
Receiver-Based Flow Control for Networks in
Overload

Chih-ping Li and Eytan Modiano

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Abstract—We consider utility maximization in networks where
the sources do not employ flow control and may consequently
overload the network. In the absence of flow control at the
sources, some packets will inevitably have to be dropped when the
network is in overload. To that end, we first develop a distributed,
threshold-based packet dropping policy that maximizes the
weighted sum throughput. Next, we consider utility maximization
and develop a receiver-based flow control scheme that, when
combined with threshold-based packet dropping, achieves the
optimal utility. The flow control scheme creates virtual queues at
the receivers as a push-back mechanism to optimize the amount
of data delivered to the destinations via back-pressure routing.
A novel feature of our scheme is that a utility function can
be assigned to a collection of flows, generalizing the traditional
approach of optimizing per-flow utilities. Our control policies
use finite-buffer queues and are independent of arrival statistics.
Their near-optimal performance is proved and further supported
by simulation results.

I. INTRODUCTION

The idea behind flow control in data networks is to regulate

the source rates in order to prevent network overload, and

provide fair allocation of resources. In recent years, extensive

research has been devoted to the problem of network util-

ity maximization, with the objective of optimizing network

resource allocation through a combination of source-based

flow control, routing, and scheduling. The common theme

is to assign a utility, as a function of the source rate, to a

flow specified by a source-destination pair, and formulate an

optimization problem that maximizes the sum of utilities (e.g.,

see [1]–[9]). The optimal network control policy is revealed

as the algorithm that solves the utility maximization problem.

Source-based flow control implicitly requires all sources

to react properly to congestion signals such as packet loss

or delay. Congestion-insensitive traffic, however, is pervasive

in modern networks. UDP-based applications such as video

streaming or VoIP are increasingly popular and do not re-

spond to congestion. Moreover, greedy or malicious users can

inject excessive data into the network to either boost self-

performance or bring down high-profile websites. In these

circumstances, the network can be temporarily overloaded and

congestion-aware applications, e.g., TCP-based traffic, may be

This work was supported by DTRA grants HDTRA1-07-1-0004 and
HDTRA-09-1-005, ARO Muri grant number W911NF-08-1-0238, and NSF
grant CNS-1116209.

adversely affected or even starved. In this context, source-

based flow control may not be adequate.

There are other scenarios in which optimizing the source

rates of data flows on a per-flow basis is ineffective. The

Internet nowadays is vulnerable to distributed denial of service

(DDoS) attacks [10], [11], in which an attacker creates a

large number of flows with different source addresses to

overwhelm prominent websites. Similarly, in a multi-player

online game, thousands of users require continuous access to

the game servers. There are also occasions in which a large

number of users seek access to a website that broadcasts live

events [12]; this is the so-called flash crowd phenomenon [13].

In these situations, source-based flow control is ineffective

because each individual flow uses little bandwidth, but their

aggregate traffic can lead to severe link congestion near the

service provider, and may starve other unrelated users in the

network. A flow control scheme that can optimize a utility

assigned to a collection of flows as opposed to optimizing

the sum of per-flow utilities can be used to cope with such

scenarios. Moreover, in order to cope with uncooperative

flows, it is necessary to relocate the flow control functionality

from untrusted network hosts to more secure ones, such as the

web servers that provide service at the receiver end.

In this paper, we develop such receiver-based flow control
policies using tools from stochastic network optimization [14],

[15]. Our main contributions are three-fold. First, we formulate

a utility maximization problem that can assign utilities to an

aggregate of flows, of which the usual per-flow-based utility

maximization is a special case. Second, given an arbitrary

arrival rate matrix (possibly outside the network’s stability

region), we characterize the corresponding achievable through-

put region in terms of queue overflow rates. Third, using

a novel decomposition of the utility functions, we design

a network control policy consisting of: (i) a set of flow

controllers at the receivers; (ii) packet dropping mechanism at

internal nodes; and (iii) back-pressure routing at intermediate

nodes. The receiver-based flow controllers adjust throughput

by modifying the differential backlogs between the receivers

and their neighboring nodes—a small (or negative) differential

backlog is regarded as a push-back mechanism to slow down

data delivery to the receiver. To deal with data that cannot

be delivered due to network overload, we design a threshold-

based packet dropping mechanism that discards data whenever

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2949

queues grow beyond certain thresholds. Surprisingly, we show

that our threshold-based packet dropping scheme, without the

use of flow control, is sufficient to maximize the weighted

sum throughput. Moreover, the combined flow control and

packet dropping mechanism has the following properties: (i)

It works with finite-size buffers. (ii) It is nearly utility-optimal

(throughput-optimal as a special case) and the performance

gap from the optimal utility goes to zero as buffer sizes

increase. (iii) It does not require the knowledge of arrival rates

and therefore is robust to time-varying arrival rates that can

go far beyond the network’s stability region. In addition, our

control policy can be implemented only in parts of the network

that include the receivers, treating the rest of the network as

exogenous data sources (see Fig. 1 for an example), and thus

might be an attractive flow control solution for web servers.

class 1

R

A

B

class 2

R

A

B

class 1

class 2

Fig. 1. Our receiver-based policy can be implemented in the whole network
on the left, or implemented only at nodes A, B, and R on the right, where
R is the only receiver. The rest of the network on the right may be controlled
by another network operator or follow a different network control scheme.

There has been a significant amount of research in the

general area of stochastic network control. Utility-optimal

policies that combine source-end flow control with back-

pressure routing have been studied in [6]–[9] (and references

therein). These policies optimize per-flow utilities and require

infinite-capacity buffers. However, they are not robust in the

face of uncooperative users who may not adhere to the flow

control scheme. A closely related problem to that studied in

this paper is that of characterizing the queue overflow rates in

lossless networks in overload. In a single-commodity network,

a back-pressure policy is shown to achieve the most balanced

queue overflow rates [16], and controlling queue growth rates

using the max-weight policy is discussed in [17]. The queue

growth rates in networks under max-weight and α-fairness

policies are analyzed in [18], [19]. We finally note that the

importance of controlling an aggregate of data flows has been

addressed in [13], and rate-limiting mechanisms in front of a

web server to achieve some notion of max-min fairness against

DDoS attacks have been proposed in [20]–[22].

