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Abstract—We consider distributed strategies for joint routing,
scheduling, and network coding to maximize throughput in wire-
less networks. Network coding allows for an increase in network
throughput under certain routing conditions. We previously de-
veloped a centralized control policy to jointly optimize for routing
and scheduling combined with a simple network coding strategy
using max-weight scheduling (MWS) [9]. In this work we focus
on pairwise network coding and develop a distributed carrier
sense multiple access (CSMA) policy that supports all arrival rates
allowed by the network subject to the pairwise coding constraint.
We extend our scheme to optimize for packet overhearing to
increase the number of beneficial coding opportunities. Simulation
results show that the CSMA strategy yields the same throughput
as the optimal centralized policy of [9], but at the cost of increased
delay. Moreover, overhearing provides up to an additional 25%
increase in throughput on random topologies.

I. INTRODUCTION

Network coding, originally introduced in [1], can increase
network throughput by allowing intermediate nodes to combine
or encode the data they receive, rather than simply forwarding
it. The benefit of this approach for wireless transmissions was
clearly demonstrated by COPE [10], an opportunistic network
coding protocol that allows encoding of packets between multi-
ple unicast sessions using binary XOR operations. The authors
combine their coding strategy with a modified MAC protocol
to show significant throughput improvements versus a standard
802.11 MAC on a wireless testbed. While the original work
on COPE [10] explored the interplay between coding and
scheduling, subsequent work in [21] motivated the need for
routing protocols to be aware of network coding by formulating
an offline linear program to show that significant throughput
improvements are possible. In this work, we address the joint
design and performance of routing, scheduling, and network
coding in a wireless network.
Numerous previous works have considered joint routing and
scheduling in the absence of network coding. In their semi-
nal paper on network control [23], Tassiulas and Ephremides
introduce the max-weight scheduling (MWS) and differential
backlog routing policy to provide throughput optimal network
control. The policy has an attractive property for dynamic
control in that decisions rely only on current queue state
information, without requiring knowledge of the long-term
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arrival rates. The authors are able to prove, using Lyapunov
stability theory, that their policy can stabilize the network
queues for any stochastic arrival process within the stability
region of the network. In [16], MWS is extended to optimize
for routing, scheduling, and power control in wireless networks.
MWS is a very powerful scheduling technique, but the benefits
do not come without cost. Even [23] notes that it can be
cumbersome to collect queue state information from across a
wireless network to a centralized controller. Additionally, MWS
requires the solution to the maximum weight independent set
(MWIS) problem, which is known to be NP-Hard under general
interference constraints.
Jiang and Walrand [7] recently developed an adaptive carrier
sense multiple access (CSMA) policy based on queue size
information, and proved their policy to be throughput optimal.
This adaptive CSMA policy is a randomized scheduler and
operates under distributed control, addressing some of the
main concerns with the scalability of MWS. In [17], the
adaptive CSMA scheduler is extended by relaxing some ideal
assumptions from [7], maintaining throughput optimality in the
presence of collisions in control traffic. An alternate proof of
optimality is provided in [14] for queue-based CSMA policies
on wireless networks with primary interference constraints.
In [13], the authors provide another proof of CSMA rate
convergence and study the effects of collisions. A throughput
optimal ALOHA policy that chooses transmission probabilities
as a function of queue backlog is developed in [19]. Other
works ([3], [15]) have focused on distributed queue-based
scheduling, and can be extended to incorporate backpressure
routing. Performance bounds are characterized in [3] for a
distributed maximal scheduler with imperfect matchings. A
distributed scheduler that achieves 100% throughput using a
randomized gossip algorithm is developed in [15].
Recently, network coding has been incorporated into the
design of scheduling and routing schemes. A number of recent
works, including [4], [11], [18], and [20], develop joint schedul-
ing and coding schemes in a network control framework, either
for single-hop transmissions, or under the assumption that
routes are fixed and specified a priori. In addressing the routing
problem, [24] provides a linear optimization approach for
identifying network coding opportunities on butterfly subgraphs
with multiple unicast sessions, while [6] develops a policy for
dynamic routing and scheduling to provide stability throughout
the region from [24]. Using a different approach, [5] provides a
distributed backpressure routing and maximum weight schedul-
ing policy for a generalized COPE coding scheme, making
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opportunistic coding decisions to increase throughput, and [22]
formulates a linear program to solve the offline problem for
joint routing, scheduling and pairwise coding. Finally, in our
previous work we developed the LCM-Frame policy [9] that
jointly optimizes for routing, scheduling, and a simple network
coding scheme using an online scheduler under centralized
control.
This paper differs from previous works in that we develop a
distributed online queue-size based policy that is throughput
optimal subject to our coding constraints. We modify the
adaptive CSMA policy from [7] to incorporate a simple network
coding scheme that we first proposed in [9]. We focus on
pairwise coding, combined with a packet overhearing feature
that can increase the number of coding opportunities with
only a constant increase in algorithmic complexity. Our main
contributions include:

• We propose a distributed CSMA policy for routing,
scheduling, and pairwise coding that supports all arrival
rates within the stability region of pairwise coding;

• We develop an extension to our coding strategy to allow
for additional coding opportunities via overhearing of
uncoded transmissions, and update our policy to optimize
for these overhearing opportunities;

• We address several practical implementation issues;
• We provide results from packet simulation and linear
program evaluation to compare the performance of our
policy under various settings.

