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Abstract—We consider the problem of transmitting multicast
flows with hard deadlines over unreliable wireless channels.
Every user in the network subscribes to several multicast flows,
and requires a minimum throughput for each subscribed flow to
meet the QoS constraints. The network controller schedules the
transmissions of multicast traffic based on the instant feedback
from the users. We characterize the multicast throughput region
by analyzing its boundary points, each of which is the solution
to a finite-horizon dynamic programming problem over an
exponentially large state space. Using backward induction and
interchange arguments, we show that the dynamic programming
problems are solved by greedy policies that maximize the imme-
diate weighted sum throughput in every slot. Furthermore, we
develop a dynamic throughput-optimal policy that achieves any
feasible throughput vector by tracking the running performance
received by the users.

I. INTRODUCTION

The problem of scheduling real-time transmissions in a

wireless network has numerous applications, e.g., wireless

users download popular video streams over cellular networks.

For a video stream that is accessed by multiple users, it is

efficient for the base station to deliver the stream as a multicast

flow to a group of users. Transmitting multicast real-time flows

in wireless networks faces several challenges. Packets of real-

time traffic have hard delay constraints and are of no use after

the deadlines. Wireless channels are unreliable so that packet

loss is inevitable and retransmissions are necessary. Based on

individual QoS constraints, the users may also have different

throughput requirements for a multicast flow. An efficient

wireless scheduling algorithm for multicast communications

must take these issues into account.

In this paper, we study the problem of transmitting multicast

flows with deadlines in wireless networks, with the assumption

that there is instant ACK/NACK feedback from the users to

the base station. We adopt the analytical framework in [1].

Consider a base station transmitting multicast flows to users

over unreliable wireless channels. We assume a time-slotted

system. Each multicast flow generates a packet periodically

with a hard delay constraint; packets that violate the delay

constraints are of no use and discarded immediately. In every

slot, the base station selects a multicast flow to transmit, based
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on the information of the subset of subscribers having not

received the packets for all multicast flows. Since wireless

channels are unreliable, packets transmissions may fail, and

the users notify the base station whether transmissions are

successful at the end of every slot. The performance metric

of interest is the proportion of packets a user successfully

receives for each subscribed multicast flow, referred to as the

throughput of the user for that flow. According to the QoS

constraints, a user has a minimum throughput requirement for

each multicast flow to which it subscribes. The goal of this

paper is to study the set of achievable throughput vectors in

this multicast setting, and develop adaptive control policies

that support any feasible throughput vector.

This multicast scheduling problem is studied in [1], with

the key assumption that users do not send any feedback to the

base station. In a large wireless network, collecting feedback

from the users may be infeasible. However, in a network

of moderate size, feedback can be readily available and a

scheduling policy can utilize such information to improve

the network performance. The difficulty in making scheduling

decisions based on the user feedback is that it is a dynamic

programming problem with an exponentially large state space,

where the base station decides which multicast flow to transmit

according to the subset of users having not received the

packets in every slot. Generally in such problems it may not

be possible to characterize the throughput region, or develop

practical control policies, due to the curse of dimensionality. In

this paper, we show that the multicast scheduling problem is,

in fact, solvable by a greedy algorithm. Our main contributions

include:

• We characterize the multicast throughput region with user

feedback by analyzing its boundary points, each of which

corresponds to a weighted sum throughput maximization

problem, which is formulated as a finite-horizon dynamic

programming problem.

• Using backward induction and interchange arguments, we

show that the weighted sum throughput maximization

problem is solved by greedy policies that transmit the

multicast flow maximizing the immediate weighted sum

reward in every slot. For the ease of exposition, we first

analyze the special case of transmitting unicast flows, and

generalize it to the multicast case.
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• We develop adaptive throughput-optimal control policies

that achieve any feasible throughput vector in the mul-

ticast throughput region. This policy greedily transmits

a multicast flow in a slot by striking a balance between

serving a user with a large delivery debt needed to satisfy

its throughput requirement, and transmitting a multicast

flow that yields large throughput gain from among the

unserved subscribers.

Scheduling multicast flows with deadlines over unreliable

wireless channels is considered in [1]–[3]. Work [1] assumes

homogeneous packet deadlines and that the user feedback is

unavailable, in which case the multicast throughput region is

decided by the number of slots allocated to each multicast flow.

Prior work [2] assumes heterogenous packet deadlines and

instant user feedback, and the multicast scheduling problem is

an instance of restless multi-armed bandits [4]. The problem of

transmitting unicast traffic with deadlines in wireless networks

is investigated with different modeling assumptions [5]–[11].

Scheduling packet transmissions with deadlines over multi-hop

networks is considered in [12]–[14].

The outline of this paper is as follows. Section II describes

the network model. The unicast and multicast throughput

regions are analyzed in Sections III and IV, respectively. The

throughput-optimal control policy is proposed in Section V,

followed by simulation results in Section VI.