An outline of the paper is as follows. The network model

is given in Section II. We formulate the utility maximization

problem and characterize the achievable throughput region in

terms of queue overflow rates in Section III. Section IV intro-

duces a threshold-based packet dropping policy that maximizes

the weighted sum throughput without the use of flow control.

Section V presents a receiver-based flow control and packet

dropping policy that solves the general utility maximization

problem. Simulation results that demonstrate the near-optimal

performance of our policies are given in Sections IV and V.

II. NETWORK MODEL

We consider a network with nodes N = {1, 2, . . . , N}
and directed links L = {(n,m) | n,m ∈ N}. Assume

time is slotted. In every slot, packets randomly arrive at the

network for service and are categorized into a collection C
of classes. The definition of a data class is quite flexible

except that we assume packets in a class c ∈ C have a

shared destination dc. For example, each class can simply

be a flow specified by a source-destination pair. Alternatively,

computing-on-demand services in the cloud such as Amazon

(Elastic Compute Cloud; EC2) or Google (App Engine) can

assign business users to one class and residential users to

another. Media streaming applications may categorize users

into classes according to different levels of subscription to the

service provider. While classification of users/flows in various

contexts is a subject of significant importance, in this paper we

assume for simplicity that the class to which a packet belongs

can be ascertained from information contained in the packet

(e.g., source/destination address, tag, priority field, etc.). Let

A
(c)
n (t) ∈ {0, 1, . . . , Amax} be the number of exogenous class c

packets arriving at node n in slot t, where Amax is a finite

constant; let A
(c)
dc

(t) = 0 for all t. We assume A
(c)
n (t) are

independent across classes c and nodes n �= dc, and are i.i.d.

over slots with mean E
[
A

(c)
n (t)

]
= λ

(c)
n .

In the network, packets are relayed toward the destinations

via dynamic routing and link rate allocation decisions. Each

link (n,m) ∈ L is used to transmit data from node n to node

m and has a fixed capacity μnm
max (in units of packets/slot).1

Under a given control policy, let μ
(c)
nm(t) be the service rate

allocated to class c data over link (n,m) in slot t. The service

rates must satisfy the link capacity constraints∑
c∈C

μ(c)
nm(t) ≤ μnm

max, for all t and all links (n,m).

At a node n �= dc, class c packets that arrive but not

yet transmitted are stored in a queue; we let Q
(c)
n (t) be the

backlog of class c packets at node n at time t. We assume

initially Q
(c)
n (0) = 0 for all n and c. Destinations do not buffer

packets and we have Q
(c)
dc

(t) = 0 for all c and t. For now, we

assume every queue Q
(c)
n (t) has an infinite-capacity buffer; we

show later that our control policy needs only finite buffers. To

resolve potential network congestion due to traffic overload,

a queue Q
(c)
n (t), after transmitting data to neighboring nodes

in a slot, discards d
(c)
n (t) packets from the remaining backlog

at the end of the slot. The drop rate d
(c)
n (t) is a function of

the control policy to be described later and takes values in

[0, dmax] for some finite dmax. The queue Q
(c)
n (t) evolves over

1We focus on wireline networks in this paper for ease of exposition. Our
results and analysis can be easily generalized to wireless networks or switched
networks in which link rate allocations are subject to interference constraints.

2013 Proceedings IEEE INFOCOM

2950

slots according to

Q(c)
n (t+ 1) ≤

[(
Q(c)

n (t)−
∑
b

μ
(c)
nb (t)

)+

− d(c)n (t)

]+
+A(c)

n (t) +
∑
a

μ(c)
an(t), ∀c, ∀n �= dc,

(1)

where (·)+ � max(·, 0). This inequality is due to the fact

that endogenous arrivals may be less than the allocated rate∑
a μ

(c)
an(t) when neighboring nodes do not have sufficient

packets to send.

For convenience, we define the maximum transmission rate

into and out of a node by

μin
max � max

n∈N

∑
a:(a,n)∈L

μan
max, μout

max � max
n∈N

∑
b:(n,b)∈L

μnb
max.

(2)

Throughout the paper, we use the following assumption.

Assumption 1. We assume dmax ≥ Amax + μin
max.

From (1), the sum Amax + μin
max is the largest amount of

data that can arrive at a node in a slot; therefore it is an

upper bound on the maximum queue overflow rate at any node.

Assumption 1 ensures that the maximum packet dropping rate

dmax is no less than the maximum queue overflow rate, so that

we can always prevent the queues from blowing up.

III. PROBLEM FORMULATION

We assign to each class c ∈ C a utility function gc(·). Given

an (unknown) arrival rate matrix λ = (λ
(c)
n), let Λλ be the

set of all achievable throughput vectors (rc), where rc is the

aggregate throughput of class c received by the destination dc.

Note that Λλ is a function of λ. We seek to design a control

policy that solves the global utility maximization problem

maximize
∑
c∈C

gc(rc) (3)

subject to (rc) ∈ Λλ, (4)

where the region Λλ is presented later in Lemma 1. We assume

all gc(·) functions are concave, increasing, and continuously

differentiable. For ease of exposition, we also assume the func-

tions gc(·) have bounded derivatives such that |g′c(x)| ≤ mc

for all x ≥ 0, where mc are finite constants.2

As an example, consider the tree network in Fig. 2 that

serves three classes of traffic destined for node R. Class 1
data originates from two different sources A and C, and may

represent the collection of users located in different parts of

the network sending or requesting information from node R.

If class 1 traffic is congestion-insensitive and overloads the

network, without proper flow control class 2 and 3 will be

starved due to the presence of class 1. A utility maximization

2Utility functions gc(x) that have unbounded derivatives as x → 0 can
be approximated by those with bounded derivatives. For example, we may
approximate the proportional fairness function log(x) by log(x+ξ) for some
small ξ > 0.

class 3class 1

R

A C D

class 1

B

class 2

Fig. 2. A tree network with three classes of traffic.

problem here is to solve

maximize g1(r1A + r1C) + g2(r2B) + g3(r3D) (5)

subject to (r1A, r1C , r2B , r3D) feasible, (6)

where r1A denotes the throughput of class 1 data originating

from A; r1C , r2B , and r3D are defined similarly. Note that this

utility maximization (5)-(6) is very different from, and gener-

alizes, the traditional per-flow-based utility maximization.