This paper is organized as follows. We describe our system
model in Section II, and characterize the stability region under
this model in Section III. In Section IV we design a distributed
routing, scheduling, and pairwise coding policy. Section V adds
a packet overhearing option to our coding strategy and updates
the policy to take advantage of coding opportunities with
overhearing. We address implementation issues in Section VI,
provide numerical results in Section VII, and offer concluding
remarks in Section VIII.

II. MODEL

A. Wireless Network

We model the wireless network as a directed hypergraph,
G = (N ,H), where N is the set of nodes in the network and
H is the set of directed hyperedges supported by the network.
Hyperedge (a, J) allows node a to communicate directly with
a set of tail nodes J using a single transmission, where J is
always in alphabetical order. For example, in Fig. 1a node a
can transmit to nodes b and c simultaneously over hyperedge
(a, J), J = (b, c). Standard edge (a, b) is a special case of a
hyperedge where node b is the only tail node. In this paper
we consider hyperedges with at most two tail nodes, |J | ≤ 2
(corresponding to pairwise coding).
We consider unicast traffic, but utilize wireless multicast
(i.e. transmit on hyperedges) for network coded packets and
to enable a packet overhearing feature. We assume time to be
continuous, and for simplicity assume unit rate links and that
exogenous arrivals are for packets of a fixed size corresponding

to one time unit. Packets destined for node c are called
commodity c packets. Let λc

a be the average rate of exogenous
arrivals at node a for commodity c, and let λ = (λc

a) be a
vector of arrival rates for all sources a and commodities c.
We assume that non-interfering transmissions are reliable,
but otherwise allow arbitrary interference constraints. Let L
be the set of all feasible schedules on the network. Here,
schedule � is a group of simultaneous (hyper)edge activations,
and � is feasible if these activations don’t violate the network
interference constraints. While our policy supports general
interference models, our simulations were conducted using
two simple interference models, known as 1-hop and 2-hop
interference. The 1-hop interference model allows any node
to transmit or receive at most one packet at a time. The
2-hop interference model requires at least two hops in the
network between any simultaneous transmissions, else they will
interfere.

B. Adaptive CSMA

Wireless networks are subject to packet losses from inter-
fering transmissions, and thus benefit from a scheduling policy
that prevents interfering transmissions from becoming simulta-
neously active. CSMA is a random access scheduler where each
node listens to the channel for interfering transmissions, and
competition for the channel is mitigated using random backoff
times. Our CSMA policy is based on the policy from [7], which
we extend to account for hyperedges with our coding scheme.
Jiang and Walrand [7] developed an adaptive CSMA pol-
icy that operates in continuous time, choosing exponentially
distributed backoff times for each edge i as a function of
the queue backlog on that edge Ui(t). The policy assumes an
idealized setting where each node can sense any transmission
that it would interfere with and channel sensing is instanta-
neous. Combined with backoff times drawn from a continuous
distribution1, this ideal setting avoids packet collisions. The
backoff rate Ri(t) is updated at periodic times t = nT , where
T is the duration of the update interval. The weight of edge i
is chosen as Wi(t) = Ui(t), and the backoff rate is chosen as:

ri(t) = α ·Wi(nT ), ∀t : nT ≤ t < (n+ 1)T, (1)

Ri(t) = exp (ri(t)) . (2)

Here, ri(t) is called the transmission aggressiveness parameter,
and α is a step size parameter controlling the convergence of
the algorithm. The mean backoff time 1/Ri(t) decreases as
the backlog increases, giving preference to transmissions on
edges with higher backlog. In this policy, each edge i transitions
between idle, wait, and transmit states as follows.
• Idle State: Edge i remains in the idle state while the
channel is sensed to be busy, in that an interfering edge is
active. When the channel is later sensed to be inactive2,
draw a backoff timer from an exponential distribution with
mean 1/Ri and switch to the wait state.

1The probability that any two edges choose the same backoff time from the
exponential distribution is 0, independent of the edge backoff rates.
2We allow for multiple simultaneous activations outside of the sensing range.
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• Wait State: Edge i remains in the wait state while the
channel is sensed to be inactive and the backoff timer is
non-zero. If the channel becomes busy, switch to the idle
state. Else, when the backoff timer expires switch to the
transmit state.

• Transmit State: Transmit packet of unit duration3. When
the transmission has completed, switch to the idle state.

C. Backpressure Routing

Combined with an optimal scheduler, backpressure routing
was proved to be a throughput optimal routing strategy in [23].
The idea is simple: choose the weight of each edge as the
difference in backlog across the edge for the commodity that
maximizes the difference. For example, edge (a, b) has weight:

Wab(t) = max
c∈N

[U c
a(t)− U c

b (t)]
+
, (3)

where notation [x]+ represents max(x, 0). Backpressure rout-
ing was combined with adaptive CSMA for multihop traffic
in [7], where the weight from Eqn. (3) is used to calculate
aggressiveness parameter rab(t) in Eqn. (1). The backoff rate
Rab(t) is then calculated as in Eqn. (2).

