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Abstract—We study scheduling and routing problems that arise
in multi-hop wireline networks with a mix of heavy-tailed and
light-tailed traffic. We analyze the delay performance of the
widely studied class of Back-Pressure policies, known for their
throughput optimality property, using as a performance criterion
the notion of delay stability, i.e., whether the expected end-to-
end delay in steady state is finite. First, by means of simple
examples, we provide insights into how the network topology, the
routing constraints, and the link capacities (relative to the arrival
rates) may affect the delay stability of the Back-Pressure policy in
the presence of heavy-tailed traffic. Next, we illustrate how fluid
approximations facilitate the delay-stability analysis of multi-hop
networks with heavy-tailed traffic. This approach allows us to
derive analytical results that would have been hard to obtain
otherwise, and also to build a Bottleneck Identification algorithm,
which identifies (some) delay unstable queues by solving the fluid
model of the network from certain initial conditions. Finally, we
show how one can achieve optimal performance, with respect to
the delay stability criterion, by using a parameterized version of
the Back-Pressure policy.

I. INTRODUCTION

We study scheduling and routing problems that arise in

multi-hop wireline networks with a mix of heavy-tailed (i.e.,

arrival processes with infinite variance) and light-tailed traf-

fic, and, potentially, multiple source-destination routes for

each traffic flow. We analyze the delay performance of the

widely studied class of Back-Pressure policies, known for their

throughput optimality property. Classical results in queue-

ing theory (e.g., the Pollaczek-Khinchin formula) imply that

heavy-tailed flows experience large delays, infinite in steady-

state expectation. Thus, we focus on the (policy-dependent)

impact of heavy-tailed traffic on light-tailed flows, using as a

performance criterion the notion of delay stability, i.e., whether

the expected end-to-end delay in steady state is finite.

The class of Back-Pressure policies was introduced in the

seminal work of Tassiulas and Ephremides [14] and, since

then, numerous studies have analyzed these policies in a

variety of settings; see [5] for an overview. A remarkable

property of Back-Pressure policies is their throughput optimal-

ity, i.e., their ability to stabilize a queueing network whenever

this is possible. Moreover, Back-Pressure policies have been

combined with congestion control in “cross-layer control”
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schemes that are provably stabilizing and utility-optimizing,

e.g., see [4], [12].

We are motivated to study heavy-tail phenomena by empiri-

cal evidence that traffic in real-world networks exhibits strong

correlations and statistical similarity over different time scales.

This observation was first made by Leland et al. [7] through

analysis of Ethernet traffic traces. Subsequent empirical studies

have documented this phenomenon in other networks, while

accompanying theoretical studies have associated it with ar-

rivals that exhibit high variability. In stochastic models, high

variability is typically captured by heavy-tailed probability

distributions and/or processes.

The impact of heavy tails has been analyzed extensively

in relatively simple queueing systems, e.g., single or multi-

server queues; see the survey paper [1]. Moreover, as alluded

to above, there is vast literature on the performance of Back-

Pressure policies under light-tailed traffic. However, the delay

analysis of Back-Pressure policies in networks with a mix of

heavy-tailed and light-tailed traffic has only recently attracted

attention. Jagannathan et al. [6] consider a system with two

parallel queues, receiving heavy-tailed and light-tailed traffic

while sharing a single server, and determine the queue-length

asymptotics under the Generalized Max-Weight policy. In the

same setting, Nair et al. [11] analyze the role of intra-queue

scheduling, i.e., the way that jobs are served within each

queue, on queue-length asymptotics.

Closer to the present paper comes our earlier work [9],

which studies the delay stability of Max-Weight policies (the

single-hop equivalent of Back-Pressure) in networks with a

mix of heavy-tailed and light-tailed traffic. There, the deci-

sion problem is “one-dimensional,” boiling down to a link-

scheduling problem: which subset of servers/communication

links to activate at any given time slot. This determines directly

which traffic flows are to be served, because in single-hop net-

work models there is, typically, a one-to-one correspondence

between links and flows. However, in multi-hop networks,

multiple flows may traverse the same communication link.

This makes the decision problem “two-dimensional,” com-

prising of a link-scheduling and a flow-scheduling part. The

latter can be roughly stated as follows: given the activated

links, which flow to send through each of them. This can be

interpreted as a joint scheduling and routing decision. Since

the link-scheduling part of the decision problem has been



analyzed extensively in [9], and in the follow-up work [10],

here we consider a wireline multi-hop network, where only

the flow-scheduling part remains relevant. Thus, in the present

paper we focus only on phenomena and insights that arise due

to the multi-hop nature of the network and the possibility of

multiple source-destination routes.

The main contributions of the paper can be summarized as

follows.

(i) Through simple examples, we provide insights into how

the network topology, the routing constraints, and the link

capacities (relative to the arrival rates) may affect the delay

performance of the Back-Pressure policy in the presence of

heavy-tailed traffic. These insights, in turn, lead to network

design principles.

(ii) By extending the results of [10] to the multi-hop setting,

we illustrate the use of fluid approximations in delay-stability

analysis of multi-hop networks with heavy-tailed traffic. This

approach allows us to derive analytical results in cases where

purely stochastic arguments would have been hard, e.g., see

Proposition 5. Moreover, based on these results, we pro-

pose the Bottleneck Identification algorithm, which identifies

(some) delay unstable queues/traffic flows by solving the fluid

model of the network from certain initial conditions.

(iii) We show how one can achieve optimal performance

with respect to the delay stability criterion by using a pa-

rameterized version of the Back-Pressure policy, provided the

parameters are chosen suitably.