A. Achievable Throughput Region

The next lemma characterizes the set Λλ of all achievable

throughput vectors in (4).

Lemma 1. Under i.i.d. arrival processes with an arrival rate

matrix λ = (λ
(c)
n), let Λλ be the closure of the set of all

achievable throughput vectors (rc). Then (rc) ∈ Λλ if and

only if there exist flow variables {f (c)
ab ≥ 0 | c ∈ C, (a, b) ∈ L}

and queue overflow variables {q(c)n ≥ 0 | c ∈ C, n �= dc} such

that

λ(c)
n +

∑
a

f (c)
an = q(c)n +

∑
b

f
(c)
nb ∀ c ∈ C, n �= dc, (7)∑

c

f
(c)
ab ≤ μab

max ∀ (a, b) ∈ L, (8)

rc ≤
∑
a

f
(c)
adc

=
∑
n

λ(c)
n −

∑
n

q(c)n ∀ c ∈ C. (9)

In other words,

Λλ =
{
(rc)

∣∣∣ (7)-(9) hold and f
(c)
ab ≥ 0, q(c)n ≥ 0

}
.

Proof of Lemma 1: See technical report [23].

In Lemma 1, equation (7) is the flow conservation constraint

stating that the total flow rate of a class into a node is equal

to the flow rate out of the node plus the queue overflow rate.

Equation (8) is the link capacity constraint. The equality in (9)

shows that the throughput of a class is equal to the sum of

exogenous arrival rates less the queue overflow rates. Lemma 1

is closely related to the network capacity region Λ defined

in terms of admissible arrival rates (see Definition 1); their

relationship is shown in the next corollary.

Definition 1 (Theorem 1, [24]). The capacity region Λ of the

network is the set of all arrival rate matrices (λ
(c)
n) for which

there exists nonnegative flow variables f
(c)
ab such that

λ(c)
n +

∑
a

f (c)
an ≤

∑
b

f
(c)
nb , ∀ c ∈ C, n �= dc, (10)

2013 Proceedings IEEE INFOCOM

2951

∑
c

f
(c)
ab ≤ μab

max, ∀ (a, b) ∈ L. (11)

Corollary 1. An arrival rate matrix (λ
(c)
n) lies in the network

capacity region Λ if there exist flow variables f
(c)
ab ≥ 0

such that flow conservation constraints (7) and link capacity

constraints (8) hold with q
(c)
n = 0 for all n and c.

Corollary 1 shows that (λ
(c)
n) is achievable if and only if

there exists a control policy yielding zero queue overflow rates.

In this case the throughput of class c is rc =
∑

n λ
(c)
n .

We remark that the solution to the utility maximization (3)-

(4) activates the linear constraints (9); thus the problem (3)-(4)

is equivalent to

maximize
∑
c∈C

gc(rc) (12)

subject to rc =
∑
n

λ(c)
n −

∑
n

q(c)n , ∀ c ∈ C (13)

(7) and (8) hold (14)

f
(c)
ab ≥ 0, q(c)n ≥ 0, ∀(a, b) ∈ L, ∀n, c. (15)

Let (r∗c) be the optimal throughput vector that solves (12)-

(15). If the arrival rate matrix (λ
(c)
n) is in the network capacity

region Λ, the optimal throughput is r∗c =
∑

n λ
(c)
n from

Corollary 1. Otherwise, we have r∗c =
∑

n λ
(c)
n −∑

n q
(c)∗
n ,

where q
(c)∗
n is the optimal queue overflow rate.

B. Features of Network Control

Our control policy that solves (12)-(15) has two main fea-

tures. First, we have a packet dropping mechanism discarding

data from the network when queues build up. An observation

here is that, in order to optimize throughput and keep the

network stable, we should drive the packet dropping rate to

be equal to the optimal queue overflow rate. Second, we need a

flow controller driving the throughput vector toward the utility-

optimal point. To convert the control objective (12) into these

two control features, we define, for each class c ∈ C, a utility

function hc(·) related to gc(·) as

hc(rc) � gc(rc)− θc rc, (16)

where θc ≥ 0 are control parameters to be decided later.

Using (13), we have gc(rc) = hc(rc)+θc
[∑

n λ
(c)
n −

∑
n q

(c)
n

]
.

Since λ
(c)
n are unknown constants, maximizing

∑
c∈C gc(rc)

is the same as maximizing∑
c∈C

[
hc(rc)− θc

∑
n

q(c)n

]
. (17)

This equivalent objective (17) can be optimized by jointly

maximizing the new utility
∑

c∈C hc(rc) at the receivers

and minimizing the weighted queue overflow rates (i.e., the

weighted packet dropping rates)
∑

c∈C θc q
(c)
n at each node n.

Optimizing the throughput at the receivers amounts to con-

trolling the amount of data actually delivered. This is difficult

because the data available to the receivers at their upstream

nodes is highly correlated with control decisions taken in the

rest of the network. Optimizing the packet dropping rates

depends on the data available at each network node, which

has similar difficulties. To get around these difficulties, we

introduce auxiliary control variables ϕ
(c)
n ≥ 0 and νc ≥ 0 and

consider the optimization problem

maximize
∑
c

[
hc(νc)− θc

∑
n

ϕ(c)
n

]
(18)

subject to rc = νc, ∀ c ∈ C, (19)

q(c)n ≤ ϕ(c)
n , ∀ c ∈ C, n �= dc. (20)

(13)-(15) hold. (21)

This is an equivalent problem to (12)-(15). The constraints (19)

and (20) can be enforced by stabilizing virtual queues that will

appear in our control policy. The new control variables νc and

ϕ
(c)
n to be optimized can now be chosen freely unconstrained

by past control actions in the network. Introducing auxiliary

variables and setting up virtual queues are at the heart of using

Lyapunov drift theory to solve network optimization problems.