D. Network Coding

Network coding is a technique that allows for increased
throughput by encoding packets at intermediate nodes in the
network. Our network coding scheme allows data to be ex-
changed in fewer transmissions by strategically combining
packets such that each recipient has previously seen some
portion of the encoded set. In [9] we described a simple network
coding scheme that under specific routing conditions allows
intermediate nodes to exchange k packets in k−1 transmissions.
When evaluating this scheme on random wireless topologies,
we observed that the majority of coding gains are generated
by k = 2 pairwise coding operations. Similar observations
are noted in [10], [5], and [22]. Therefore, here we limit our
consideration to the pairwise coding case. We describe pairwise
coding in the following example.
Consider the wireless network in Fig. 1a with 1-hop in-
terference. We would like to exchange packets pY and pX
between nodes b and c via a relay at node a. Without network
coding it takes 2 transmissions to exchange each packet, for
a total of 4 transmissions. With network coding, however,
these same packets can be exchanged in only 3 transmissions:
(1) send pY from b to a; (2) send pX from c to a; and
(3) send coded packet pX ⊕ pY as a binary XOR combination
of pX and pY from node a to nodes b and c simultaneously
via a single wireless multicast transmission. Using the packets
that they contributed, nodes b and c can each recover the
packet destined for them. In this example, network coding
has increased throughput by a factor of 4/3. As in [9], here
our coded transmissions are decoded hop-by-hop and each

3Both exponentially distributed and unit duration transmissions are consid-
ered in [7]. The authors cite the main result from [12], which states that for
an ideal CSMA network, edge activation frequencies are insensitive to the
distributions of backoff and transmit times when given their means.

b a c

pY

pX

(a) Pairwise Coding Scenario

(1) send pY on
edge (b, a)

(2) send pX on
edge (c, a)

(3) send pX ⊕ pY on hyperedge
(a, J), J = (b, c)

(b) Edge Activations
Fig. 1. Pairwise coding operation at node a. (a) Standard edges shown with
solid lines, with all hyperedges available; traffic demands shown with dashed
arrows. (b) Edge activations shown with solid arrows.

b a c

Qb,x
a Qa,x

a Qc,x
a

Fig. 2. Subqueues at node a for commodity x. Subqueue Qb,x
a contains

network arrivals from neighbor b; subqueue Qa,x
a contains local exogenous

arrivals; subqueue Qc,x
a contains network arrivals from neighbor c. Packet

arrivals shown in dashed arrows.

node maintains a side information buffer of packets that it
previously transmitted (so that they can be used to decode coded
transmissions).
A pairwise coding opportunity

(
s,(a, J)

)
, is formed by the

combination of hyperedge (a, J), J = (b, c), and commodity
pair s = (x, y) for which: (1) a packet of commodity x
was received at node a from neighbor c, and (2) a packet
of commodity y was received at node a from neighbor b.
Identifying coding opportunities requires that nodes keep track
of which one-hop neighbor supplied each packet. While other
works on differential backlog routing (e.g. [23],[7]) track the
number of packets for each commodity at each node, we
further divide the queues into subqueues to track the number of
packets from each neighbor for each commodity. For example,
subqueue Qb,x

a at node a contains U b,x
a number of packets

received from neighbor b for commodity x. This is illustrated
in Fig. 2 for commodity x packets received at node a from
various sources.

III. STABILITY REGION

The stability region ΛNC of our network coding strategy is
the set of all arrival rate vectors (λc

a) that can be supported
while ensuring that all packet queues are stable. This region
is independent of the control policy chosen, and is a special
case of the stability region that we specified in [9] for network
coding with maximum code size of 2. We specify the region
here for convenience.
Let fd,c

ab be the rate of uncoded flow of commodity c packets
supplied by node d and sent over edge (a, b), and let fs

aJ be the
rate of coded flow over hyperedge (a, J) for each commodity in
set s, where

(
s,(a, J)

)
is a coding opportunity. For simplicity,

we use the following f̂ notation to represent a sum over a set
of underlying flow variables. Let f̂d,c

ab be the total uncoded and
coded flow rate from node a to neighbor b for commodity c
from subqueue Qd,c

a , where node a received the packets from
one-hop neighbor d. Thus,

f̂d,c
ab = fd,c

ab +
∑

g:s=(c,g)

fs
aJ , ∀a, b, c, d ∈ N , J = (b, d), (4)

2013 Proceedings IEEE INFOCOM

2096



where the summation is over all commodities g such that(
s,(a, J)

)
, s = (c, g), is a coding opportunity. Let f̂ c

ab be the
total coded and uncoded flow rate from a to b for commodity
c traffic from all one-hop subqueues.

f̂ c
ab =

∑
d f̂

d,c
ab , ∀a, b, c ∈ N (5)

We define the stability region by starting with some effi-
ciency assumptions: nodes don’t transmit to themselves and
nodes don’t transmit any traffic destined for themselves. Also,
all flow variables are non-negative. The remaining constraints
are as follows.

λc
a =

∑
b

f̂ c
ab −

∑
d

f̂ c
da, ∀a, c ∈ N : a �= c (6)

∑
b

(
f̂d,c
ab − fd,c

ab

)
≤ f̂ c

da, ∀ a, c, d ∈ N (7)

GaJ =
∑
�∈L

γ� I(a,J)∈�, ∀(a, J),
∑
�∈L

γ� = 1, γ� ≥ 0 ∀� (8)

∑
d,c∈N

fd,c
ab ≤ GaJ , ∀(a, b) : J = {b} (9)

∑
s∈{N}2

fs
aJ ≤ GaJ , ∀(a, J) : |J | = 2 (10)

Eqn. (6) is the flow conservation constraint, stating that all
flow entering any node a for commodity c must leave node
a, except at the destination (a = c). The coding constraint in
Eqn. (7) states that the total flow into subqueue Qd,c

a from node
d gives an upper bound on the total coded flow out of Qd,c

a to
all neighbors b. Eqn. (8) is a convexity constraint, stating that
activation frequencies GaJ for all edges and hyperedges (a, J)
must be in the convex hull of the set of all feasible schedules
L. Here, indicator I(a,J)∈� = 1 if (a, J) is active in schedule
�, and 0 otherwise. The edge and hyperedge rate constraints
in Eqns. (9-10) state that activation frequency GaJ gives an
upper bound on the total flow for all commodities over edge or
hyperedge (a, J). The stability region for our pairwise coding
strategy is the polytope bounded by the set of constraints in
Eqns. (6-10).