II. NETWORK MODEL

We consider a wireless network consisting of a base station

sending multicast flows to N users {1, . . . , N}. Let F be

the set of multicast flows. For each flow f ∈ F , let Nf

be the subset of users that subscribe to multicast flow f ;

a user may subscribe to several flows simultaneously. We

consider a time-slotted system, where consecutive T slots

constitute a frame; the kth frame is [kT, (k + 1)T ), k ∈ Z
+.

Each multicast flow generates one packet at the beginning

of a frame.1 Suppose all packets have a hard deadline of T
slots, and packets that have not been received by all of its

intended receivers at the end of a frame are of no use and

discarded. In a slot, the base station broadcasts a packet of a

selected multicast flow to its subscribers over unreliable and

independent wireless channels. The transmission of a flow-f
packet to a user n ∈ Nf is successful with probability pn, and

fails otherwise. When a user receives a packet successfully, it

sends an acknowledgement to the base station over a perfect

control channel at the end of the slot. The base station uses the

ACK/NACK feedback information to schedule future packet

transmissions.

Without loss of generality, we can simplify the above

network model by assuming that each user subscribes to only

one multicast flow. As an example, consider a user subscribing

to two multicast flows. By defining two “agents” for the

1The results in this paper can be easily generalized to a stochastic traffic
model, or to a traffic model in which each flow generates multiple packets per
frame. The latter case is equivalent to replacing a multicast flow by a group
of subflows, each of which generates one packet per frame and has the same
set of subscribers.

user, where agent i ∈ {1, 2} is the only receiver for flow

i, transmitting two multicast flows to the user is equivalent to

scheduling the multicast transmissions to the two agents. See

Fig. 1 for an example. Note that the two agents should have the

same channel process as the user. Since the base station can

only transmit one multicast flow in a slot, at most one agent

receives data at any time. Therefore, it is adequate to assume

that the agents have independent wireless channels that have

the same packet erasure probability.

base
station

a

multicast
flow 1

b

multicast 
flow 2

b1 b2

base
station

a

multicast
flow 1

multicast 
flow 2

Fig. 1. The multicast system with a user subscribing to multiple flows on
the left is equivalent to the one on the right in which each user subscribes to
one flow.

Due to the unreliability of wireless channels and the hard

deadline constraints, not all packets can be delivered to the

users in a timely manner. Since real-time applications can usu-

ally tolerate some percentage of packet loss, the performance

metric of interest in this paper is the long-term proportion of

packets a user receives before deadlines, referred to as the user

n throughput. Define the indicator random variable dn(k) = 1
if user n successfully receives a packet in the kth frame, and

0 otherwise. Define the user n throughput as

dn = lim inf
K→∞

1

K

K−1∑
k=0

E[dn(k)].

Since a user receives only one multicast flow, the index n im-

plicitly specifies which multicast flow the user n subscribes to.

III. ACHIEVABLE THROUGHPUT REGION

We consider the class of scheduling policies that satisfy the

following properties: (i) they do not use future information;

(ii) they never idle the base station whenever there exists a

packet not received by all its subscribers by the deadline; (iii)

if all packets are delivered before the deadline, then the base

station remains idle until the end of the frame. We refer to

these scheduling policies as admissible policies. We define

the throughput region Λ as the set of achievable throughput

vectors (d1, . . . , dN ) under the class Π of admissible policies.

To characterize the throughput region Λ, it suffices to focus

on the set Λ0 of achievable throughput vectors in the first

frame [0, T ) under admissible policies. This is because the

multicast system renews itself at the end of a frame, and

therefore Λ = Λ0. An admissible policy π ∈ Π in the first

frame transmits a multicast flow in the kth slot, k ≤ T − 1,

according to the outcome of scheduling decisions in the

previous slots 0, 1, . . . , k − 1. Naturally, it is a finite-horizon

dynamic programming problem, where the state space is the

collection of subsets of users having not received packets in the

first frame, and the action space is the set of multicast flows for
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transmission. Therefore, it is difficult to obtain the multicast

throughput region Λ0 in closed form. We take an alternative

approach that studies the throughput region Λ0 by analyzing

its boundary points. Each boundary point corresponds to a

weighted sum throughput maximization problem over the

course of the first frame. Specifically, let α = (α1, . . . , αN )
be a nonnegative weight vector, and consider the optimization

problem:

maximize

N∑
n=1

αn E[d
π
n(0)], subject to π ∈ Π, (1)

where E[dπn(0)] denotes the expected user n throughput in the

first frame (i.e., frame zero) under policy π. The solution to

the problem (1) specifies a boundary point at the intersection

of the throughput region Λ0 and the supporting hyperplane

that has the normal vector α and is tangent to Λ0. See Fig. 2

for an example.

Λ0

α

d*

Fig. 2. A boundary point d∗ at the intersection of the throughput region Λ
and the maximizing supporting hyperplane with a normal vector α ≥ 0. The
vector d∗ is the solution to the maximization problem (1) with weights α.