IV. MAXIMIZING THE WEIGHTED SUM THROUGHPUT

For ease of exposition, we first consider the special case of

maximizing the weighted sum throughput in the network. For

each class c ∈ C, we let gc(rc) = ac rc for some ac > 0. We

present a threshold-based packet dropping policy that, together

with back-pressure routing, solves this problem. Surprisingly,

flow control is not needed here. This is because maximizing

the weighted sum throughput is equivalent to minimizing the

weighted packet dropping rate
∑

n,c ac q
(c)
n . Indeed, choosing

θc = ac in (16), we have hc = 0 for all classes c, under

which maximizing the equivalent objective (17) is the same as

minimizing
∑

n,c ac q
(c)
n . In the next section, we will combine

the threshold-based packet dropping policy with receiver-based

flow control to solve the general utility maximization problem.

A. Control Policy

To optimize packet dropping rates, we set up a drop queue
D

(c)
n (t) associated with each queue Q

(c)
n (t). The packets that

are dropped from Q
(c)
n (t) in a slot, denoted by d̃

(c)
n (t), are first

stored in D
(c)
n (t) for eventual deletion. From (1), we have

d̃(c)n (t) = min

[(
Q(c)

n (t)−
∑
b

μ
(c)
nb (t)

)+

, d(c)n (t)

]
. (22)

Note that the quantity d̃
(c)
n (t) is the actual packets dropped

from Q
(c)
n (t), which is strictly less than the allocated drop rate

d
(c)
n (t) if queue Q

(c)
n (t) does not have sufficient data. Packets

are permanently deleted from D
(c)
n (t) at the rate of ϕ

(c)
n (t) ∈

[0, dmax] in slot t. The queue D
(c)
n (t) evolves according to

D(c)
n (t+ 1) =

[
D(c)

n (t)− ϕ(c)
n (t)

]+
+ d̃(c)n (t). (23)

Assume initially D
(c)
n (0) = V θc = V ac for all n and c,

where V > 0 is a control parameter.3 If queue D
(c)
n (t)

3It suffices to assume D
(c)
n (0) to be finite. Our choice of D

(c)
n (0) = V θc

avoids unnecessary packet dropping in the initial phase of the system.

2013 Proceedings IEEE INFOCOM

2952

is stabilized, then minimizing the service rate of D
(c)
n (t)

effectively minimizes the time average of dropped packets at

Q
(c)
n (t). We propose the following policy.

Overload Resilient Algorithm (ORA)

Parameter Selection: Choose θc = ac for all classes c ∈ C,

where gc(x) = ac x. Choose a parameter V > 0.

Backpressure Routing: Over each link l = (n,m) ∈ L, let

Cl be the subset of classes that have access to link l. Compute

the differential backlog W
(c)
l (t) = Q

(c)
n (t)−Q

(c)
m (t) for each

class c ∈ Cl, where Q
(c)
dc

(t) = 0 at the receiver dc. Define

W
(c)∗
l (t) = max

c∈Cl
W

(c)
l (t),

c∗l (t) = argmaxc∈Cl W
(c)
l (t).

We allocate the service rates

μ
(c∗l (t))
nm (t) =

{
μnm

max if W
(c)∗
l (t) > 0,

0 if W
(c)∗
l (t) ≤ 0.

Let μ
(c)
nm(t) = 0 for all classes c = Cl \ {c∗l (t)}.

Packet Dropping: At queue Q
(c)
n (t), allocate the packet

dropping rate d
(c)
n (t) (see (1)) according to

d(c)n (t) =

{
dmax if Q

(c)
n (t) > D

(c)
n (t),

0 if Q
(c)
n (t) ≤ D

(c)
n (t),

where dmax > 0 is a constant chosen to satisfy Assumption 1.

At the drop queue D
(c)
n (t), allocate its service rate ϕ

(c)
n (t)

according to

ϕ(c)
n (t) =

{
dmax if D

(c)
n (t) > V θc,

0 if D
(c)
n (t) ≤ V θc.

Queue Update: Update queues Q
(c)
n (t) according to (1) and

update queues D
(c)
n (t) according to (22)-(23) in every slot.

The packet dropping subroutine in this policy is threshold-

based. The ORA policy uses local queueing information and

does not require the knowledge of exogenous arrival rates.

It is notable that network overload is autonomously resolved

by each node making local decisions of routing and packet

dropping.

B. Performance of the ORA Policy

Lemma 2 (Deterministic Bound for Queues). For each class

c ∈ C, define the constants

D(c)
max � V θc + dmax, Q(c)

max � V θc + 2dmax. (24)

In the ORA policy, queues Q
(c)
n (t) and D

(c)
n (t) are determin-

istically bounded by

Q(c)
n (t) ≤ Q(c)

max, D(c)
n (t) ≤ D(c)

max, for all t, c, and n �= dc.

In addition, we have D
(c)
n (t) ≥ V θc− dmax for all n, c, and t.

Proof of Lemma 2: See technical report [23].

In Lemma 2, the value of Q
(c)
max is the finite buffer size suffi-

cient at queue Q
(c)
n (t). The parameter V controls when queue

Q
(c)
n (t) starts dropping packets. Indeed, due to D

(c)
n (t) ≥

V θc − dmax, the ORA policy discards packets from Q
(c)
n (t)

only if Q
(c)
n (t) ≥ V θc − dmax. The quantity V θc − dmax is a

controllable threshold beyond which we say queue Q
(c)
n (t) is

overloaded and should start dropping packets. As we see next,

the performance of the ORA policy approaches optimality as

the buffer sizes increase.

