loss Probability

To
ta

l T
hr

ou
gh

pu
t (

kb
ps

)

TCP−Aware BP
AODV

(a) Throughput

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Loss Probability

Fa
irn

es
s

TCP−Aware BP
AODV

(b) Fairness

Fig. 13. Throughput and fairness vs. average packet loss rate for TCP-aware BP and
AODV in the diamond topology. There are two flows transmitted from node A to B
(Flow 1, i.e., TCP flow) and A to D (Flow 2, i.e., non-TCP flow). There are losses only
over the link A − B. The version of TCP is TCP-SACK.

The implementation details including TCP-friendly parameter

selection are provided in [8]. Fig. 12 shows throughput vs. time

graph of TCP-aware BP, classical BP, and AODV. The TCP

flow does not survive in classical BP as packets are trapped in

the buffers. It does not survive with AODV as well, because

uncontrolled non-TCP flows (i.e., UDP flows) occupy buffers

and TCP packets are constantly dropped from the buffers,

which reduces TCP throughput. Yet, both TCP and non-

TCP flows survive together in TCP-aware BP thanks to TCP-

aware routing and scheduling, and TCP-friendly flow control

mechanism for non-TCP flows. Fig. 13 shows the throughput

improvement performance of TCP-aware BP as compared to

AODV in the same setup for different packet loss probabilities.

At low loss probabilities, although the throughput of AODV

is better than TCP-aware BP, the fairness graph (and Fig. 12

for no-loss) shows that the fairness of AODV is very low,

which means that the TCP flow does not survive. At higher

loss probabilities, TCP-aware BP is better than AODV thanks

to choosing better routes and schedules as compared to AODV.

VI. RELATED WORK

Backpressure, a routing and scheduling framework over

communication networks [1], [2] has generated a lot of re-

search interest [7], mainly in wireless ad-hoc networks. It has

also been shown that backpressure can be combined with flow

control to provide utility-optimal operation guarantee [3], [21].

The strengths of backpressure have recently increased the

interest on practical implementation of backpressure over wire-

less networks. Backpressure has been implemented over sensor

networks [22] and wireless multi-hop networks [23]. The

multi-receiver diversity has been explored in wireless networks

using backpressure in [24]. The 802.11 compliant version

of enhanced backpressure is evaluated in [25]. Backpressure

routing and rate control for intermittently connected networks

was developed in [26].

9

Backpressure routing and (max-weight) scheduling with

TCP over wireless has been considered in the literature. At the

link layer, [27], [28], propose, analyze, and evaluate link layer

backpressure-based implementations with queue prioritization

and congestion window size adjustment. The interaction of

TCP with backpressure in [27] and [28] is handled by updating

the TCP congestion window evolution mechanism. In particu-

lar, if the queue size (at the TCP source) increases, the window

size is reduced, otherwise, the window size is increased. Multi-

path TCP scheme is implemented over wireless mesh networks

[29] for routing and scheduling packets using a backpressure-

based heuristic, which avoids incompatibility with TCP. Max-

weight scheduling is updated in [30] to make decisions based

only on MAC level queue size information. Although [30]

considers window-based flow control mechanism similar to

TCP, it does not consider existing TCP flavors. The main dif-

ferences in our work are: (i) we consider the incompatibility of

TCP with backpressure, and develop TCP-aware backpressure

framework to address the incompatibilities, (ii) TCP-aware

backpressure provides the same stability and utility-optimal

operation guarantees as classical backpressure, (iii) we do

not make any changes at the TCP source, (iv) we employ

network coding to gracefully combine TCP and TCP-aware

backpressure.

Maximum weight matching (MWM) is a switch schedul-

ing algorithm and has similar properties as the max-weight

scheduling algorithm and backpressure. Similar to the back-

pressure, there is incompatibility between TCP and MWM

[31], [32]. Yet, we consider backpressure routing and schedul-

ing over wireless networks rather than switch scheduling,

and we take a holistic approach to address this problem;

i.e., we propose TCP-aware backpressure to make TCP and

backpressure compatible.

VII. CONCLUSION

We proposed TCP-aware backpressure routing and schedul-

ing to address the incompatibility of TCP and backpressure

while exploiting the performance of backpressure routing and

scheduling over wireless networks. TCP-aware backpressure

is developed by taking into account the behavior of TCP

flows, and gracefully combines TCP and backpressure without

making any changes to the TCP protocol. Simulations in ns-2

demonstrate that TCP-aware backpressure improves through-

put of TCP flows significantly and provides fairness across

competing TCP flows.

REFERENCES

[1] L. Tassiulas, A. Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks,” in IEEE Trans. on Auto. Control, vol. 37(12), Dec. 1992.

[2] L. Tassiulas, A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” in IEEE ToIT, vol. 39(2),
March 1993.

[3] M. J. Neely, E. Modiano, C. Li, “Fairness and optimal stochastic control
for heterogeneous networks,” in IEEE/ACM ToN, vol. 16(2), April 2008.

[4] K. Tan, J. Song, Q. Zhang, M. Sridharan, “A compound TCP approach
for high-speed and long distance networks,” in Proc. of IEEE INFOCOM,
Barcelona, Spain, April 2006.

[5] S. Ha, I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” in SIGOPS Oper. Syst. Rev., vol. 42(5), July 2008.