IV. DISTRIBUTED CSMA

Our proposed policy adapts that of [7] to account for pairwise
network coding as follows. The policy is parameterized for step-
size α and update interval T . The policy updates backoff rate
parameters every T time units and maintains edge timers asso-
ciated with transitions between idle, transmit, and wait states.
Each node requires backlog information only for the queues of
one-hop neighbors, therefore this policy is distributed.

A. Distributed CSMA Policy for Pairwise Coding

Parameter Updates: For each edge or hyperedge (a, J), we
maintain a transmission aggressiveness (TA) parameter raJ(t)
and a backoff rate RaJ(t). At times t = nT , for integer values
of n ≥ 0, these parameters are updated as follows.
For each standard edge (a, b), calculate edge weight as

Wab(t) = max
d,c

[Ud,c
a (t)− Ua,c

b (t)]+, (11)

a

b

g

(a)

a

b

g

(b)
Fig. 3. Simple packet overhearing operation. (a) Transmission from a to g,
overheard by b. (b) Analogous routing scenario.

where c∗ is the optimal commodity and d∗ identifies the optimal
subqueue Qd∗,c∗

a that maximize Eqn. (11). TA parameter rab(t)
and backoff rate Rab(t) for edge (a, b) can then be calculated
as in Eqns. (1) and (2).
For each hyperedge (a, J), J = (b, g), calculate weight as

WaJ(t) = max
x

[Ug,x
a (t)− Ua,x

b (t)]+

+max
y

[U b,y
a (t)− Ua,y

g (t)]+, (12)

where x∗ identifies the optimal commodity to send from node
a to b and y∗ identifies the optimal commodity to send from
node a to g. This optimal commodity pair s = (x∗, y∗)
and hyperedge (a, J), J = (b, g), form a coding opportunity(
s,(a, J)

)
as long as there is (1) a packet at node a of

commodity x∗ from neighbor g, i.e. Ug,x∗

a (t) > 0, and (2)
a packet at node a of commodity y∗ from neighbor b, i.e.
U b,y∗

a (t) > 0. Next, calculate TA parameter raJ(t) and backoff
rate RaJ(t) as in Eqns. (1) and (2).
State Transitions: The Idle, Wait, and Transmit states are

handled as in Section II-B. For a transmission on standard edge
(a, b), transmit an uncoded packet pC for optimal commodity
c∗ from subqueue Qd∗,c∗

a . For a transmission on hyperedge
(a, J), J = (b, g), transmit a coded packet pXY = pX ⊕ pY ,
where packet pX is from subqueue Qg,x∗

a and packet pY is
from subqueue Qb,y∗

a . If a subqueue is ever found to be empty,
the policy creates a null packet to send.

B. Rate Stability

It can be shown that distributed CSMA with pairwise coding
stabilizes the network for all arrival rate vectors strictly interior
to the stability region ΛNC specified in Eqns. (6-10). The
proof follows the method shown in [7]. We give a sketch
of this proof in the Appendix. Whenever the packet queues
are stable, the distributed CSMA policy also stabilizes all
side information buffers in the network. This is clear from
the discussion of maintenance operations on side information
buffers in Section VI-D.

V. PACKET OVERHEARING EXTENSION

Network coding can be combined with packet overhearing
to yield additional coding opportunities. Packet overhearing
occurs when any nodes receive a packet concurrently with that
packet’s intended next-hop recipient. These additional nodes
can then use their knowledge of the overheard packet in future
decoding operations. The use of overhearing has been explored
in [10], [5], [11], [18], and [20].
We consider a simple packet overhearing scheme to improve
our network coding strategy, as shown in Fig. 3. A transmission
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a

b

g c

pY

pX

(a)

a

b

g

e

c

pY

pX

(b)

pY pX

pX ⊕ pY

(c)

pY pX

pX ⊕ pY

(d)
Fig. 4. Pairwise coding scenarios with overhearing shown in (a) and (b), where
solid lines indicate edges and dashed lines indicate traffic demands. Associated
edge activations shown below each overhearing scenario in (c) and (d), where
dotted arrows indicate overheard transmissions.

from node a to node g that is overheard by node b, where nodes
b and g are neighbors as shown in Fig. 3a, is analogous to a
special routing operation where a transmission is sent from
node a to node b to node g all at once, as shown in Fig. 3b.
We allow for overhearing of uncoded transmissions, creating
two additional pairwise coding scenarios as shown in Fig. 4.
A single overhearing operation leads to the pairwise coding
opportunity shown in Fig. 4a, using edge activations in Fig. 4c.
Here, node a transmits packet pY to node g, and this packet
is overheard by node b, allowing b to later decode the coded
packet pX ⊕ pY from g. The addition of a second overhearing
operation leads to the pairwise coding opportunity shown in
Fig. 4b, using edge activations in Fig. 4d. In addition to the
overhearing at node b, node e transmits packet pX to node g,
and pX is overheard by node c. Nodes b and c can both decode
the coded packet pX ⊕ pY from g.
A standard uncoded transmission from a to g for commodity

x has weight Wag from Eqn. (13), while the same transmission
overheard by node b has weight Wabg from Eqn. (14). (Here
d is the source of the subqueue at node a containing the
commodity x packet.)