Theorem 1. Define the limiting throughput of class c as

rc � lim
t→∞

1

t

t−1∑
τ=0

E

[∑
a:(a,dc)∈L

μ̃
(c)
adc

(τ)

]
, (25)

where μ̃
(c)
adc

(τ) denotes the class c packets received by node dc
over link (a, dc). The ORA policy yields the limiting weighted

sum throughput satisfying∑
c∈C

ac rc ≥
∑
c∈C

ac r
∗
c −

B

V
, (26)

where (r∗c) is the optimal throughput vector that solves (12)-

(15) under the linear objective function
∑

c∈C ac rc, V > 0 is

a control parameter, and B is a finite constant defined as

B � |N | |C|
[
(μout

max + dmax)
2 + (Amax + μin

max)
2 + 2d2max

]
,

where |A| denotes the cardinality of a set A.

We omit the proof of Theorem 1 because it is similar to

that of Theorem 2 presented later in the general case of utility

maximization. From (26), the ORA policy yields near-optimal

performance by choosing the parameter V sufficiently large.

Correspondingly, a large V implies a large buffer size of

Q
(c)
max = V θc + 2dmax.

As shown in Corollary 1, if the arrival rate matrix (λ
(c)
n) lies

in the network capacity region Λ, then the optimal throughput

for class c is r∗c =
∑

n λ
(c)
n and (26) reduces to∑

c∈C
ac rc ≥

∑
c∈C

ac

(∑
n

λ(c)
n

)
− B

V
.

That we can choose V arbitrarily large leads to the next

corollary.

Corollary 2. The ORA policy is (close to) throughput optimal.

C. Simulation of the ORA Policy

We conduct simulations for the ORA policy in the network

shown in Fig. 3. The directed links (A,B) and (B,C) have

A

class 1class 3

class 2

B C

Fig. 3. A 3-node network with three classes of traffic.

the capacity of 1 packet/slot. There are three classes of traffic

2013 Proceedings IEEE INFOCOM

2953

TABLE I
THE THROUGHPUT PERFORMANCE OF THE ORA POLICY UNDER FIXED

ARRIVAL RATES.

(a) Maximizing 3 r1 + 2 r2 + r3

V r1 r2 r3

10 .787 .168 .099
20 .867 .133 .410
50 .992 .008 .967

100 .999 0 .999

opt 1 0 1

(b) Maximizing 3 r1 + 5 r2 + r3

V r1 r2 r3

10 .185 .815 .083
20 .107 .893 .095
50 .031 .969 .031

100 .002 .998 .001

opt 0 1 0

to be served; for example, class 1 data arrives at node B and

is destined for node C. Classes 1 and 2 compete for service

over (B,C); classes 2 and 3 compete for service over (A,B).
Each simulation below is run over 106 slots.

1) Fixed arrival rates: In each class, we assume a Bernoulli

arrival process whereby 20 packets arrive to the network in

a slot with probability 0.1, and no packets arrive otherwise.

The arrival rate of each class is 2 packets/slot, which clearly

overloads the network.

Let rc be the long-term throughput of class c. Consider

the objective of maximizing the weighted sum throughput

3 r1 + 2 r2 + r3; the weights are rewards obtained by serving

a packet in a class. The optimal solution is: (i) Always

serve class 1 at node B because it yields better rewards than

serving class 2. (ii) Always serve class 3 at node A—although

class 2 has better rewards than class 3, it does not make

sense to serve class 2 at A only to be dropped later at B.

The optimal throughput vector is therefore (1, 0, 1). Consider

another objective of maximizing 3 r1 + 5 r2 + r3. Here, class

2 has a reward that is better than the sum of rewards of the

other two classes. Thus both nodes A and B should always

serve class 2; the optimal throughput vector is (0, 1, 0). We

simulate the ORA policy, and Table I shows its near-optimal

performance in both cases as V increases.

2) Time-varying arrival rates: We show that the ORA
policy is robust to time-varying arrival rates. Suppose class

1 and 3 have a fixed arrival rate of 0.8 packets/slot. The

arrival rate of class 2 is 2 packets/slot in the interval T =
[3×105, 6×105) and is 0.1 packets/slot elsewhere. We consider

the objective of maximizing 3 r1 + 5 r2 + r3. The network is

temporarily overloaded in the interval T ; the optimal time-

average throughput in T is (0, 1, 0) as explained in the above

case. The network is underloaded in the interval [0, 106) \ T ,

in which the optimal throughput is (0.8, 0.1, 0.8).
We use the following parameters here: V = 100, Amax =

20, dmax = Amax + μin
max = 21, and (θ1, θ2, θ3) = (3, 5, 1).

Table II shows the near-optimal throughput performance of

the ORA policy. Figure 4 shows the sample paths of the

queue processes Q
(1)
B (t), Q

(2)
B (t), Q

(2)
A (t), and Q

(3)
A (t) in the

simulation. Clearly the queues suddenly build up when the

network enters the overload interval T , but the backlogs are

kept close to the upper bound Q
(c)
max = V θc + 2dmax without

blowing up.

TABLE II
THE THROUGHPUT PERFORMANCE OF THE ORA POLICY UNDER

TIME-VARYING ARRIVAL RATES.

time interval throughput optimal
in this interval value

[0, 3 · 105) (.797, .097, .771) (.8, .1, .8)
[3 · 105, 6 · 105) (.001, .998, 0) (0, 1, 0)
[6 · 105, 106) (.798, .102, .772) (.8, .1, .8)

0 2x105 4x105 6x105 8x105 1x106

Time

0

100

200

300

400

500

B
ac

kl
og

Class 1 at node B

(a) Queue Q
(1)
B (t)

0 2x105 4x105 6x105 8x105 1x106

Time

0

100

200

300

400

500

B
ac

kl
og

Class 2 at node B

(b) Queue Q
(2)
B (t)

0 2x105 4x105 6x105 8x105 1x106

Time

0

100

200

300

400

500

B
ac

kl
og

Class 2 at node A

(c) Queue Q
(2)
A (t)

0 2x105 4x105 6x105 8x105 1x106

Time

0

100

200

300

400

500

B
ac

kl
og

Class 3 at node A

(d) Queue Q
(3)
A (t)

Fig. 4. The queue processes under the ORA policy with time-varying arrival
rates that temporarily overload the network.

V. UTILITY-OPTIMAL CONTROL

We solve the general utility maximization problem (3)-(4)

with a network control policy very similar to the ORA policy

in the previous section except for an additional flow control

mechanism.