The remainder of the paper is organized as follows. Section

II includes a detailed description of a multi-hop wireline

network, together with useful definitions and notation. In

Section III we show, through simple examples, which “system

parameters” may affect the delay performance of the Back-

Pressure policy and in what way. In Section IV we illustrate

how fluid approximations can be used for proving delay

instability results, and present the Bottleneck Identification

algorithm. Section V contains the delay-stability analysis of

the parameterized Back-Pressure-α policy. We conclude with

a brief discussion in Section VI.

II. A MULTI-HOP WIRELINE NETWORK UNDER THE

BACK-PRESSURE POLICY

In this section we give a detailed description of a multi-

hop switched queueing network, present the Back-Pressure

scheduling and routing policy, and provide some useful defi-

nitions and notation.

We denote by R+, Z+, and N the sets of nonnegative reals,

nonnegative integers, and positive integers, respectively. Also,

[x]+ represents max{x, 0}, the positive part of scalar x.

The topology of the network is captured by a directed graph

G =
(N ,L), where N is the set of nodes and L is the set

of directed links. Nodes represent the physical or virtual loca-

tions where traffic is buffered before transmission, and edges

represent communication links, i.e., the means of transmission.

In a queueing context, nodes capture the locations of queues,

while each link is a server that carries traffic from queues at

its source node to queues at its destination node. With few

exceptions, we use variables i and j to represent nodes, and

(i, j) to denote a directed link from node i to node j.

Central to our model is the notion of a traffic flow f ∈
{1, . . . , F}, F ∈ N, which is a long-lived stream of traffic that

arrives to the network according to a discrete time stochastic

arrival process {Af (t); t ∈ Z+}. Each traffic flow f ∈ F has

a unique source node sf ∈ N where it enters the network, and

a unique destination node df ∈ N where it exits the network.

The quantity Af (t) may be interpreted as the (random) number

of packets that flow f brings (exogenously) to sf at the end

of time slot t.
We assume that all arrival processes take values in Z+, and

are independent and identically distributed (IID) over time.

Furthermore, different arrival processes are independent. We

denote by λf = E[Af (0)] > 0 the rate of traffic flow f and by

λ = (λf ; f = 1, . . . , F ) the vector of the rates of all traffic

flows.

Definition 1: (Heavy/Light Tails) A nonnegative random

variable X is heavy-tailed if E
[
X2

]
is infinite, and is light-

tailed otherwise. Moreover, X is exponential-type (light-tailed)

if there exists θ > 0 such that E
[
exp

(
θX

)]
< ∞.

A traffic flow is heavy-tailed/light-tailed/exponential-type if

the corresponding IID arrival process is heavy-tailed/light-

tailed/exponential-type, respectively. We note that there are

several definitions of heavy and light tails in the literature.

In fact, a random variable is often defined as light-tailed if

it is exponential-type, and heavy-tailed otherwise. Definition

1 has been used in the literature on data communication

networks, e.g., see [13], due to its close connection to long-

range dependence.

For technical reasons we assume the existence of some γ ∈
(0, 1) such that E

[
A1+γ

f (0)
]
< ∞, for all f ∈ F .

In the context of data communication networks, a batch of

packets arriving to the network at any given time slot can

be viewed as a single entity, e.g., as a file that needs to be

transmitted. We define the end-to-end delay of a file of flow

f to be the number of time slots that the file spends in the

network, starting from the time slot right after it arrives at sf ,

until the time slot that its last packet reaches df . For k ∈ N, we

denote by Df (k) the end-to-end delay of the kth file of flow f ,

and use the vector notation D(k) =
(
Df (k); f = 1, . . . , F

)
.

Each traffic flow f has a predetermined set of links Lf ⊂ L
that it is allowed to access. We assume that sf �= df and that

there exists at least one directed path from sf to df within

the links in Lf . We also assume that the links in Lf , together

with the associated nodes, form a Directed Acyclic Graph in

which nodes sf and df are the only source and sink nodes,

respectively. If the set Lf includes exactly one path from the

source to the destination, then we say that flow f has fixed
routing. On the other hand, if there are more than one source-

destination paths, we say that flow f has dynamic routing.

Node i belongs to set Nf if there exists a directed path from

sf to i that includes only links in Lf . Thus, Nf ⊂ N is the

set of nodes that traffic flow f can access. Note that the source



node sf is trivially included in Nf , while the destination node

df is included in Nf , due to our assumptions on Lf .

The queueing network operates in discrete time slots, which

we index by t ∈ Z+. Traffic flow f maintains a queue at every

node i ∈ Nf . We refer to this queue as queue (f, i) and denote

its length at the beginning of time slot t ∈ Z+ by Qf,i(t). We

emphasize that queue (f, i) buffers only packets of flow f .

The service discipline within each queue is “First Come, First

Served.”

Traffic may arrive to queue (f, i) either exogenously, if i
is the source node sf , or endogenously, through a link in Lf

whose destination node is i. We refer to queue (f, sf ) as the

source queue of traffic flow f . We denote by Sf,i,j(t) the

number of packets that are scheduled for transmission from

queue (f, i) through link (i, j) ∈ Lf . These packets serve as

(potential) departures from queue (f, i) and arrivals to queue

(f, j), at time slot t.

We assume that all links can transmit packets simulta-
neously, and that all attempted transmissions are successful.

Thus, our queueing model is suitable for wireline applications,

but does not capture the interference constraints or the pos-

sibility of dropped packets that wireless networks typically

exhibit.