Wag = [Ud,x
a (t)− Ua,x

g (t)]+ (13)

Wabg = [Ud,x
a (t)− U b,x

g (t)]+ (14)

For both transmissions, the packet exits subqueue Qd,x
a at node

a, but the packet enters different subqueues at node g. For the
standard transmission from a to g, the packet enters subqueue
Qa,x

g and a copy is stored in the side information buffer at node
a. However, for the overheard transmission, the packet enters
subqueue Qb,x

g because we treat the packet as if it was received
at g from node b, as shown in Fig. 3b. The overheard packet
is then stored in the side information buffer at node b instead
of at node a.

A. Improved Stability Region

Overhearing leads to minor changes to the stability region.
We represent the overhearing transmission as flow variable
ḟ j,c
dab, which is the flow from subqueue Qj,c

d at node d to
node b and overheard by node a. We introduce an Overhear-
ing Constraint as a prerequisite for our overhearing strategy:
overhearing flow variables can only represent positive flow for

hyperedges (d, J), J = (a, b), where edge (a, b) is also avail-
able in the network; otherwise the overhearing flow variable
must take the value of zero flow. The total uncoded and coded
flows f̂d,c

ab from Eqn. (4) becomes:

f̂d,c
ab = fd,c

ab +
∑
j

ḟ j,c
dab +

∑
g:s=(c,g)

fs
aJ ,

∀a, b, c, d ∈ N ,

J = (b, d).
(15)

Eqns. (5) and Flow Conservation (6) incorporate the addition of
overhearing from Eqn. (15) but otherwise remain unchanged.
The Coding Constraint (7) changes to account for outgoing
overheard transmissions:∑

b

(
f̂d,c
ab − fd,c

ab −
∑

g ḟ
d,c
abg

)
≤ f̂ c

da , ∀ a, c, d ∈ N (16)

The Hyperedge Rate Constraints in Eqns. (8-10) remain un-
changed. However, note that we have generalized the hyperedge
activation rate GaJ in Eqn. (10) to include both pairwise
coding and uncoded overhearing, as these both operate over
hyperedges. The stability region with overhearing is then given
by the constraints in Eqns. (6, 8-10, 16).

B. Policy Modification for Overhearing

The overhearing extension requires only minor changes to
how hyperedge rate parameters are handled by our distributed
CSMA policy. Parameter updates for standard edges remain
unchanged, and the state transitions behave exactly as without
the overhearing feature.
Parameter Updates for Hyperedges: At each time t = nT ,

for integer n ≥ 0, for each hyperedge (a, J), J = (b, g),
calculate three weights:
1) For transmissions from a to g overheard by b, W 1

aJ =
maxc,d[U

d,c
a (t)−U b,c

g (t)]+ if (b, g) ∈ H, else W 1
aJ = 0.

2) For transmissions from a to b overheard by g, W 2
aJ =

maxc,d[U
d,c
a (t)−Ug,c

b (t)]+ if (g, b) ∈ H, else W 2
aJ = 0.

3) For coded transmission from a to b and g, W 3
aJ is

calculated as in Eqn. (12).
We then choose the coding or overhearing operation that
maximizes the weight of the hyperedge:

WaJ(t) = max
{
W 1

aJ ,W
2
aJ ,W

3
aJ

}
. (17)

TA parameter raJ(t) and backoff rate RaJ(t) are calculated as
in Eqns. (1) and (2).

C. Linear Program Results

We compare coding gains directly by evaluating the bounds
of the stability region using an LP solver. We generate 100
random 16 node topologies, where there are 16 × 15 = 240
possible traffic demands on each topology. We choose traffic
demand vector λ ∈ {0, 1}240, where each demand is activated
with probability p, and find the maximum offered load without
coding ρ1 such that λ · ρ1 ∈ Λ and the maximum offered load
with network coding ρNC such that λ · ρNC ∈ ΛNC . Coding
gain is then the ratio ρNC/ρ1. These topologies are evaluated
with 2-hop interference constraints.
Fig. 5 shows coding gains for traffic demand probabilities

p = 1/16 and p = 1/2. For each demand probability, 5000
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(b) p = 1/2
Fig. 5. Comparison of pairwise coding gains with and without overhearing for
individual traffic vectors. Random traffic demands with probability p. Results
sorted in order of increasing gain for coding without overhearing.

Max. Ri Max. Associated
Data Type of Ri before overflow ri = log(Ri)

Double Precision Floating Point 1.7977e+308 709.78
Single Precision Floating Point 3.4028e+38 88.72
Unsigned 64-bit Integer 1.8447e+19 44.36

TABLE I
MAXIMUM VALUES FOR ri BEFORE OVERFLOW OF RATE Ri .

individual arrival rate vectors are generated (50 per topology).
Coding gain is then evaluated for each arrival rate vector, both
with and without overhearing. For each demand probability,
the vectors are sorted in increasing order of coding gain for
pairwise coding without overhearing, and the values for coding
gain are plotted in that order. In Fig. 5a where p = 1/16,
we observe up to 25% additional gain from overhearing,
although these additional gains are only present in 32% of our
observations. In Fig. 5b where p = 1/2, the additional gain
from overhearing is at most 5%, and these additional gains
are present in 50% of our observations. In both scenarios, the
median additional coding gain from overhearing is around 2%,
however the small computational cost to include overhearing
and the potential increase in coding gain make it a worthwhile
extension. It is interesting to note that the gain from overhearing
is greatest when the traffic vector is sparse. Additional traffic
demands increase the likelihood of coding opportunities without
the need for overheard transmissions, so overhearing provides
only small incremental gains when the traffic vector is dense.

VI. IMPLEMENTATION CONSIDERATIONS

Next we discuss some details related to implementation of
the distributed CSMA policy.