A. Virtue Queue

In Section III-B we formulate the equivalent optimization

problem (18)-(21) that involves maximizing
∑

c∈C hc(νc) sub-

ject to rc = νc for all classes c, where νc are auxiliary control

variables and rc is the throughput of class c. To enforce the

constraint rc = νc, we construct a virtual queue Zc(t) in which

rc is the virtual arrival rate and νc is the time-average service

rate. Let μ̃
(c)
adc

(t) be the class c packets received by node dc
over link (a, dc); we have

μ̃
(c)
adc

(t) = min
[
Q(c)

a (t), μ
(c)
adc

(t)
]
.

The arrivals to the virtual queue Zc(t) in a slot are the total

class c packets delivered in that slot, namely,
∑

a μ̃
(c)
adc

(t). Let

νc(t) be the allocated virtual service rate at Zc(t) in slot t. The

virtual queue Zc(t) is located at the receiver dc and evolves

according to

Zc(t+ 1) =
[
Zc(t)− νc(t)

]+
+
∑
a

μ̃
(c)
adc

(t). (27)

2013 Proceedings IEEE INFOCOM

2954

Assume initially Zc(0) = 0 for all classes c. It is well known

that if queue Zc(t) is stable then rc ≤ νc. But we are interested

in the stronger relationship that stabilizing Zc(t) leads to rc =
νc. To make it happen, it suffices to guarantee that queue Zc(t)
wastes as few service opportunities as possible, so that the

time-average allocated service rate νc is approximately equal

to the throughput out of queue Zc(t). For this, we need two

conditions:

1) The queues Zc(t) usually have more than enough (vir-

tual) data to serve.

2) When Zc(t) does not have sufficient data, the allocated

service rate νc(t) is made arbitrarily small.

To attain the first condition, we use an exponential-type Lya-

punov function that bounds the virtual backlog process Zc(t)
away from zero (and centers it around a parameter Q > 0).

The second condition is attained by a proper choice of the

parameters θc to be decided later.

B. Control Policy
The following policy, whose construction is sketched in

Appendix A, solves the utility maximization problem (3)-(4).

Utility-Optimal Overload-Resilient Algorithm (UORA)

Parameter Selection: Choose positive parameters νmax, w,

V , Q, and {θc, c ∈ C} to be discussed shortly. Assume initially

Q
(c)
n (0) = Zc(0) = 0 and D

(c)
n (0) = V θc.

Packet Dropping: Same as the ORA policy.
Backpressure Routing: Same as the ORA policy, except

that the differential backlog over each link l = (a, dc) ∈ L
connected to a receiver dc is modified as:

W
(c)
l (t) = Q(c)

a (t)−Q
(c)
dc

(t), (28)

where we abuse the notation by redefining

Q
(c)
dc

(t) =

{
w ew(Zc(t)−Q) if Zc(t) ≥ Q

−w ew(Q−Zc(t)) if Zc(t) < Q
(29)

for all classes c. The exponential form of Q
(c)
dc

(t) is a result

of using exponential-type Lyapunov functions. We emphasize

that here Q
(c)
dc

(t) has nothing to do with real data buffered at

the receivers (which must be zero); it is just a function of the

virtual queue backlog Zc(t) that gives us the “desired force”

in the form of differential backlog in (28) to pull or push-

back data in the network. Thus, unlike standard back-pressure

routing that has Q
(c)
dc

(t) = 0, here we use Q
(c)
dc

(t) as part of

the receiver-based flow control mechanism.
Receiver-Based Flow Control: At a destination dc, choose

the virtual service rate νc(t) of queue Zc(t) as the solution to

maximize V hc

(
νc(t)

)
+ νc(t)Q

(c)
dc

(t) (30)

subject to 0 ≤ νc(t) ≤ νmax (31)

where hc(x) = gc(x)− θc x.

Queue Update: Update queues Q
(c)
n (t), D

(c)
n (t), and Zc(t)

according to (1), (23), and (27), respectively, in every slot.

C. Choice of Parameters

We briefly discuss how the parameters in the UORA policy

are chosen. Let ε > 0 be a small constant which affects the

performance of the UORA policy (cf. (33)). In (30)-(31), we

need the parameter νmax to satisfy νmax ≥ maxc∈C r∗c + ε/2,

where (r∗c) is solution to the utility maximization (3)-(4) (one

feasible choice of νmax is the sum of capacities of all links

connected to the receivers plus ε/2). This choice of νmax

ensures that queue Zc(t) can be stabilized when its virtual

arrival rate is the optimal throughput r∗c . Due to technical

reasons, we define δmax � max[νmax, μ
in
max] and choose the

parameter

w � ε

δ2max

e−ε/δmax

in (29). The parameter Q (see (29)) is used to bound the queues

Zc(t) away from zero and center them around Q; for technical

reasons, we need Q ≥ νmax. The parameters θc are chosen to

satisfy h′c(x) = g′c(x)−θc ≤ 0 for all x ≥ ε. This ensures that,

when Zc(t) < Q, its virtual service rate νc(t) as the solution

to (30)-(31) is less than or equal to ε, attaining the second

condition mentioned in Section V-A to equalize the arrival rate

and the time-average service rate of the virtual queue Zc(t)
(see [23, Lemma 6]). The parameter V captures the tradeoff

between utility and buffer sizes to be shown shortly and should

be chosen large; for technical reasons, we need V to satisfy

V θc + 2dmax ≥ w.

D. Performance Analysis

Lemma 3. In the UORA policy, queues Q
(c)
n (t), D

(c)
n (t), and

Zc(t) are deterministically bounded by

Q(c)
n (t) ≤ Q(c)

max, D(c)
n (t) ≤ D(c)

max, Zc(t) ≤ Z(c)
max

for all t, c, and n, where Q
(c)
max and D

(c)
max are defined in (24)

and Z
(c)
max is defined as

Z(c)
max � Q+

1

w
log

(
V θc + 2dmax

w

)
+ μin

max. (32)

Proof of Lemma 3: See technical report [23].