Next, we consider the throughput maximization problem (1)

as a finite-horizon dynamic programming problem, and show

that it is solved by a greedy policy that maximizes weighted

immediate sum throughput in very slot. For the ease of exposi-

tion, we first analyze the unicast case, i.e., each multicast flow

is subscribed by only one user. This approach is generalized to

the analysis of the multicast throughput region in Section IV.

A. The Unicast throughput region

Let Λunicast
0 be the set of feasible throughput vectors in the

first frame under admissible policies, assuming the base station

serves unicast flows. The region Λunicast
0 is known to be the

base of a polymatroid up to a linear scaling [15]. As a result,

the weighted sum throughput maximization problem (1) in the

special case of serving unicast flows becomes the following

problem

maximize

N∑
n=1

αn E[d
π
n(0)]

subject to (E[dπn(0)])
N
n=1 ∈ Λunicast

0 .

This maximization problem is an instance of linear polyma-

troid optimization [16], and is solved by the next greedy policy.

The Greedy Policy for a Unicast System (GreedyU)
1) In slot k ∈ {0, 1, . . . , T − 1}, transmit the unicast flow

j∗k ∈ argmaxj∈sk
αj pj , (2)

where sk �= ∅ is the subset of users having not received

the packets at the beginning of slot k. If sk = ∅ then

idle the system in slot k.

The GreedyU policy serves the user with the maximum

expected weighted throughput αj pj in every slot. This policy

is also known as the cμ rule in polymatroid optimization,

and its optimality can be shown by using the complimentary

slackness condition of linear programming [16]. This result,

however, cannot be directly applied to the analysis of the

multicast throughput region, which is not a polymatroid. Next,

we present an alternative proof for the optimality of the

GreedyU policy using dynamic programming methods. This

new approach is needed to analyze the multicast throughput

region as a generalization of the unicast throughput region.

B. Dynamic programming algorithm

Consider a finite-horizon dynamic programming problem

with the state space S = 2{1,...,N}, which is the collection of

all subsets of users. Each state sk ∈ S represents the subset of

users having not received their packets at the beginning of the

kth slot, k = 0, . . . , T−1. Initially, we have s0 = {1, . . . , N}.
Let uk be the control action taken in slot k; note that uk

is possibly random and is a function of the system state sk.

An admissible policy π ∈ Π in the first frame can be re-

written as π = (u0, u1, . . . , uT−1). At state sk, the set of

feasible scheduling decisions is Uk(sk) = {j | j ∈ sk}, where

uk(sk) = j means transmitting multicast flow j in slot k. The

feasible set Uk(sk) comes from the assumption that, under

an admissible policy, a unicast flow can be transmitted only

if its subscriber has not received the packet. Since wireless

channels are unreliable, taking action uk(sk) = j ∈ Uk(sk) at

state sk leads to two possible outcomes in slot (k+1): (i) we

have the state sk+1 = sk \ {j} if the transmission succeeds,

which occurs with probability pj ; (ii) we have sk+1 = sk if

the transmission fails. User j obtains a reward αj ≥ 0 if it

receives a packet. Define the reward function gk under the

control uk(sk) = j in the kth slot:

gk(sk, uk) = gk(sk, j) = αjXj , j ∈ Uk(sk),

where Xj is a Bernoulli random variable with mean pj . When

sk = ∅, let gk(sk, ·) = 0 for all k. We seek to solve the reward

maximization problem:

J∗(s0) � max
π∈Π

E

{
T−1∑
k=0

gk(sk, uk)

∣∣∣∣∣ s0
}
, (3)

where the expectation is with respect to the randomness of

wireless channels and scheduling decisions. We observe that

the dynamic programming problem (3) is equivalent to the

maximization problem (1) restricted to the unicast case.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2195



4

The problem (3) is solved by a dynamic programming

algorithm as follows [17]. Define the functions

JT (sT ) = 0, sT ⊆ S, (4)

Jk(sk) = max
uk∈Uk(sk)

E { gk(sk, uk) + Jk+1(sk+1) } , (5)

for k = 0, . . . , T − 1, where Jk can be computed backwards

after Jk+1, . . . , JT−1 are calculated. We have the following

results [17, Prop. 1.3.1].

1) The maximization problem (3) is solved by J∗(s0) =
J0(s0).

2) If the scheduling decision u∗
k, which is a function of sk,

is the maximizer of Jk(sk) in (5) for each sk and k,

then the policy π∗ = (u∗
0, u

∗
1, . . . , u

∗
T−1) is optimal and

solves (3).

C. Optimality of the GreedyU policy
Based on the above dynamic programming algorithm, the

next theorem shows that the GreedyU policy solves the reward

maximization problem (3).

Theorem 1. Given a fixed nonnegative weight vector

(α1, . . . , αN ), the GreedyU policy solves the reward maxi-

mization problem (3), which is a special case of weighted

sum throughput maximization problem (1) in the special case

of serving unicast flows.