A. Backoff Times

Backoff rate Ri grows exponentially with aggressiveness
parameter ri, and for any finite precision computation this can
lead to overflow of variable Ri. This occurs, for example, in the
case of a bursty source node, and is exacerbated on systems that
require the use of fixed-point arithmetic. Table I shows values
of ri that lead to overflow for various data types of variable Ri.
When the differential backlog is large, multiple outgoing edges
i can be assigned backoff rate Ri =∞ and the node will not be
able to correctly discriminate between exponentially distributed
backoff times Bi ∼ Exp(Ri =∞) = 0.

Larger values of ri can be supported by comparing loga-
rithms of the backoff times instead of comparing the back-
off times directly. We use the inverse transform method to
generate backoff times Bi ∼ Exp(Ri) as follows. Generate
random variable Z ∼ Uniform[0, 1], where the CDF of Z is
FZ(z) = P(Z ≤ z) = z. Then choose backoff times using the
function Bi = − log(Z)/Ri. The CDF of Bi is FBi

(bi) =
P(Bi ≤ bi) = P(− log(Z)/Ri ≤ bi) = P(Z ≥ e−biRi) =
1 − e−biRi , so Bi is exponentially distributed with rate Ri.
Taking the logarithm of bi and using Ri = eri , we have

log(bi) = log

(
− log(z)

eri

)
= log

(
− log(z)

)
− ri, (18)

which allows almost the full range of values supported by
variable ri, except when z is extremely close to 0 or 1. The
earliest of a group of backoff times can then be chosen as

min
i

bi = exp
(
min
i

log(bi)
)
. (19)

A node can then choose the minimum backoff time between
interfering edges with the correct activation probabilities, or a
simulation engine can choose between all waiting edges in the
network. New backoff times can be drawn at each comparison
due to the memoryless property of the exponential distribution.

B. Avoiding Greedy Application of Network Coding

It may be tempting to opportunistically promote edge acti-
vations into hyperedge activations. However, it is known that
greedy application of network coding can reduce through-
put [4]. One such scenario is the 4 node diamond topology with
1-hop interference and arrival rates as indicated in Fig. 6a. Here
the network can be stabilized for offered loads ρ < 1/4. With
1-hop interference, edges (c, a) and (c, d) mutually interfere
with all hyperedges in the network, (a, Ja), (b, Jb), (c, Jc),
and (d, Jd), where Ja = (b, c), Jb = (a, d), Jc = (a, d), and
Jd = (b, c). Thus, a greedy application of network coding on
any hyperedge reduces the fraction of time that edges (c, a)
and (c, d) can be active. This problem is illustrated as follows.
Without loss of generality, assume that traffic only flows on
efficient paths (e.g. traffic from c to a doesn’t go the long
way around the diamond), and let ρ be feasible. By Eqn. (9)
we find activation frequency Gca ≥ f c,a

ca = 2ρ and likewise
Gcd ≥ 2ρ. Using the convexity of schedules from Eqn. (8),
Gca + Gcd + GaJa

+ GbJb
+ GcJc

+ GdJd
≤ 1, and thus

GaJa
+ GbJb

+ GcJc
+ GdJd

≤ 1 − 4ρ. Therefore, as the
offered load ρ approaches the stability bound 1/4, all hyperedge
activation frequencies must go to 0 as a prerequisite for stability.
We evaluate distributed CSMA with pairwise coding on the
scenario from Fig. 6a by simulating our policy using Poisson
arrivals, α = 1/10, and T = 10. The simulations are run for
10 million time units for each value of offered load considered.
Fig. 6b shows the activation frequency of each hyperedge versus
offered load ρ, while Fig. 6c shows activation frequencies for
standard edges in the same scenario. As ρ approaches 1/4, we
observe that Gca and Gcd each converge to 1/2 = 2ρ, Gab,
Gbd, Gdb, and Gba all converge to 1/4 = ρ, and all other
edges and hyperedges converge to 0, as desired.
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Fig. 6. The 4 node diamond scenario. Under 1-hop interference, greedy application of network coding can reduce throughput. Stability requires all activation
frequencies Gi → 0 for each hyperedge i as offered load approaches stability bound ρ = 0.25. Our policy satisfies this condition.

C. Minimum Queue Size with Network Coding

As the arrival rate vector approaches the upper bound of the
stability region, our policy requires use of small values of step-
size α to achieve necessary service rates. However, we observe
that queues grow large for small values of α. As a function of
step-size α and offered load ρ, we find a lower bound on the
average network queue size required for rate convergence on the
3 node scenario in Fig. 1a. In particular we show that the queue
size must be inversely proportional to α. For simplicity of this
example, let the arrival rates be symmetric, i.e. ρ = λc

b = λb
c,

and let ρ be in the range 1/4 < ρ < 1/3 such that pairwise
coding is required to stabilize the network.
Using the result from [12], we model schedule activations of
our policy as a Markov chain. In this simple 3 node scenario, at
most one edge can be active at a time, so activation frequency πi

of each schedule i is the service rate for edge i. Note convexity
constraint π∅ + πba + πca + πac + πab + πaJ = 1, where J =
(b, c), πi ≥ 0, and π∅ is the activation frequency of the empty
schedule. By symmetry, πca = πba and πac = πab. Combine the
convexity constraint with service requirements πba = πca ≥ ρ,
and πac+πaJ ≥ ρ, we find upper bound πab ≤ 1−3ρ. Applying
this bound to service requirement πab+πaJ ≥ ρ, we find lower
bound πaJ ≥ 4ρ− 1. Taking the ratio between πaJ and πab,

4ρ− 1

1− 3ρ
≤

πaJ

πab

=
π∅RaJ

π∅Rab

=
erab+rac

erab

= erac , (20)

where πi = π∅Ri is given by the stationary distribution of the
Markov chain, RaJ = exp(raJ ), and raJ = rab + rac. Solving
for rac yields rac ≥ log 4ρ−1

1−3ρ . By a similar method, we find
rba ≥ log ρ

1−3ρ + rac. By symmetry, rca = rba and rac = rab.
When rate parameters are stable, average queue sizes can be
found as follows. Applying Eqn. (1), U b,c

a = U c,b
a = rac

α
, and

accounting for differential backlog, U b,c
b = U c,b

c = rba+rac

α
.