Each link can only serve one traffic flow at any given time

slot, giving rise to flow-scheduling constraints. The set of

decisions regarding which flow is scheduled through every

link can be interpreted as joint scheduling and routing. For

simplicity, we assume that the capacity of all links is equal to

one packet per time slot, which implies that Sf,i,j(t) ∈ {0, 1},

for all (i, j) ∈ Lf , for all f ∈ F . We use the shorthand

notation Q(t) for the set of queue lengths
{
Qf,i(t); i ∈

Nf , f ∈ F}
, and S(t) for the set of scheduling/routing

decisions
{
Sf,i,j(t); (i, j) ∈ Lf , f ∈ F}

, t ∈ Z+.

In general, a queue-length-based policy is a sequence of

mappings from the history of queue lengths
{
Q(τ); τ =

0, . . . , t
}

to scheduling/routing decisions S(t), t ∈ Z+.

For much of the paper we focus on a particular stationary

and Markovian queue-length-based policy, the Back-Pressure
policy, which we proceed to describe. At the beginning of each

time slot t ∈ Z+ set S(t) = 0. Then, go through all links in

L in some predetermined order. For each link (i, j) ∈ L,

(i) compute the maximum differential backlog

Wi,j(t) = max
f :(i,j)∈Lf

{[
Qf,i(t)−Qf,j(t)]

]+}
;

(ii) if Wi,j(t) = 0 then set Sf,i,j(t) = 0, for all f such that

(i, j) ∈ Lf ;

(iii) otherwise, pick a flow f∗ with maximum differential

backlog, i.e.,

f∗ ∈ arg max
f :(i,j)∈Lf

{
Qf,i(t)−Qf,j(t)

}
.

(If the set on the right-hand side includes multiple flows, f∗

is picked uniformly at random.) Then, set Sf∗,i,j(t) = 1 and

Sf,i,j(t) = 0, for all f �= f∗.

The dynamics of the multi-hop switched queueing network

can be written in the following form:

Qf,sf (t+1) = Qf,sf (t)−
∑

j:(sf ,j)∈Lf

Sf,sf ,j(t)+Af (t), (1)

and

Qf,i(t+1) = Qf,i(t)−
∑

j:(i,j)∈Lf

Sf,i,j(t)+
∑

j:(j,i)∈Lf

Sf,j,i(t),

(2)

for all f ∈ Nf \ {sf , df}. Finally, by convention,

Qf,df
(t) = 0, ∀f ∈ F . (3)

The initial queue lengths are arbitrary nonnegative integers.

It is possible that not all scheduled transmissions result

in actual transmissions, because queues may empty. In those

cases, Eqs. (1) and (2) may be violated. In that light, the above

set of equations describes the evolution of the network only

when the queue lengths are sufficiently large.

As already mentioned above, the main motivation to study

the class of Back-Pressure policies is their excellent stability

properties. In this paper, the notion of stability is defined as

convergence in distribution of the sequences of queue lengths

and file delays. Moreover, an arrival rate vector λ belongs to

the stability region Λ if there exists a policy under which the

network is stable. An explicit characterization of the stability

region of the above multi-hop network can be found in [8].

Lemma 1: (Throughput Optimality of Back-Pressure)
The multi-hop switched queueing network described above is

stable under the Back-Pressure policy, for all λ ∈ Λ.

Proof: For the case of light-tailed traffic, this result

follows from the findings in [14]; in the presence of heavy-

tailed traffic, it follows from the findings of [3]. For a formal

proof the reader is referred to [8].

We denote by Qf,i and Df,i the steady-state length and

delay of queue (f, i), respectively, while we reserve Df for

the end-to-end delay of traffic flow f in steady state.

Definition 2: (Delay Stability) Traffic flow f is delay stable

under a specific policy if the network is stable under that policy

and E[Df ] is finite; otherwise, f is delay unstable.

Similarly, queue (f, i) is delay stable if E
[
Df,i

]
is finite,

and delay unstable otherwise.

Theorem 1: (Delay Instability of Heavy Tails) Consider

the multi-hop switched queueing network described above un-

der any joint scheduling and routing policy. The source queue

of every heavy-tailed flow is delay unstable. Consequently,

every heavy-tailed flow is delay unstable.

Proof: The result follows easily from the Pollaczek-

Khinchin formula for the expected delay in a M/G/1 queue,

and a stochastic comparison argument. For a formal proof the

reader is referred to [8].

Since there is little that can be done regarding the delay

stability of heavy-tailed flows, we turn our attention to light-

tailed traffic. The Pollaczek-Khinchin formula implies that



light-tailed flows in isolation are delay stable. However, the

existence of flow-scheduling constraints couples the evolution

of different queues and flows. Below we show that this cou-

pling may cause light-tailed flows to become delay unstable,

giving rise to a form of propagation of delay instability.

III. DELAY STABILITY ANALYSIS OF BACK-PRESSURE

Which “system parameters” affect the delay performance

of the class of Back-Pressure policies in the presence of

heavy-tailed traffic? Motivated by this question we study

the delay performance of the original Back-Pressure policy

described in Section II in terms of the delay stability criterion.

By means of simple examples, we investigate the role of

the network topology, the routing constraints, and the link

capacities (relative to the arrival rates) on the delay stability of

queues and flows. Our goal is to derive insights into the type

of systems where Back-Pressure is expected to perform well,

which can, then, be translated into network design principles.

Our analysis highlights the importance of links that are

allowed to serve the source queues of heavy-tailed flows,

which we call bottleneck links. In mathematical terms, if

f ∈ F is a heavy-tailed traffic flow, the set of bottleneck

links associated with f is defined as

Bf =
{
(sf , i) : (sf , i) ∈ Lf

}
.