Proof: See Appendix A.
Using the GreedyU policy, we draw the unicast throughput

region Λ = Λ0 in a two-user wireless network. Consider a base

station serving two users. The channel reliability probabilities

are p1 = p2 = 0.2, and the frame size is T = 5. Fig. 3 shows

the unicast throughput region by computing a collection of

supporting hyperplanes, each of which intersects the region Λ
at a maximum weighted sum throughput vector computed by

the GreedyU policy.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
1

d
2

=(1,1) =(1.5,1) =(5,1)

=(0.5,1)

=(0.1,1)

=(0.01,1)

Fig. 3. The unicast throughput region in a two-user wireless network.

IV. THE MULTICAST THROUGHPUT REGION

Next we consider the scheduling problem of transmitting

multicast flows in the wireless network. Similarly, we charac-

terize the multicast throughput region by analyzing its bound-

ary points, each of which is the solution to the maximization

problem (1) with some weight vector α ≥ 0.

To solve the maximization problem (1), we let Uf (t) be the

subset of users that subscribe to multicast flow f but have not

received the packet from f at the beginning of slot t in the the

first frame, 0 ≤ t ≤ T − 1. Since no users receive packets at

the beginning of a frame, we have Uf (0) = Nf for all flows

f ∈ F . We consider the following greedy policy.

The Greedy Policy for a Multicast System (GreedyM)
1) Fix a nonnegative weight vector α = (α1, . . . , αN ).
2) In slot t ∈ {0, . . . , T − 1}, compute

rf (t) =
∑

i∈Uf (t)

αi pi (6)

for each flow f ∈ F ; let rf (t) = 0 if Uf (t) = ∅.
3) In slot t, pick the multicast flow

f∗ ∈ argmaxf∈F rf (t).

If rf∗(t) > 0, then broadcast a flow-f∗ packet. Other-

wise, idle the system in slot t.

The quantity rf (t) is the expected weighted sum throughput

in slot t by transmitting a flow-f packet to the subset Uf (t)
of subscribers having not received the packet. Therefore, the

GreedyM policy transmits the multicast flow that yields the

maximum throughput gain in every slot. By using similar

backward induction and interchange arguments as those used

to prove Theorem 1, the next theorem shows that the GreedyM
policy solves the maximization problem (1) in the multicast

system.

Theorem 2. Given a fixed nonnegative weight vector

(α1, . . . , αN ), the GreedyM policy solves the throughput max-

imization problem (1) in the multicast system.

Proof: See Appendix B.

V. THROUGHPUT-OPTIMAL POLICY

Consider the problem that each user n has a minimum long-

term throughput requirement qn ≥ 0 for its multicast flow. As-

sume (q1, . . . , qN ) ∈ Λ is feasible. We develop a throughput-

optimal policy that achieves any feasible throughput vector

(q1, . . . , qN ) in the multicast throughput region Λ.

Our policy is an adaptive control policy that keeps track of

the average throughput of the users, and seeks to optimize the

following tradeoff: whether to transmit packets to a user whose

running throughput severely violates the delivery requirement,

or transmit a multicast flow that has not been received by

many subscribers? Specifically, define the indicator function

dn(k) = 1 if user n receives the packet from its subscribed

flow in the kth frame, or 0 otherwise. At the beginning of the

kth frame, define

Dn(k) =

k−1∑
j=0

(
qn − dn(j)

)
, (7)

as the amount of accumulated throughput the base station owes

to user n to achieve its throughput requirement qn after the first
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k frames. From (7) we have Dn(k+1) = Dn(k)+qn−dn(k).
Let Dn(0) = 0 for all n. Define D+

n (k) = max{Dn(k), 0} as

the delivery debt the base station owes to user n; the debt is

zero if a user receives more than it should, i.e., Dn(k) < 0.

We consider the following policy.

Frame-Based Max-Weight Policy (MW)
1) In the kth frame, apply the admissible policy π ∈ Π that

maximizes the weighted sum throughput
∑N

n=1 D
+
n (k) ·

E[dn(k)] in the frame.

Note that the expectation E[dn(k)] is with respect to both

unreliable channels and control decisions. We observe from

the term
∑N

n=1 D
+
n (k) ·E[dn(k)] that the MW policy seeks to

improve the weighted sum of delivery debts owed to the users

in every frame. Next, the maximization problem in the MW
policy is equivalent to maximizing the expected weighted sum

throughput in a frame with the weight αn = D+
n (k) for user

n in the maximization problem (1). From the GreedyM policy

in Section IV, the MW policy becomes the following policy.

Frame-Based Throughput-Optimal Policy (TO)
1) In slot t of the kth frame, observe the subsets

{Uf (t)}f∈F of unserved users and compute

rf (t) =
∑

n∈Uf (t)

D+
n (k) · pn

for each multicast flow f ∈ F .

2) Transmit the multicast flow f∗ ∈ argmaxf∈F rf (t) in

slot t if rf∗(t) > 0; otherwise, idle the system.

The sum
∑

n∈Uf (t)
pn is the throughput gain of transmitting

multicast flow f in slot t. Therefore, the GreedyM policy

serves the multicast flow f∗ that maximizes rf (t) in order

to strike a balance between maximizing immediate throughput

gain and reducing the delivery debts D+
n (k) owed to the users.