The policy will back-fill packets to learn the forward direction
of traffic flow, so Ua,c

b = Ua,b
c = U b,c

a . Taking a sum over all
queues, a lower bound on average network queue size is:

∑
i,c,d

Ud,c
i ≥

2

α
log

ρ

1− 3ρ
+

8

α
log

4ρ− 1

1− 3ρ
. (21)

Considering offered load ρ = 0.32 in Eqn. (21), we find
that convergence of service rates requires a minimum network
queue size of 19.73/α, which is inversely proportional to α
as expected from Eqn. (1). We evaluate this lower bound on
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Fig. 7. Simulations on 3 node scenario from Fig. 1a. Legend applies to both
subplots. (a) Offered load ρ = 0.32 for various α. Dotted lines show lower
bound on stable queue size from Eqn. (21). (b) Stability bound at ρ = 1/3.

network queue size for various values of α, as shown in Fig. 7a.
Simulations for this scenario are discussed in Section VII.

D. Managing Side Information Buffers

This subsection describes a distributed method to determine
when packets can be discarded from side information buffers.
Let Sb,c

a be the size of the side information buffer at node a
for packets sent to neighbor b for commodity c. The policy
exchanges backlog information with neighbors every T units
of time. Side information buffers are kept in FIFO order, so
when node b sends backlog information Ua,c

b to node a, the
associated side information buffer at node a can be reduced
such that it contains only the most recent Sb,c

a = Ua,c
b packets.

Without loss of generality, assume node b can transmit at most
one packet at a time. Therefore node b can transmit at most
T packets between sending backlog updates to node a. Thus,
Sb,c
a ≤ Ua,c

b + T , and the side information buffers are stable
whenever the queues are stable.

VII. NUMERICAL RESULTS

We simulate our policy using Poisson arrivals, and compare
distributed CSMA with our MWS policy from [9]. All config-
urations were simulated for 10 million time units.
We first consider the performance of our CSMA policy on
the 3 node scenario from Fig. 1a with symmetric offered load
ρ = λc

b = λb
c. We simulate CSMA with α = {1/5, 1/10, 1/20}

and update interval T = 10. Fig. 7a shows the network queue
size as a function of time for offered load ρ = 0.32. Here
we see that CSMA operates with queue size at roughly 1/α
times that of MWS. The lower bound on CSMA queue size
from Eqn. (21), shown as a dotted horizontal lines, appears
reasonably close to actual network queue size in this scenario.
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Fig. 8. Queue size of CSMA with pairwise coding for tandem network with
increasing number of intermediate nodes with symmetric end-to-end traffic.

However, the distance between the bound and actual queue size
will vary based on offered load and arrival process. Fig. 7b
shows average network queue size versus offered load, where
the bound of the stability region is indicated with a dashed
vertical line at ρ = 1/3. For all configurations, we see that
queues remain relatively small when the offered load is interior
to the stability region, and the queues grow large as the offered
load approaches the stability bound.
We next consider how queue sizes scale with the number
of nodes n on a tandem configuration with symmetric end-
to-end traffic, as shown in Fig. 8a. We configure CSMA with
α = 1/10, T = 10, ρ = λn

1 = λ1
n = 0.3, and evaluate this

scenario under the 1-hop interference model. Fig. 8b shows
average network queue size for our CSMA and MWS policies
on networks with n = {3, 4, ..., 10} nodes. For both policies
we observe that the queues grow quadratically with number of
nodes n due to differential backlog routing, which is consistent
with findings from [2]. The ratio between CSMA and MWS
network queue sizes is roughly 10 for n = 3 nodes and
increases to around 30 for n = 10 nodes.
Finally, we consider queue size versus offered load for a
16 node scenario with 11 traffic demands as shown in Fig. 9a,
with 2-hop interference. (This is the same scenario considered
in Fig. 3 of [9].) MWS results are shown on Fig. 9b, while
CSMA results are shown on Fig. 9c. The dotted vertical lines
indicate the bounds of the stability region (computed using an
LP solver) at ρ = 1/19 without coding, ρ = 1/17.5 for pairwise
coding, and at ρ = 1/16 for pairwise coding with overhearing.
This yields a pairwise coding gain of 19/17.5 = 1.086 without
overhearing and 19/16 = 1.188 with overhearing. We see that
the queues remain relatively small for values of ρ interior to the
stability bound, and the queues grow rapidly when ρ exceeds
the bound. We also observe that CSMA queues operate at
between 10 and 20 times those for MWS, although this will
vary with α.