To illustrate the importance of bottleneck links let us

consider the simple system of Figure 1, which includes two

traffic flows, the heavy-tailed flow 1 and the light-tailed flow

2. Both flows arrive exogenously at node 1, their packets get

buffered in the respective queues, eventually get transmitted

through link (1, 0), and exit the network as soon as they reach

node 0. Link (1, 0) is a bottleneck link, since it is allowed to

serve the source queue of flow 1. It is not hard to see that this

model is equivalent to a single-server system of two parallel

queues, where the Back-Pressure policy reduces to Max-

Weight scheduling. Then, Theorem 2 of [9] implies that the

light-tailed flow 2 is delay unstable. The main idea behind this

result is the following: queue (1, 1) is, occasionally, very long

due to the heavy-tailed arrivals that it receives exogenously.

During those time periods, flow 1 has very large differential

backlog over link (1, 0), which implies that, under the Back-

Pressure policy, queue (2, 1) is deprived of service until it

builds up a comparable backlog.

Fig. 1. A single-server system with two parallel queues, cast as a multi-
hop network. Traffic flow 1 is heavy-tailed and traffic flow 2 is light-tailed.
Since the network has single-hop traffic, the Back-Pressure policy reduces to
Max-Weight scheduling. The findings of [9] imply that the light-tailed flow
is delay unstable.

More generally, light-tailed flows experience large delays
whenever they have to traverse bottleneck links. Consequently,
the delay performance of Back-Pressure depends crucially on
the ability of light-tailed flows to avoid bottlenecks, in static or
dynamic ways. This ability is dictated by a number of “system

parameters,” as we show below.

A. The Role of Network Topology

We start by illustrating the role of network topology in

the delay stability of light-tailed flows. Consider the “line”

network depicted in Figure 2. The heavy-tailed flow 1 arrives

exogenously at node 1, eventually gets transmitted through link

(1, 0), and exits the network as soon as it reaches node 0. The

light-tailed flow 2 arrives exogenously at node 2, eventually

gets transmitted through link (2, 1) first, and through link

(1, 0) next, and exits the network when it reaches node 0.

We are interested in the delay stability of flow 2 under the

Back-Pressure policy.

Fig. 2. The heavy-tailed flow 1 enters the network at node 1 and exits at
node 0. The light-tailed flow 2 enters the network at node 2, and passing
through node 1, it also exits the network at node 0. Traffic flow 2 is delay
unstable under the Back-Pressure policy because it has to pass through the
bottleneck link (1, 0).

Proposition 1: Consider the network of Figure 2 under the

Back-Pressure policy, with an arrival rate vector in the stability

region. Traffic flow 2 is delay unstable.

Proof: This result is a special case of Theorem 2.

The reason that traffic flow 2 is delay unstable is the

topology of the network, and more specifically the fact that

the only source-destination path of flow 2 passes through a

bottleneck link. We will see shortly that this condition leads

to delay instability in more general networks.

B. The Role of Routing Constraints

We continue with the role of routing constraints. Consider

the network of Figure 3: the heavy-tailed flow 1 arrives exoge-

nously at node 1, and may reach its destination node 0 through

the path
(
(1, 2), (2, 0)

)
, or through the path

(
(1, 3), (3, 0)

)
.

The same applies to the light-tailed flow 2. In other words,

both flows have dynamic routing. We are interested in the

delay stability of flow 2 under the Back-Pressure policy.

Proposition 2: Consider the network of Figure 3 under the

Back-Pressure policy, with an arrival rate vector in the stability

region. Traffic flow 2 is delay unstable.

Proof: This result is a special case of Theorem 2.

The reason that traffic flow 2 is delay unstable in Figure 3

lies in the routing constraints of the heavy-tailed flow 1, or,



Fig. 3. Both the heavy-tailed flow 1 and the light-tailed flow 2 enter the
network at node 1 and exit at node 0. They are both allowed to access all
links of the network. Traffic flow 2 is delay unstable under the Back-Pressure
policy because it has to pass through, either link (1, 2) or link (1, 3), which
are both bottleneck links.

more accurately, the lack of constraints. By not restricting the

links that flow 1 is allowed to access, both links (1, 2) and

(1, 3) become bottleneck links. In turn, all feasible source-

destination paths of flow 2 pass through bottleneck links.

Similar conclusions can be reached if we force both flows 1

and 2 to follow the same fixed route to their destination node.

The insights derived from the simple examples of Figures

1-3 can be unified in a general result. We say that traffic flow
f ∈ F has to pass through a set of link L′ ⊂ L if every

packet arriving at queue (f, sf ) must traverse one of the links

in L′ in order to reach df . Clearly, whether a traffic flow has to

pass through a given set of links or not depends on the network

topology, the routing constraints, and the joint scheduling and

routing policy applied.

Theorem 2: Consider the multi-hop switched queueing

network of Section II under the Back-Pressure policy, with

an arrival rate vector in the stability region. Let f ∈ F be

a light-tailed traffic flow. If there exists a heavy-tailed flow

f ′ ∈ F such that f has to pass through the set of bottleneck

links Bf ′ , then f is delay unstable.

Proof: Without loss of generality, suppose that the net-

work starts empty. We track the evolution of the network along

sample paths of the arrivals where:

(i) Af ′(0) = b, for sufficiently large b in the support of

Af ′(0);
(ii) Af (0) = 0, for all f �= f ′;
(iii)

{∣∣∑t
τ=1 Ag(τ)− λg

∣∣ ≤ εt+ δ, ∀t ∈ N, ∀g ∈ F}
, for

sufficiently small ε > 0 and some δ > 0.