The next theorem shows that the MW and the TO policies are

throughput optimal.

Theorem 3. The MW policy (i.e., the TO policy) is through-

put optimal in the multicast system. That is, the MW policy

achieves any feasible throughput vector (q1, . . . , qN ) in the

multicast throughput region Λ.

Proof: See Appendix C.

VI. SIMULATION RESULTS

We study via simulations how the user feedback affects

the throughput performance of multicast transmissions in

unreliable wireless networks. This is compared to the prior

work that studies the problem of scheduling multicast flows

with deadlines, assuming the user feedback is unavailable [1].

Let EWSTnofb(α) be the maximum expected weighted

sum throughput of multicast transmissions without the user

feedback, where α ≥ 0 is a weight vector. In this case, the

expected throughput of a user is decided by the number of

Fig. 4. The weighted sum throughput using instant feedback outperforms that
without feedback. The setup is as follows. Frame size T = 5. There are two
multicast flows. Users 1 and 2 subscribe to flow 1 with (p1, p2) = (0.4, 0.8),
and users 3 and 4 subscribe to flow 2 with (p3, p4) = (0.9, 0.4). The x-
axis represents different weight vectors α = (α1, α2, α3, α4) ⊆ {0, 1}4.
The y-axis represents the normalized expected weighed sum throughput
EWSTfb(α)/‖α‖ and EWSTnofb(α)/‖α‖. There is no throughput improve-
ment for the first six α vectors because they correspond to the cases where
only one flow has positive weights.

slots the user is served. Let τf be the number of slots flow f
is transmitted in a frame. The expected throughput of a user n
subscribing to flow f in a frame is the probability that the user

successfully receives the packet at least once; the probability

is (1− (1− pn)
τf ). As a result, we have

EWSTnofb(α) = max∑
f∈F τf=T

∑
f∈F

∑
n∈Nf

αn(1− (1− pn)
τf ).

Notice that since packets are transmitted blindly, the weighted

sum throughput is maximized by using every slot of the frame;

hence the constraint
∑

f∈F τf = T . An algorithm is provided

to solve this maximization problem in [1]. Let EWSTfb(α)
be the maximum expected weighted sum throughput with the

user feedback. The GreedyM policy in this paper achieves

EWSTfb(α) by Theorem 2. Fig. 4 shows the normalized val-

ues of EWSTfb(α) and EWSTnofb(α) under different weight

vectors, confirming that the user feedback improves maximum

system throughput.

A. The popularity of a multicast flow

We examine how the number of subscribers to a multicast

flow affects the throughput performance. Consider two flows

having the same number of subscribers. All subscribers are

assumed to have the same channel reliability probability p.

We consider the following performance metric:

EWSTfb(1)− EWSTnofb(1)

EWSTfb(1)
× 100%, (8)

which is the normalized throughput gain from the feedback

information. Fig. 5 shows that the metric (8) increases as the

number of users per flow decreases for different values of

channel reliability p. That is, the user feedback provides more

throughput gain when a multicast flow becomes less popular.

One cause of throughput loss in the no-feedback case is that
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Fig. 5. The normalized throughput gain of feedback-aware transmissions as
a function of channel reliability probability and the number of subscribers per
flow. Frame size T = 10.

the base station retransmits a flow for which all subscribers

have received the packet. This event occurs during the first

retransmission of a flow f in a frame with probability p|Nf |.
This implies that, when the number |Nf | of users per flow

decreases, it is more likely that a blind retransmission results

in no throughput gain, which contributes to the throughput gap

between the two cases.

The points c and d in Fig. 5 show that, when channel

conditions are good, there is little throughput loss of blind

transmissions. This is because the frame size is large enough

so that eventually most of the packets will be delivered.

The point a is where feedback-aware multicast transmissions

have the largest throughput gain. Here, the channel reliability

probability p is low so that the feedback-aware transmissions

need the entire frame for packet delivery, leaving few idle

slots in the frame probabilistically. Since the only way for

the throughput performance of blind transmissions to be close

to that of feedback-aware transmissions is to benefit from

retransmissions during the idle slots unused by feedback-aware

transmissions, there is no room for blind transmissions to

improve throughput in this case.

B. Frame size

We examine how the size of a frame affects the throughput

performance. Consider three multicast flows, each of which

has two subscribers. Every user has the same channel re-

liability probability p = 0.3. Fig. 6 shows the per-user

throughput under both with-feedback and no-feedback cases

for different frame sizes. When the frame size is small, the

throughput is the same because we would expect that blind

transmissions in a round robin fashion yield the maximum

throughput in the symmetric case. When the frame size is

large, the probability of a user not receiving the packet at

the end of a frame is negligible, and thus blind transmissions

incur no throughput loss. For other frame sizes, we observe

that multicast transmissions with feedback outperform those

without feedback, as expected.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of Slots per Frame

EWST
per client

No Feedback

Feedback

Fig. 6. The per-user throughput gain of feedback-aware multicast transmis-
sions as a function of the frame size. A multicast network with three flows
and two subscribers per flow is considered.