Theorem 2. The UORA policy yields the limiting utility that

satisfies∑
c

gc(rc) ≥
∑
c

gc(r
∗
c)−

B1

V
− 3ε

2

∑
c

(mc + θc), (33)

where rc is defined in (25), (r∗c) is the throughput vector that

solves the utility maximization problem (3)-(4), and B1 is a

finite constant defined as

B1 � |N | |C|
[
(μout

max + dmax)
2 + (Amax + μin

max)
2 + 2d2max

]
+ |C|

[
w(2δmax + ε) + ew(νmax+μin

max) +
wε

2
ewQ + ewQ

]
.

Proof of Theorem 2: See technical report [23].

Theorem 2 shows that the performance gap from the optimal

utility can be made arbitrarily small by choosing a large V and

a small ε. The performance tradeoff of choosing a large V is

again on the required finite buffer size Q
(c)
max = V θc + 2dmax.

2013 Proceedings IEEE INFOCOM

2955

TABLE III
THE THROUGHPUT PERFORMANCE OF THE UORA POLICY IN THE 3-NODE

NETWORK

V r1 r2 r3
∑

log(rc)

10 .522 .478 .522 −2.038
20 .585 .415 .585 −1.952
50 .631 .369 .631 −1.918

100 .648 .352 .647 −1.912

optimal .667 .333 .667 −1.910

TABLE IV
MAXIMUM BACKLOG IN QUEUES UNDER THE UORA POLICY IN THE

3-NODE NETWORK

V Q
(1)
B (t) Q

(2)
B (t) Q

(2)
A (t) Q

(3)
A (t) Q

(c)
max

10 140 97 137 137 142
20 237 187 240 236 242
50 539 441 538 540 542

100 1036 865 1039 1039 1042

E. Simulation of the UORA Policy

We conduct two sets of simulations.

1) On the 3-node network in Fig. 3: The goal is to provide

proportional fairness to the three classes of traffic; equivalently

we maximize the objective function log(r1)+log(r2)+log(r3).
Each directed link (A,B) and (B,C) has the capacity of one

packet per slot. The arrival process for each class is that, in

every slot, 20 packets arrive to the network with probability

0.1 and zero packets arrive otherwise. The arrival rate vector is

(2, 2, 2), which overloads the network. In this network setting,

due to symmetry the optimal throughput for class 1 is equal

to that of class 3, which is the solution to the simple convex

program

maximize: 2 log(x) + log(1− x), subject to: 0 ≤ x ≤ 1.

The optimal throughput vector is (2/3, 1/3, 2/3) and the

optimal utility is −1.91.

As explained in Section V-C, we choose the parameters of

the UORA policy as follows. Let ε = 0.1. To satisfy θc ≥ 1/x
for all x ≥ ε, we choose θc = 1/ε = 10 for all classes c.
The value of μin

max in the 3-node network is one. The optimal

throughput vector satisfies maxc r
∗
c = 1 and we choose

νmax = 3 (any value of νmax greater than maxc r
∗
c+ε/2 = 1.05

works). By definition δmax = max[νmax, μ
in
max] = 3. In the

arrival processes we have Amax = 20. By Assumption 1 we

choose dmax = Amax + μin
max = 21. Let Q = 1000.

We simulate the UORA policy for different values of V .

The simulation time is 106 slots. The near-optimal throughput

performance is given in Table III. Table IV shows the max-

imum backlog in each queue Q
(c)
n (t) during the simulation.

Consistent with Lemma 3, the maximum backlog is bounded

by Q
(c)
max = V θc + 2dmax = 10V + 42.

2) On the tree network in Fig. 2: Consider providing max-

min fairness to the three classes of traffic in Fig. 2. Each

link has the capacity of one packet per slot. Each one of

TABLE V
THE THROUGHPUT PERFORMANCE OF THE UORA POLICY IN THE TREE

NETWORK

V r1A + r1C r2B r3D

10 .200 .100 .100
20 .364 .206 .205
30 .661 .650 .651
50 .667 .667 .667

optimal .667 .667 .667

the four arrival processes has 20 packets arriving in a slot

with probability 0.1 and zero packets arrive otherwise. The

arrival rates are (2, 2, 2, 2), which overloads the network. The

optimal throughput for the three classes is easily seen to be

(2/3, 2/3, 2/3), where each flow of class 1 contributes equally

in that class.

We approximate max-min fairness by using the α-fairness

functions gc(x) = x1−α/(1−α) with a large value of α = 100.

The utility maximization becomes:

maximize
−1
99

[
(r1A + r1C)

−99 + (r2B)
−99 + (r3D)−99

]
subject to (r1A, r1C , r2B , r3D) feasible in Fig. 2,

where r1A is the throughput of class 1 flow originating from

node A; the other variables are similarly defined.

According to Section V-C, we choose the parameters of

the UORA policy as follows. We require θc ≥ x−100 for all

x ≥ ε. For convenience, let us choose θc = ε = 1 for all

classes c. The optimal throughput vector satisfies maxc r
∗
c = 2,

achieved when the network always serves class 1. We choose

νmax = 4 (any value of νmax greater than maxc r
∗
c + ε/2 = 2.5

works). We observe from Fig. 2 that μin
max = 2, and we have

δmax = max[νmax, μ
in
max] = 4. We have Amax = 20 in the

arrival processes and by Assumption 1 we choose dmax =
Amax + μin

max = 22. Let Q = 100.

We simulate the UORA policy for different values of V and

each simulation takes 106 slots. The near-optimal performance

of the UORA policy is given in Table V.

VI. CONCLUSION

In this paper we develop a receiver-based flow control and

an in-network packet dropping strategy to cope with network

overload. Our scheme is robust to uncooperative users who

do not employ source-based flow control and malicious users

that intentionally overload the network. A novel feature of our

scheme is a receiver-based backpressure/push-back mechanism

that regulates data flows at the granularity of traffic classes,

where packets can be classified based on aggregates of data

flows. This is in contrast to source-based schemes that can only

differentiate between source-destination pairs. We show that

when the receiver-based flow control scheme is combined with

a threshold-based packet dropping policy at internal network

nodes, optimal utility can be achieved.