Let Hb be the set of these sample paths. The probability

P
(
Hb

)
is bounded away from zero because the arrival pro-

cesses are mutually independent and IID over time slots.

At time slot zero, the differential backlog of flow f ′ over

every link in Bf ′ is b, while the differential backlog of flow

f over any of those links is zero. Moreover, the differential

backlog of flow f ′ can decrease at rate no more than 2
∣∣Bf ′

∣∣

packets per time slot (since the capacity of all links is equal

to one), while the differential backlog of flow f can increase

at rate no more than
(
λf + ε

)
along the sample paths in Hb.

So, for sample paths in Hb, there exist b0, k > 0 for which

Qf ′,i(t)−Qf ′,j(t) > Qf,i(t)−Qf,j(t), ∀t < kb, ∀b ≥ b0,

for all (i, j) ∈ Bf ′ .

Consequently, for sample paths in Hb and under the Back-

Pressure policy, no packets of flow f are transmitted through

any of the links in Bf ′ during an order Ω(b) time period.

Now it is useful to keep track of the total number of packets

of flow f between the source node sf and the bottleneck node

sf ′ , and to view them as one fictitious queue. Let us denote

the length of that queue at time slot t by Q̃f (t). The argument

above implies that this queue has arrivals at rate no less than(
λf − ε

)
> 0 and no departures, during an order Ω(b) time

period. Hence, there exist constants c, c′ > 0 such that time

slot cb ∈ Z+ is in the same busy period as slot zero, and

Q̃f (cb) = c′b, ∀b ≥ b0.

Thus, the aggregate length of this fictitious queue during a

busy period is Ω
(
b2
)

with positive probability. Then, renewal

theory and Little’s Law imply that the fictitious queue is delay

unstable because b is drawn from a heavy-tailed distribution.

This also implies the delay instability of traffic flow f , since

the delay experienced in the fictitious queue bounds from

below the end-to-end delay.

C. The Role of Link Capacities

In this section we illustrate the impact of link capacities,

relative to the arrival rates, on the delay stability of light-tailed

flows. Let us consider a variation of the network of Figure 3,

where the heavy-tailed flow 1 has to reach node 0 through the

path
(
(1, 2), (2, 0)

)
, whereas the light-tailed flow 2 can access

all links.

Let us first look at the case where λ1, λ2 < 1. The

importance of this assumption lies in the fact that it allows

flow 2 to route all its traffic through the path
(
(1, 3), (3, 0)

)
whenever the path of the heavy-tailed flow is congested.

Proposition 3: Consider the network of Figure 3 under the

Back-Pressure policy, where flow 1 has fixed routing and flow

2 has dynamic routing. If the arrival rates satisfy λ1, λ2 < 1,

then traffic flow 2 is delay stable.

Proof: See [8].

Now let us consider the case where λ2 > 1. It is intuitively

clear that, irrespective of the specific routing decisions made

at each time slot, a nonvanishing fraction of the traffic of flow

2 has to pass through the bottleneck link (1, 2). This fraction

of the traffic experiences large delays under the Back-Pressure

policy, which implies that the delays of flow 2 are, on average,

large as well.

Proposition 4: Consider the network of Figure 3 under the

Back-Pressure policy, where flow 1 has fixed routing and flow



2 has dynamic routing. If λ2 > 1 then traffic flow 2 is delay

unstable.

Proof: See [8].

D. The Impact of Heavy Tails on Cross-Traffic

Consider the multi-hop network of Figure 4, which includes

three traffic flows: the heavy-tailed flow 1, and the light-tailed

flows 2 and 3. The source of flow 1 is node 2, whereas the

source of flows 2 and 3 is node 1. The destination of flows 1

and 2 is node 3, whereas the destination of flow 3 is node 4.

Fig. 4. The heavy-tailed flow 1 enters the network at node 2 and exits at
node 3. The light-tailed flow 2 enters the network at node 1 and exits at node
3. The light-tailed flow 3 enters the network at node 1 and exits at node 4.
Traffic flow 3 is delay unstable under the Back-Pressure policy if its arrival
rate is sufficiently high.

Clearly, traffic flow 2 is delay unstable because it has to

pass through the bottleneck link (2, 3). So, the real question

concerns the delay stability of flow 3, which serves as cross-

traffic to flow 2. The following result establishes that flow 3

may or may not be affected by heavy tails, depending on its

arrival rate.

Proposition 5: Consider the network of Figure 4 under the

Back-Pressure policy, with an arrival rate vector in the stability

region. If λ3 >
(
2+ λ1 − 2λ2

)
/3, then traffic flow 3 is delay

unstable. On the other hand, if λ3 <
(
2 + λ1 − 2λ2

)
/3 and

flows 2 and 3 are exponential-type light-tailed, then traffic flow

3 is delay stable.

Proof: (Outline) The first part of the result is based on a

sample-path argument. Similarly to the proof of Theorem 2,

we track the evolution of the network along sample paths of

the arrival processes where (i) a busy period of the network

starts with the source queue of the heavy-tailed flow receiving

a large batch of size b packets; and (ii) from that point on, all

arrival processes exhibit their average behavior. We distinguish

between two phases in the evolution of the network along those

sample paths.

In the first phase, the length of queue (1, 2) is greater

than the length of queue (2, 2), which implies that link (2, 3)
transmits only packets of flow 1. Consequently, queues (2, 1)
and (2, 2) build up together and at a constant rate throughout

this phase. This phase terminates when queues (1, 2) and (2, 2)
have the same length, which happens after Ω(b) time slots. At

that point, queues (1, 2), (2, 1), and (2, 2) are all Ω(b) long.