1 2 3 4 5

2.5

3

3.5

4

4.5
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Total
EWST

No Feedback

Feedback

Fig. 7. The throughput gain of feedback-aware transmissions as a function
of the number of multicast flows in the network.

C. The number of multicast flows

We study the throughput gain of feedback-aware transmis-

sions as the number of multicast flows varies. We assume

that every user has channel reliably probability p = 0.3, and

that the frame size is T = 5. Each multicast flow has three

subscribers. Fig. 7 shows the system throughput in both with-

feedback and no-feedback cases. When there is only one flow,

blindly serving the flow in every slot is throughput optimal.

When the number of flows is sufficiently large, e.g., being

equal to the frame size, then blindly serving a different flow in

each slot is as good as feedback-aware transmissions under the

symmetric scenario. In other cases, we expect that scheduling

multicast flows using feedback improves throughput over that

without using feedback.

VII. CONCLUSION

This paper studies the multicast scheduling problem for

transmitting periodically generated traffic with hard deadlines

over unreliable wireless channels. We study the set of achiev-

able timely throughput vectors by analyzing the boundary of

the multicast throughput region. Using backward induction and

interchange arguments in dynamic programming, we show that

the boundary points are achieved by greedy policies that seek

to maximize immediate weighted sum throughput in every slot.
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We utilize this greedy policy to design an adaptive throughput

optimal policy over the multicast throughput region. This

policy optimizes the tradeoff between serving a user that has

not received enough packets to satisfy its QoS constraint, and

transmitting a multicast flow that yields large instantaneous

throughput gain from its subscribers. Through simulations,

we identify conditions under which feedback-aware multicast

transmissions have the largest, or the lowest, throughput gain

over those that do not use feedback.
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APPENDIX A

PROOF OF THEOREM 1

Applying the dynamic programming algorithm in Sec-

tion III-B to the unicast scheduling problem, (5) becomes

Jk(sk) = max
j∈sk

{
αjpj + pjJk+1(sk \ {j})

+ (1− pj)Jk+1(sk)
}

(9)

if sk �= ∅ and Jk(sk) = 0 otherwise. The optimal policy

π∗ = (u∗
0, u

∗
1, . . . , u

∗
T−1) satisfies

u∗
k(sk) ∈ argmaxj∈sk

{
αjpj + pjJk+1(sk \ {j})

+ (1− pj)Jk+1(sk)
}
. (10)

To show that the greedy decisions j∗k in (2) are optimal, it

suffices to show that j∗k = u∗
k(sk) for all sk and k. We establish

this result by backward induction and interchange arguments.

It is useful to define the cost-to-go function under a policy

π = (u0, u1, . . . , uT−1):

Jπ(s, k) = E

{
T−1∑
i=k

gi(si, ui)

∣∣∣∣∣ sk = s

}
, s ∈ S.

Consider the following four cases.

(i) In any slot k, if sk = ∅ then all users are served and

the system stays idle. If sk = {j} for some j, then we have

u∗
k(sk) = j∗k = j and the base station must transmit the flow j

because there is one unserved flow left. It remains to discuss

the case |sk| ≥ 2 in each slot k.

(ii) Consider the tail subproblem that we seek to maxi-

mize the cost-to-go function in the last slot [T − 1, T ) of

the frame. In this slot, from (9) we have JT−1(sT−1) =
maxj∈sT−1

{αj pj} because JT (sT ) = 0 for all sT . Therefore,

u∗
T−1(sT−1) = j∗T−1 for all sT−1.

(iii) Consider the tail subproblem where the system is

at state sT−2 and we maximize the cost-to-go function

J (π)(sT−2, T −2) over policies π ∈ Π in the last two slots of

the frame. Consider the two policies: π1 = (. . . , u
(1)
T−2, u

∗
T−1)

and π2 = (. . . , u
(2)
T−2, u

∗
T−1), where

u
(1)
T−2(sT−2) = k1 � argmaxj∈sT−2

αj pj ,

u
(2)
T−2(sT−2) = l, l �= k1.

In other words, both policies adopt the optimal action in slot

(T − 1). But in slot [T − 2, T ), policy π1 uses the greedy

decision while policy π2 uses any other decision in slot (T−2).
Define k2 = argmaxj∈sT−2\{k1} αj pj . It follows that

J (π1)(sT−2, T−2) = αk1
pk1

+pk1
αk2

pk2
+(1−pk1

)αk1
pk1

,

J (π2)(sT−2, T − 2) = αlpl + plαk1pk1 + (1− pl)αk1pk1

= αlpl + αk1pk1 .

By definition, we have αk1pk1 ≥ αk2pk2 ≥ αlpl. We have

J (π1)(sT−2, T − 2) = αk1pk1 + pk1αk2pk2 + (1− pk1)αk1pk1

≥ αk1pk1 + pk1αlpl + (1− pk1)αlpl

= αk1pk1 + αlpl

= J (π2)(sT−2, T − 2).