VIII. CONCLUSION

In this paper, we consider distributed techniques for joint
routing, scheduling, and pairwise network coding to maximize
throughput in wireless networks. We presented the distributed
CSMA policy for pairwise coding, and showed that this policy
can come arbitrarily close to supporting the full stability region
allowed by our coding constraint. We developed a packet

overhearing extension to increase the number of beneficial
coding opportunities and evaluated our policy with and without
overhearing on multiple scenarios. On random scenarios we
find the additional gains from our overhearing scheme are low
on average at around 2%, but occasionally we observe larger
gains of up to 25% that make this simple extension worthwhile.
In comparing performance of our CSMA and MWS policies,
we find that the distributed control of the CSMA policy comes
at the expense of growth in average queue size. For a simple
pairwise coding scenario, we provide a lower bound on stable
CSMA queue size as a function of the offered load and α. This
bound is inversely proportional to α, and we found it useful for
approximating the network queue size in our simulations. We
evaluated stable queue size as a function of the number of nodes
in a tandem network, and observe quadratic growth in stable
CSMA queue size. While MWS also experiences quadratic
growth, the growth rate is noticeably faster for CSMA.

APPENDIX
RATE STABILITY

Using appropriate choices for parameters α and T , we wish
to show that for any strictly feasible arrival rate vector λ
and any flow decomposition f̂ , the distributed CSMA policy
chooses TA parameters ri such that service si(r) dominates
arrivals f̂i for each edge i. Here, λ is strictly feasible if
(λ + ε) ∈ ΛNC , for ε ≥ 0, and f̂ is a flow decomposition of
λ according to Eqns. (6-10). First, we show that if a solution
is attainable for finite r∗, then si(r

∗) ≥ f̂i, ∀i. Second, we
show that the solution is attainable whenever the arrival rate is
strictly feasible. Combining the first and second steps gives the
desired result.
Let γ� be an activation probability for schedule � satisfying

flow decomposition f̂i, and let π�(r) be the actual activation
frequency of each schedule � according to service rates si(r)∀i.
Indicator Ii∈� = 1 if edge i is active in schedule �, and
0 otherwise. Then f̂i =

∑
� γ� Ii∈�. Again using the result

from [12], we model schedule activations of our policy as a
continuous time Markov chain where the schedule activation
frequencies conditioned on ri are given by:

π�(r) = exp(
∑

i ri Ii∈�)
/
C(r) (22)

C(r) =
∑

j exp(
∑

i ri Ii∈j) (23)

We can minimize the Kullback-Leibler divergence between
distributions γ and π(r) by solving supr≥0 F(r), where F(r)
is non-positive for r ≥ 0 and is defined as

F(r) =
∑

� γ� log
(
π�(r)

)
=

∑
i f̂iri − log(C(r)). (24)

Note that ∂
∂ri

F(r) = f̂i − si(r), so a distributed gradient
algorithm to solve supr≥0 F(r) is

ri(n+ 1) = [ri(n) + α(n)( f̂i − si(r(n)))]
+, ∀i. (25)

Choosing ri(0) = 0, α(n) = α, interval n of duration T , and
observing that f̂i and si(r) correspond to queue arrivals and
departures, respectively, we obtain ri(nT ) = αUi(nT ). This is
in the form of Eqn. (1).
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Fig. 9. Comparing MWS and CSMA for a 16 node scenario. (a) Traffic demands as dashed lines with arrows. (b)&(c) Stability bounds as dotted vertical lines.

Existence Proposition: If r∗ ≥ 0 exists such that
F(r∗) = supr≥0 F(r), then si(r

∗) ≥ f̂i, ∀i. Dualize each
constraint ri ≥ 0 with dual variables di ≥ 0: L(r, d) =
F(r) +

∑
i diri. At solution r∗ we have ∂

∂ri
L(r∗, d∗) =

f̂i − si(r
∗) + d∗i = 0. We know di ≥ 0, so si(r∗) ≥ f̂i∀i.

Attainability Proposition: If λ is strictly feasible, then
F(r∗) = supr≥0 F(r) is attainable. In [8], it is shown that the
dual of supr≥0 F(r) is

max
u

−
∑

� u� log(u�) s.t.
∑

�(u� Ii∈�) ≥ f̂i, ∀i∑
� u� = 1, u� ≥ 0. (26)

The optimal value for Eqn. (26) occurs when

u∗� = exp(
∑

i y
∗
i Ii∈�)

/ (∑
j exp(

∑
i y
∗
i Ii∈j)

)
, ∀�, (27)

where yi is the dual variable for constraint
∑

�(u�Ii∈�) ≥ f̂i.
Observe that u∗� is in the form of π�(r

∗) from Eqns. (22-23),
where y∗i = r∗i ∀i. Then the optimal value for Eqn. (26) equals
F(r∗) and is obtained whenever λ is strictly feasible.
Combining the two propositions: If λ is strictly feasible,
then si(r) ≥ f̂i, ∀i. Note that for fixed values of parameters
α and T , we are only guaranteed that the service rates will
converge to the neighborhood of the link arrivals f̂i. For rate
stability, it is sufficient for the convergence neighborhood to be
fully contained in the stability region. By assumption, arrival
rates are strictly feasible, so there always exists a value of α
small enough that the neighborhood of convergence is fully
within the stability region. Thus, the parameterized policy can
come arbitrarily close to supporting the full stability region.
Note that for pairwise coding, e.g. in Fig. 1a, we have

assumed that TA parameter for hyperedge (a, J), J = (b, c),
is raJ = rab + rac. This assumption is confirmed by verifying
that the total service rate sab(r) on edge (a,b) is πab + πaJ :
sab(r) =

∂
∂rab

log
(
C(r)

)
=

(
exp(rab)+exp(rab+rac)

)/
C(r)

= π∅
(
Rab +RaJ

)
= πab + πaJ , where π∅ = 1/C(r).
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