In the second phase, link (2, 3) transmits packets from

both flows 1 and 2, and lasts until one of the two queues

empties. In order to build some intuition on how the network

behaves during this phase, let us assume that both arrivals and

departures are fluids with constant rate. Let μf,i,j be the rate

at which traffic of flow f is transmitted through link (i, j). Of

course, λf is the arrival rate at the source queue of flow f .

The arrival and departure rates satisfy the linear system
(
λ2 − μ2,1,2

)− (
μ2,1,2 − μ2,2,3

)
= λ3 − μ3,1,2, (4)

λ1 − μ1,2,3 = μ2,1,2 − μ2,2,3, (5)

μ2,1,2 + μ3,1,2 = 1, (6)

μ1,2,3 + μ2,2,3 = 1. (7)

Eq. (4) is due to the fact that the Back-Pressure policy tries

to keep the differential backlogs of flows 2 and 3 over link

(1, 2) the same. In order to achieve this, it determines service

rates for the various queues such that the differential backlogs

of the link are drained at the same rate. We note that queue

(3, 2) remains zero throughout both phases, so that the rate

of change of its length is also zero. Eq. (5) follows from a

similar argument for link (2, 3). Eqs. (6) and (7) result from

the fact that the service rate of all links is equal to one and

Back-Pressure is a work-conserving policy.

The above equations and some simple algebra imply that

μ3,1,2 =
2 + λ1 − 2λ2 + 2λ3

5
.

Therefore,

λ3 > μ3,1,2 ⇐⇒ λ3 >
2 + λ1 − 2λ2

3
.

Thus, if λ3 >
(
2 + λ1 − 2λ2

)
/3, then arrival rate to

queue (3, 1) exceeds its service rate throughout the second

phase. Therefore, queue (3, 1) builds up to a length of Ω(b),
which can be shown to imply delay instability. This heuristic

argument can be formalized through the use of fluid approxi-

mations, in particular, Theorem 3 of Section IV.

The second part of the result is based on drift analysis of

the piecewise linear Lyapunov function

V (t) =max
{[

Q3,1(t)−Q3,2(t)
]+

,
[
Q2,1(t)−Q2,2(t)

]+}

+
[
Q2,2(t)−Q1,2(t)

]+
,

over a sufficiently long time interval.

E. The Role of Intersecting Paths

Finally, consider the network of Figure 5: the heavy-tailed

flow 1 enters the network at node 1 and exits the network

as soon as it reaches node 5. Flow 1 is allowed to access all

links, so packets can get to node 4, either through the path(
(1, 2), (2, 4)

)
, or through the path

(
(1, 3), (3, 4)

)
. After they

reach node 4, though, they have to pass through link (4, 5) in



order to reach their destination. In that sense, the two paths

of flow 1 intersect.

Fig. 5. The heavy-tailed flow 1 enters the network at node 1 and exits the
network after it gets transmitted from node 4. Flow 1 is allowed to access
all links in the network. Queues (1, 2), (1, 3), and (1, 4) are delay unstable
under the Back-Pressure policy because the two alternative paths of flow 1
intersect.

Theorem 1 implies that queue (1, 1) is delay unstable but

provides no information regarding the other queues of flow

1, namely queues (1, 2), (1, 3), and (1, 4). Since all links

have finite capacities, the endogenous arrivals to those queues

are, by definition, light-tailed. So, one might argue that these

queues are delay stable, since there are no link-activation

constraints and no other traffic flows to compete for service.

Somewhat surprisingly, we show that these queues are also

delay unstable. This is due to the dynamics induced by the

Back-Pressure policy, and the fact that multiple paths intersect.

In more detail, the queue at node 4 builds up, and this effect

propagates backwards to cause the buildup of queues 2 and 3.

Proposition 6: Consider the network of Figure 5 under the

Back-Pressure policy, with an arrival rate vector in the stability

region. All queues are delay unstable, apart from queue (1,5)

which is always empty by definition.

Proof: (Outline) Suppose that a busy period of the net-

work starts with a large batch of size b packets arriving to

queue (1, 1). From that point on, and throughout an Ω(b) time

period, flow 1 has positive differential backlog over both links

(1, 2) and (1, 3). Thus, the set of queues
{
(1, 2), (1, 3), (1, 4)

}
receive traffic at an aggregate rate of two packets per time

slot during that time period. On the other hand, traffic departs

from this set of queues at a rate of one packet per time slot,

which is the capacity of the outgoing link from node 4. So, the

aggregate length of this set of queues builds up at a constant

rate over an Ω(b) time period. The Back-Pressure policy forces

the queues to build up together so that, eventually, they all

build up to Ω(b). This can be translated to delay instability

since b is drawn from a heavy-tailed distribution. For a formal

proof the reader is referred to [8].

Theorem 1 states that the traffic of flow 1 experiences large

delays overall, and definitely at the source queue. Whether

these large delays are experienced only at the source queue,

or at several other queues as well, may not be as interesting.

What is interesting, though, is the case of intersecting paths

in networks with multiple flows. There, the delay unstable

queues that are created by the intersecting paths may cause

cross-traffic light-tailed flows to be delay unstable, similarly

to the network of Figure 4. We conjecture that, again, the delay

stability of cross-traffic flows depends on the exact values of

the arrival rates.

IV. DELAY STABILITY ANALYSIS VIA FLUID

APPROXIMATIONS

The findings of the previous section suggest that the delay

stability of queues and flows under the Back-Pressure policy

depends on a number of parameters, ranging from the network

topology and the routing constraints, to the capacities of the

various links and the arrival rates. Moreover, this dependence

could come in subtle ways, as in the network of Figure 4. So,

how do we analyze the delay stability of complex multi-hop

networks under the Back-Pressure policy, and in the presence

of heavy-tailed traffic?