That is, J (π1)(sT−2, T − 2) ≥ J (π2)(sT−2, T − 2) for any

l �= k1. Therefore, u∗
k(sT−2) = argmaxj∈sT−2

αj pj .

(iv) To prove by backward induction, given 0 < t ≤ T − 1,

assume that the optimal policy at state sk is u∗
k(sk) =
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argmaxj∈sk
αjpj for all k ≥ t. We consider the tail sub-

problem where the system is at state st−1 and we maximize

the cost-to-go J (π)(st−1, t − 1) during slots in [t − 1, T ).

Consider the two policies: π1 = (. . . , u
(1)
t−1, u

∗
t , . . . , u

∗
T−1) and

π2 = (. . . , u
(2)
t−1, u

∗
t , . . . , u

∗
T−1), where

u
(1)
t−1(st−1) = k1 � argmaxj∈st−1

αj pj ,

u
(2)
t−1(st−1) = l, l �= k1.

In other words, policy π1 uses the greedy decision in slot t−1
and optimal decisions afterwards. Policy π2 serves another

user l �= k1 in slot t−1 and uses optimal decisions afterwards.

Now, given the policies π1 and π2, we define a third policy

π3 = (. . . , u
(3)
t−1, u

(3)
t , u∗

t+1, . . . , u
∗
T−1) working as follows: (i)

greedily serve user k1 in slot t−1 according to π1; (ii) always

serve user l in slot t, where user l is chosen by policy π2 in

slot t− 1; (iii) use the optimal actions after slot t.

We compare the two policies π1 and π3 starting at slot t−1.

They are almost the same except that policy π3 may serve a

suboptimal user in slot t. From the Principle of Optimality [17]

we have

J (π1)(st−1, t− 1) ≥ J (π3)(st−1, t− 1). (11)

Next, we show that

J (π3)(st−1, t− 1) = J (π2)(st−1, t− 1). (12)

By the definition of policy π3, we have

J (π3)(st−1, t− 1) = αk1
pk1

+ pk1
J (π3)(st−1 \ {k1}, t)

+ (1− pk1) J
(π3)(st−1, t). (13)

In the second term on the right side of (13), we have

J (π3)(st−1 \ {k1}, t) = αlpl + pl Jt+1(st−1 \ {k1, l}, t+1)

+ (1− pl) Jt+1(st−1 \ {k1}, t+ 1), (14)

where Jt+1 is the optimal cost-to-go function defined in (5).

In the third term on the right side of (13), we have

J (π3)(st−1, t) = αlpl + pl Jt+1(st−1 \ {l}, t+ 1)

+ (1− pl) Jt+1(st−1, t+ 1). (15)

Similarly, under policy π2 we have

J (π2)(st−1, t− 1) = αl pl + pl Jt(st−1 \ {l}, t)
+ (1− pl) Jt(st−1, t), (16)

where

Jt(st−1 \ {l}, t) = αk1
pk1

+ pk1
Jt+1(st−1 \ {k1, l}, t+ 1)

+ (1− pk1
) Jt+1(st−1 \ {l}, t+ 1), (17)

Jt(st−1, t) = αk1 pk1 + pk1 Jt+1(st−1 \ {k1}, t+ 1)

+ (1− pk1) Jt+1(st−1, t+ 1). (18)

By plugging (14)-(15) into (13), and (17)-(18) into (16), we

obtain the equality (12). Comparing (11) and (12) shows that

J (π1)(st−1, t− 1) ≥ J (π2)(st−1, t− 1),

which holds for all users l �= k1 = argmaxj∈st−1
αj pj served

in slot t− 1 by policy π2. As a result, we have u∗
t−1(st−1) =

argmaxj∈st−1
αj pj . This completes the proof.

APPENDIX B

PROOF OF THEOREM 2

The proof is similar to that of Theorem 1, and we provide

a sketch of the proof here. Let st be the subset of users

having not received the packets from all multicast flows at

the beginning of slot t. A policy π in the first frame is

π = (u0, . . . , uT−1), where ut maps the state st to a multicast

flow f to transmit in slot t. For example, the greedy policy

consists of these decisions

u
(G)
t (st) ∈ argmaxf∈F rf (t), t = 0, . . . , T − 1,

where rf (t) is defined in (6).

In the last slot (T − 1) of the first frame, the base station

transmits the flow

u
(G)
T−1(sT−1) = argmaxf∈F rf (T − 1)

to maximize the the weighted sum throughput in this slot.

Denote by J (π)(st, t) the cost-to-go function of policy

π from slot t with the “initial” system state st at time t.
Given a slot t ≤ T − 1, assume that applying the greedy

decisions from slot t and onwards is optimal. That is, for

any policy π1 = (u0, . . . , uT−1) we define a new policy

π2 = (u0, . . . , ut−1, u
(G)
t , . . . , u

(G)
T−1) and assume that

J (π2)(st, t) ≥ J (π1)(st, t), for all st.