[6] The Network Simulator - ns-2, Version 2.35, available at
www.isi.edu/nsnam/ns/.

[7] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Morgan & Claypool, 2010.

[8] H. Seferoglu, E. Modiano, “TCP-aware backpressure routing and schedul-
ing,” Tech. Report, arXiv:1308.0625v1 [cs.NI], Aug. 2013.

[9] M. Chiang, S. T. Low, A. R. Calderbank, J. C. Doyle, “Layering as opti-
mization decomposition: a mathematical theory of network architectures,”
in Proceedings of the IEEE, vol. 95(1), Jan. 2007.

[10] X. Lin, N. B. Schroff, R. Srikant, “A tutorial on cross-layer optimization
in wireless networks,” in IEEE JSAC, vol. 24(8), Aug. 2006.

[11] H. Seferoglu, E. Modiano, “Diff-Max: separation of routing and schedul-
ing in backpressure-based wireless Networks,” in Proc. of IEEE INFO-
FOCM, Turin, Italy, April, 2013.

[12] L. X. Bui, R. Srikant, A. Stolyar, “A novel architecture for reduction of
delay and queueing structure complexity in the back-pressure algorithm,”
in IEEE/ACM Transactions on Networking, vol. 19(6), Dec. 2011.

[13] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, J. Barros,
“Network coding meets TCP,” in Proc. of IEEE INFOCOM, Rio de Janeiro,
Brazil, April 2009.

[14] S. Gheorghiu, A. L. Toledo, P. Rodriguez, “Multi-path TCP with network
coding for wireless mesh networks,” in Proc. of IEEE ICC, Cape Town,
South Africa, May 2010.

[15] H. Seferoglu, A. Markopoulou, K. K. Ramakrishnan, “I2NC: intra- and
inter-session network coding for unicast flows in wireless networks,” in
Proc. of IEEE INFOCOM, Shanghai, China, April 2011.

[16] P. A. Chou, Y. Wu,“Network coding for the Internet and wireless
networks,” in IEEE Signal Proc. Magazine, vol. 24(5), Sept. 2007.

[17] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput:
a simple model and its empirical validation,” in Proc. of ACM SIGCOMM,
Vancouver, Canada, Sep. 1998.

[18] S. Low, “A duality model of TCP and queue management algorithms,”
in IEEE/ACM Transactions on Networking, vol. 11(4), Aug. 2003.

[19] C. Perkins, E. Belding-Royer, S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” RFC 3561, IETF, July 2003.

[20] R. K. Jain, “The art of computer systems performance analysis: tech-
niques for experimental design, measurement, simulation, and modeling,”
John Wiley & Sons, April 1991.

[21] A. L. Stolyar, “Greedy primal dual algorithm for dynamic resource
allocation in complex networks,” in Queuing Systems, vol. 54, 2006.

[22] S. Moeller, A. Sridharan, B. Krishnamachari, O. Gnawali, “Routing
without routes: the backpressure collection protocol,” in Proc. of ACM
IPSN, Stockholm, Sweden, April 2010.

[23] R. Laufer, T. Salonidis, H. Lundgren, P. L. Guyadec, “XPRESS: a cross-
layer backpressure architecture for wireless multi-hop networks,” in Proc.
of ACM MobiCom, Las Vegas, NV, Sep. 2011.

[24] A. A. Bhorkar, T. Javidi, A. C. Snoereny, “Achieving congestion
diversity in wireless ad-hoc networks,” in Proc. of IEEE INFOCOM,
Shanghai, China, April 2011.

[25] K. Choumas, T. Korakis, I. Koutsopoulos, L. Tassiulas, “Implementa-
tion and end-to-end throughput evaluation of an IEEE 802.11 compliant
version of the enhanced-backpressure algorithm,” in Proc. of TridentCom,
Thessaloniki, Greece, June 2012.

[26] J. Ryu, V. Bhargava, N. Paine, S. Shakkottai, “Backpressure routing and
rate control for ICNs,” in Proc. of ACM MobiCom, Chicago, IL, Sep. 2010.

[27] A. Warrier, S. Janakiraman, S. Ha, I. Rhee, “DiffQ: practical differential
backlog congestion control for wireless networks,” in Proc. of IEEE
INFOCOM, Rio de Janerio, Brazil, April 2009.

[28] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, A. Stolyar, “Joint
scheduling and congestion control in mobile ad-hoc networks,” in Proc. of
IEEE INFOCOM, Phoenix, AZ, April 2008.

[29] B. Radunovic, C. Gkantsidis, D. Gunawardena, P. Key, “Horizon:
balancing TCP over multiple paths in wireless mesh network,” in Proc.
of ACM MobiCom, San Francisco, CA, Sep. 2008.

[30] J. Ghaderi, T. Ji, R. Srikant, “Connection-level scheduling in wireless
networks using only MAC-layer information,” in Proc. of IEEE INFO-
COM, Orlando, FL, March 2012.

[31] A. Shpiner, I. Keslassy, “Modeling the interactions of congestion control
and switch scheduling,” in Computer Networks, vol. 55(6), April 2011.

[32] P. Giaccone, E. Leonardi, F. Neri, “On the interaction between TCP-like
sources and throughput-efficient scheduling policies,” in Elsevier, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