Direct stochastic analysis of complex networks is typically

lengthy and involved, if not intractable. Furthermore, Monte

Carlo methods are very slow to converge, or may even fail to

converge at all, due to the very nature of heavy-tailed traffic.

Our approach to this methodological challenge relies on

the use of fluid approximations: although we cannot track the

evolution of sample paths of complex networks directly, we

are still able to do it approximately, through the solutions to

their fluid models from certain initial conditions (large initial

conditions for the source queues of heavy-tailed flows). Then,

we can use renewal theory and Little’s law to translate sample-

path arguments to delay instability results.

The Fluid Model (FM) of the multi-hop network of Section

II, under the Back-Pressure policy, is a deterministic dynamical

system that aims to capture the evolution of its stochastic

counterpart on longer time scales. It is defined by the following

relations and differential equations, for every time t ≥ 0 that

the derivatives exists (such t is often called a regular time):

q̇f,i(t) = −
∑

j:(i,j)∈Lf

ṡf,i,j(t)+
∑

j:(j,i)∈Lf

ṡf,j,i(t)+λf ·1{i=sf},

ṡf,i,j(t) ≥ 0,

∃f ′ : qf ′,i(t)− qf ′,j(t) > 0 =⇒
∑

f :(i,j)∈Lf

ṡf,i,j(t) = 1,

qf ′,i(t)− qf ′,j(t) < max
f :(i,j)∈Lf

{[
qf,i(t)−qf,j(t)

]+}

=⇒ ṡf ′,i,j(t) = 0.

The quantity qf,i(t) represents the length of queue (f, i) at

time t, and sf,i,j(t) represents the total amount of time that

link (i, j) ∈ Lf has been serving queue (f, i) up to time t.
Thus, the derivative ṡf,i,j(t) is the corresponding service rate



at time t. The last expression is the analogue of Back-Pressure

in the fluid domain.

Our convention regarding zero queue lengths in destination

nodes provides a final equation for the FM:

qf,df
(t) = 0, ∀f ∈ F , ∀t ∈ [0, T ].

Henceforth, we use the shorthand notation q(t) for the set

of queue lengths
{
qf,i(t); i ∈ Nf , f ∈ F}

, and s(t) for the

set of scheduling decisions
{
sf,i,j(t); (i, j) ∈ Lf , f ∈ F}

.

Fix arbitrary T > 0. A Fluid Model Solution (FMS) from

initial condition q(0) = q is a Lipschitz continuous function

x(·) = (
q(·), s(·)) that satisfies: (i) x(0) = (q, 0); (ii) q(t) ≥

0, for all t ∈ [0, T ]; (iii) the equations above over [0, T ].
A discussion on the formal connection between the fluid

model and the original stochastic system can be found in [8].

Fuid approximations of queueing networks under the Back-

Pressure policy have been employed by previous studies in

order to show stability results, e.g., see [3]. Next, we show how

fluid approximations can be used for proving delay instability

results in the presence of heavy-tailed traffic.

Theorem 3: Consider the multi-hop network of Section II

under the Back-Pressure policy, and its natural FM described

above. Let h ∈ F be a heavy-tailed traffic flow, and q∗(·) be

the (unique) queue-length part of a FMS from initial condition

q∗h,sh(0) = 1 and zero for every other queue. If there exists

τ ∈ [0, T ] such that q∗f,i(τ) > 0, then queue (f, i) is delay

unstable.

Proof: (Outline) Suppose that there exists τ ∈ [0, T ] such

that q∗f,i(τ) > 0. Then, the existence of a fluid limit, which

also guarantees the existence of a FMS, and the uniqueness of

the queue-length part of a FMS imply that, after a big arrival to

queue (h, sh), queue (f, i) builds to the order of magnitude of

the heavy-tailed queue with high probability. In turn, renewal

theory and Little’s Law provide the desired delay instability

result. For a formal proof the reader is referred to [8].

As a consequence, we can systematically test for delay

instability through the following Bottleneck Identification
algorithm.

INITIALIZATION: U = ∅
REPEAT
For every heavy-tailed traffic flow h ∈ F ,

(i) solve the FM with initial condition one for queue (h, sh),
and zero for all other queues;

(ii) find the set of queues that become positive at any point

before the FMS drains, Uh;

(iii) set U = U ∪ Uh;

END

Clearly, upon termination of the algorithm, all queues in-

cluded in U are delay unstable, which, in turn, can be used to

identify delay unstable flows.

We illustrate the use of the above algorithmic procedure in

the multi-hop network of Figure 4. We consider the set of

arrival rates λ1 = 0.2, λ2 = 0.1, and λ3 = 0.8. It can be

easily verified that they are in the stability region, so that the

network is stable under the Back-Pressure policy. Also, notice

that λ3 >
(
1+λ1−2λ2

)
/3, which implies that flow 3 is delay

unstable according to Proposition 5. Figure 6 shows the FMS

for the particular set of rates, and with initial condition one for

queue (1,2) and zero for all other queues. The length of queue

(3,1) becomes positive before the FMS drains, so Theorem 3

implies that traffic flow 3 is delay unstable, confirming the

findings of Proposition 5.

Fig. 6. The FMS of the multi-hop network of Figure 4 from initial condition
one for queue (1,2) and zero for the other queues, and arrival rates λ1 = 0.2,
λ2 = 0.1, λ3 = 0.8. Since all three traffic flows have fixed routing, Theorem
3 implies that they are all delay unstable.