Consider the policy π3 = (u0, . . . , ut−2, u
(G)
t−1, . . . , u

(G)
T−1), and

we seek to show that

J (π3)(st−1, t− 1) ≥ J (π2)(st−1, t− 1) (19)

for each state st−1. Fix a state st−1 in slot t− 1. We assume

that ut−1(st−1) �= u
(G)
t−1(st−1); otherwise, equation (19) holds

with equality.

Given policies π2 and π3, we define a policy π′
2 as follows:

1) Acting the same as π2 from slot 0 to t− 2.

2) Choosing the greedy decision u
(G)
t−1 in slot t− 1.

3) Let f be the multicast flow that policy π2 would transmit

in slot t− 1, according to the fixed “initial state” st−1.

Then transmit the flow f in slot t regardless of the

current state st.

The only different between π3 and π′
2 is the decision in slot t.

By the induction assumption and the Principle of Optimality,

policy π3 outperforms π′
2 after slot t− 1, that is,

J (π3)(st−1, t− 1) ≥ J (π′
2)(st−1, t− 1). (20)

Next we argue that

J (π′
2)(st−1, t− 1) = J (π2)(st−1, t− 1). (21)
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In slot t− 1, let f∗ = u
(G)
t−1(st−1) be the greedy decision and

f = ut−1(st−1) is the actual flow served by π2. We have

assumed f∗ �= f . Because f∗ is the greedy decision that is

not taken by π2 in slot t − 1, it remains to be the greedy

decision in slot t for π2. As a result, policy π2 serves flow f
in slot t − 1 and f∗ in slot t. On the other hand, policy π′

2

serves flow f∗ in slot t − 1 and f in slot t. In other words,

policies π2 and π′
2 behave the same over the two slots t−1 and

t. Because channels are i.i.d. over slots, equation (21) holds.

Combining (20) and (21) shows that greedy policy is optimal

in slot t− 1. This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

Define the Lyapunov function in the kth frame:

L(k) =
1

2

N∑
n=1

(D+
n (k))

2. (22)

From (7), we have

D+
n (k + 1) = max{Dn(k) + qn − dn(k), 0}

≤ max{D+
n (k) + qn − dn(k), 0}

= max{D+
n (k)− dn(k),−qn}+ qn

≤ max{D+
n (k)− dn(k), 0}+ qn.

The first inequality follows Dn(k) ≤ D+
n (k) and the second

inequality uses qn ≥ 0. Squaring the above and using simple

arithmetics, we obtain

L(k + 1)− L(k) ≤ N +

N∑
n=1

D+
n (k)(qn − dn(k)). (23)

Define the Lyapunov drift over the kth frame:

Δ(k) = E[L(k + 1)− L(k) | H(k)],

where H(k) is the system history prior to the kth frame,

including the information of D+
n (k). From (23), we have

Δ(k) ≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)E[dn(k) | H(k)].

(24)

The MW policy is designed to minimize the right-hand side

of (24).

Let (q1, . . . , qN ) be a feasible throughput vector within the

multicast throughput region Λ. It follows that there exists

a boundary point d∗ = (d∗1, . . . , d
∗
N ) of Λ that dominates

(q1, . . . , qN ) entrywise, i.e., d∗n ≥ qn for all n. Let π0 be an

admissible policy that achieves d∗ in every frame. One choice

of the policy π0 is to repeat the GreedyM policy that achieves

the boundary point d∗ under a suitable weight vector α ≥ 0
in every frame. Under policy π0 we have

E[dn(k) | H(k)] = d∗n ≥ qn.

Since the max-weight policy minimizes the right-hand side

of (24), comparing it with policy π0 yields

N∑
n=1

D+
n (k)E[d

MW
n (k) | H(k)] ≥

N∑
n=1

D+
n (k)d

∗
n.

As a result, the inequality (24) evaluated under the max-weight

policy satisfies

Δ(k) ≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)E[d

MW
n (k) | H(k)]

≤ N +

N∑
n=1

D+
n (k)qn −

N∑
n=1

D+
n (k)d

∗
n ≤ N.

Taking expectation, summing over k = 0, . . . ,K−1, and using

D+
n (0) = 0, we have

E[L(K)] =
1

2

N∑
n=1

E[
(
D+

n (K)
)2
] ≤ KN.

It shows that

E[
(
D+

n (K)
)2
] ≤ 2NK, n = 1, . . . , N.

It follows that, as K →∞,

0 ≤ E[D+
n (K)]

K
≤

√
E[(D+

n (K))2]

K2
≤

√
2N

K
→ 0. (25)

Using Dn(K) ≤ D+
n (K) and (25), we have

lim sup
K→∞

E[Dn(K)]

K
≤ lim

K→∞
E[D+

n (K)]

K
= 0.

Equivalently, we have

lim inf
K→∞

E[−Dn(K)]

K
≥ 0. (26)

Plugging Dn(K) =
∑K−1

k=0 (qn − dn(k)) into (26), we con-

clude that the user n throughput dn satisfies

dn = lim inf
K→∞

1

K

K−1∑
k=0

E[dn(k)] ≥ qn,

and the max-weight policy achieves the throughput require-

ment vector (q1, . . . , qN ). The proof is complete.
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