2013 Proceedings IEEE INFOCOM

2956

REFERENCES

[1] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[2] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Oper. Res., vol. 49, pp. 237–252, 1998.

[3] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Trans. Telecommunications, vol. 8, pp. 33–37, 1997.

[4] S. H. Low and D. E. Lapsley, “Optimization flow control — i: Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
861–874, Dec. 1999.

[5] A. L. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4, pp. 401–
457, 2005.

[6] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[7] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and
mac for stability and fairness in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

[8] ——, “Fair resource allocation in wireless networks using queue-length-
based scheduling and congestion control,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[9] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in IEEE Conf. Decision and Control (CDC), Dec.
2004, pp. 1484–1489.

[10] R. K. C. Chang, “Defending against flooding-based distributed denial-
of-service attacks: a tutorial,” IEEE Commun. Mag., vol. 40, no. 10, pp.
42–51, Oct. 2002.

[11] A. Srivastava, B. B. Gupta, A. Tyagi, A. Sharma, and A. Mishra, “A
recent survey on ddos attacks and defense mechanisms,” in Advances in
Parallel Distributed Computing, ser. Communications in Computer and
Information Science. Springer Berlin Heidelberg, 2011, vol. 203, pp.
570–580.

[12] J. Borland, “Net video not yet ready for prime time,” Feb. 1999.
[Online]. Available: http://news.cnet.com/2100-1033-221271.html

[13] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM Computer Communication Review, vol. 32, pp. 62–73, 2002.

[14] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, no. 1, 2006.

[15] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[16] L. Georgiadis and L. Tassiulas, “Optimal overload response in sensor
networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2684–2696, Jun.
2006.

[17] C. W. Chan, M. Armony, and N. Bambos, “Fairness in overloaded
parallel queues,” 2011, working paper.

[18] D. Shah and D. Wischik, “Fluid models of congestion collapse in
overloaded switched networks,” Queueing Syst., vol. 69, pp. 121–143,
2011.

[19] R. Egorova, S. Borst, and B. Zwart, “Bandwidth-sharing in overloaded
networks,” in Conf. Information Science and Systems (CISS), Princeton,
NJ, USA, Mar. 2008, pp. 36–41.

[20] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam, “Defending against
distributed denial-of-service attacks with max-min fair server-centric
router throttles,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 29–42,
Feb. 2005.

[21] C. W. Tan, D.-M. Chiu, J. C. S. Lui, and D. K. Y. Yau, “A distributed
throttling approach for handling high bandwidth aggregates,” IEEE
Trans. Parallel Distrib. Syst., vol. 18, no. 7, pp. 983–995, Jul. 2007.

[22] S. Chen and Q. Song, “Perimeter-based defense against high bandwidth
ddos attacks,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 6, pp.
526–537, Jun. 2005.

[23] C. Li and E. Modiano, “Receiver-based flow control for
networks in overload,” arXiv report, 2012. [Online]. Available:
http://arxiv.org/abs/1207.6354

[24] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[25] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp.
1489–1501, Aug. 2006.

APPENDIX A

We construct a proper Lypuanov drift inequality that leads

to the UORA policy. Let H(t) =
(
Q

(c)
n (t);D

(c)
n (t);Zc(t)

)
be

the vector of all physical and virtual queues in the network.

Using the parameters w and Q given in the policy, we define

the Lyapunov function

L
(
H(t)

)
� 1

2

∑
c,n �=dc

[
Q(c)

n (t)
]2

+
1

2

∑
c,n �=dc

[
D(c)

n (t)
]2

+
∑
c∈C

(
ew

(
Zc(t)−Q

)
+ ew

(
Q−Zc(t)

))
.

The last sum is an exponential-type Lyapunov function whose

value grows exponentially when Zc(t) deviates in both direc-

tions from the constant Q. This is useful for both stabilizing

Zc(t) and ensuring there is sufficient data in Zc(t). Such Lya-

punov functions are previously used in [25] to study the opti-

mal utility-delay tradeoff in wireless networks. We define the

Lyapunov drift Δ(t) � E
[
L
(
H(t+ 1)

)
− L

(
H(t)

)
|H(t)

]
,

where the expectation is with respect to all randomness in the

system in slot t.
Define the indicator function 1R

c (t) = 1 if Zc(t) ≥ Q and

0 otherwise; define 1L
c (t) = 1− 1R

c (t). Define δc(t) = νc(t)−∑
a:(a,dc)∈L μ

(c)
adc

(t). The next lemma shows the Lyapunov

drift inequality (proof is given in [23]).

Lemma 4. The Lyapunov drift Δ(t) under any control policy

satisfies

Δ(t)− V
∑
c

E
[
hc

(
νc(t)

)
| H(t)

]
+ V

∑
nc

θc E
[
ϕ(c)
n (t) | H(t)

]
≤ B +

∑
nc

Q(c)
n (t)λ(c)

n

−
∑
nc

Q(c)
n (t)E

[∑
b

μ
(c)
nb (t) + d(c)n (t)−

∑
a

μ(c)
an(t) | H(t)

]
−
∑
nc

D(c)
n (t)E

[
ϕ(c)
n (t)− d(c)n (t) | H(t)

]
− V

∑
c

E
[
hc

(
νc(t)

)
| H(t)

]
+ V

∑
nc

θc E
[
ϕ(c)
n (t) | H(t)

]
− w

∑
c

1R
c (t)e

w(Zc(t)−Q)
(
E [δc(t) | H(t)]− ε

2

)
+ w

∑
c

1L
c (t)e

w(Q−Zc(t))
(
E [δc(t) | H(t)] +

ε

2

)
, (34)

where B is a finite constant defined by

B = |N | |C|
[
(μout

max + dmax)
2 + (Amax + μin

max)
2
]
+

2 |N | |C| d2max + |C|
[
w(2δmax + ε) + ew(νmax+μin

max) + ewQ
]
.

By isolating decisions variables in (34), it is not difficult

to verify that the UORA policy observes the current network

state H(t) and minimizes the right-hand side of (34) in every

slot.

2013 Proceedings IEEE INFOCOM

2957

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