V. THE BACK-PRESSURE-α POLICY

The results and discussion presented above suggest that the

Back-Pressure policy may perform poorly in the presence of

heavy-tailed traffic. The reason is that by treating heavy-tailed

and light-tailed flows “equally,” there are long stretches of

time during which the source queues of heavy-tailed flows

dominate the service. This creates bottleneck links, which, in

turn, may affect the delay stability of light-tailed flows directly

or indirectly.

Intuitively, by discriminating against heavy-tailed flows,

one should be able to eliminate bottlenecks and improve

the overall performance of the network. One way to do this

would be by giving preemptive priority to light-tailed flows.

However, priority policies are undesirable because of fairness

considerations, and also because they can be unstable in many

network settings.

Motivated by the Max-Weight-α scheduling policy, studied

in [9] in the context of single-hop networks, here we consider

the Back-Pressure-α policy: instead of comparing the differen-

tial backlogs of the various flows, we compare the differential

backlogs raised to different α-powers, smaller for heavy-tailed

flows and larger for light-tailed flows. In that way we give

partial priority to light-tailed flows.

More specifically, fix αf > 0, for every traffic flow f ∈ F .

The Back-Pressure-α policy makes decisions as follows: at

the beginning of each time slot t ∈ Z+ set S(t) = 0. Then, go

through all links in L in some predetermined order. For each

link (i, j) ∈ L:



(i) compute the maximum α-weighted differential backlog

W̃i,j(t) = max
f :(i,j)∈Lf

{[
Q

αf

f,i(t)−Q
αf

f,j(t)
]+}

;

(ii) if W̃i,j(t) = 0 then set Sf,i,j(t) = 0, for all f : (i, j) ∈
Lf ;

(iii) otherwise, pick a flow f∗ with maximum α-weighted

differential backlog, i.e.,

f∗ ∈ arg max
f :(i,j)∈Lf

{
Q

αf

f,i(t)−Q
αf

f,j(t)
}
.

(If the set on the right-hand side includes multiple flows, f∗

is picked uniformly at random.) Then, set Sf∗,i,j(t) = 1 and

Sf,i,j(t) = 0, for all f �= f∗.

Theorem 4: Consider the multi-hop switched queueing

network of Section II under the Back-Pressure-α policy. If

E
[
A

αf+1
f (0)

]
is finite, for all f ∈ F , then the network is

stable and ∑
f∈F

∑
i∈Nf

E

[
Q

αf

f,i

]
< ∞.

Proof: (Outline) The proof is based on drift analysis of

the Lyapunov function

V
(
Q(t)

)
=

∑
f∈F

∑
i∈Nf

1

αf + 1
Q

αf+1
f,i (t),

and subsequent use of the Foster-Lyapunov stability criterion

and moment bound. For a formal proof the reader is referred

to [8].

Corollary 1: (Delay Stability under Back-Pressure-α)
Consider the multi-hop network of Section II under the Back-

Pressure-α policy. If the α-parameters of all light-tailed flows

are equal to one, and the α-parameters of heavy-tailed flows

are sufficiently small, then all light-tailed flows are delay

stable.

Proof: We recall our standing assumption that all traffic

flows have (1 + γ) moments, for some γ > 0. If the α-

parameters of all light-tailed flows are equal to one, and the α-

parameters of heavy-tailed flows are less then γ, then Theorem

4 and Little’s Law imply that every queue of every light-tailed

flow is delay stable. The linearity of expectations implies the

delay stability of all light-tailed flows.

Combining Corollary 1 with Theorem 1, we conclude that

the Back-Pressure-α policy is optimal with respect to delay
stability, provided the α-parameters are suitably chosen.

A special case of the Back-Pressure-α policy has been

considered by Bui et al. [2], where all α-parameters take the

same value. We note that their setting includes just light-

tailed traffic and, additionally, the existence of congestion

controllers. Thus, the insight that smaller parameter values

should be used for heavy-tailed flows, so that light-tailed flows

are given some form of priority, does not arise in their model.

VI. CONCLUDING REMARKS

The main objective of this paper was to obtain insights on

the delay performance of multi-hop networks with heavy-tailed

traffic under Back-Pressure policies. Our analysis highlighted

the significance of “bottleneck links,” i.e., links that are al-

lowed to serve the source queues of heavy-tailed traffic flows.

The fundamental insight was that traffic flows that have to pass

through bottleneck links experience large delays under Back-

Pressure. We then investigated reasons that may force a light-

tailed flow to pass through a bottleneck link, identifying the

following: (i) the network topology, i.e., the source-destination

paths that the network offers to the given flow; (ii) the routing

constraints, i.e., the a priori decisions regarding which links the

particular flow is allowed to traverse; (iii) the link capacities

relative to the arrival rates, i.e., whether the combined capacity

of non-bottleneck paths is sufficient to support the arrival rate

of the flow.

The insights that we derived can be translated into network
design principles. In particular, heavy-tailed flows should be

relatively constrained in terms of the links that they are al-

lowed to access, whereas the network should provide multiple

source-destination paths to light-tailed flows; the latter flows

should be left unconstrained to dynamically find their way

around heavy-tailed traffic. Moreover, these alternate paths

should have enough capacity to support the rates of light-tailed

traffic. In contrast, leaving heavy-tailed flows unconstrained

while forcing light-tailed flows to compete with them could

be detrimental to the overall performance of the network.

In terms of policy design, we proposed the parameterized

Back-Pressure-α policy, and showed that it can delay stabilize

all light-tailed flows in the network, provided that its α-

parameters are chosen suitably. In order to pick appropriate

parameter values, though, some knowledge of higher order

moments of the different traffic flows is required.
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