
Network Protection with Guaranteed Recovery
Times using Recovery Domains

Greg Kuperman
MIT LIDS

Cambridge, MA 02139

gregk@mit.edu

Eytan Modiano
MIT LIDS

Cambridge, MA 02139

modiano@mit.edu

Abstract—We consider the problem of providing network pro-
tection that guarantees the maximum amount of time that flow
can be interrupted after a failure. This is in contrast to schemes
that offer no recovery time guarantees, such as IP rerouting,
or the prevalent local recovery scheme of Fast ReRoute, which
often over-provisions resources to meet recovery time constraints.
To meet these recovery time guarantees, we provide a novel
and flexible solution by partitioning the network into failure-
independent “recovery domains”, where within each domain, the
maximum amount of time to recover from a failure is guaranteed.

We show the recovery domain problem to be NP-Hard, and
develop an optimal solution in the form of an MILP for both
the case when backup capacity can and cannot be shared. This
provides protection with guaranteed recovery times using up to
45% less protection resources than local recovery. We demonstrate
that the network-wide optimal recovery domain solution can be
decomposed into a set of easier to solve subproblems. This allows
for the development of flexible and efficient solutions, including an
optimal algorithm using Lagrangian relaxation, which simulations
show to converge rapidly to an optimal solution. Additionally, an
algorithm is developed for when backup sharing is allowed. For
dynamic arrivals, this algorithm performs better than the solution
that tries to greedily optimize for each incoming demand.

I. INTRODUCTION

As the importance of time-sensitive internet traffic continues

to rise, there is an increasing need to offer network protection

that provides guarantees on the amount of time flow can be

disrupted after a failure. Examples of time-sensitive traffic

include voice-over-IP and video streaming, which would be

rendered unusable with high latency delays. Many networks

employ protection techniques that offer no recovery time guar-

antees whatsoever. Alternatively, networks typically provide

local recovery schemes, which reroute a connection at the point

of failure; such schemes typically over-provision resources to

meet time recovery constraints. In this paper, we a present novel

solution that provides guarantees on the maximum amount of

time that flow can be disrupted after a failure, which is both

flexible and efficient. We refer to these time guarantees as the

recovery time of the network.

Protection in the internet has traditionally been accomplished

using a real-time rerouting approach: after a link failure occurs,

This work was supported by NSF grants CNS-1017800 and CNS-0830961,
by DTRA grants HDTRA1-07-1-0004 and HDTRA-09-1-005, and by the
Department of the Air Force under Air Force contract #FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of the
author and are not necessarily endorsed by the United States Government.

the network is updated with the new set of shortest paths

between node pairs, and then a new path is selected. This is

both slow (sometimes on the order of minutes) [1], and does

not necessarily guarantee that bandwidth will be available for

the new path [2, 3]. In the past decade, Multi-Protocol Label

Switching (MPLS) has been developed to support constraint

based routing, which allows connections to be made with

guarantees on parameters such as bandwidth, latency, and re-

covery time [4]. Because of its flexibility and traffic engineering

capabilities, MPLS has become the leading packet transport

network technology in backbone networks [5]. To handle these

fast recovery times, the Fast ReRoute (FRR) framework was

developed to be used within MPLS [6]. FRR is a local recovery

scheme where traffic is routed away from the node directly

preceding a fault, which is known as the point of local repair

(PLR), and reconnects with the original path at the merge point

(MP). Various implementations of local recovery have been

previously examined [7–11].

More recently, the new IETF standard for the MPLS Trans-

port Profile (MPLS-TP) Protection Framework calls for the

creation of “recovery domains” [12]. Recovery domains are

defined to be non-overlapping path segments, such that after a

failure within a segment, flow is restored using a back-up path

between the end-points of that segment. Moreover, recovery

domains connect to one another via their respective “reference”

end-points, forming an end-to-end protected flow. An example

is shown in Fig. 1: after the failure of an edge in the primary

path located within Recovery Domain 2, the recovery domain’s

upstream end-point redirects flow onto the backup path, which

then reconnects at that recovery domain’s downstream end-

point, bypassing the failure. The recovery domain model can

be used to provide recovery time guarantees.

Recovery
Domain 1

Recovery
Domain 2

Recovery
Domain 3

Fig. 1: End-to-end routing using recovery domains

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

692

v1 v2 v3 v4 v5

Fig. 2: Time guaranteed recovery examples

In local recovery, since each possible failure has its own

dedicated protection path, resources are often over-provisioned

beyond what is needed to meet recovery time guarantees.

Consider the example shown Fig. 2; the propagation delay for

each link is 10 ms, and switching delays are assumed to be

negligible. A flow needs to be found from v1 to v5 such that the

maximum time that the flow can be disripted after a failure is 50

ms, which is the typical recovery time for MPLS networks [1].

A primary path is already allocated on the solid lines from v1
to v5. A solution to FRR local recovery is to use all of the links

above the primary path: after a link failure in the primary path, a

fault notification is sent to the immediate upstream node of that

failed link, and the flow is then switched to an alternate path

from that node back towards the destination. This protection

scheme requires 7 edges to be used for backup.

Now consider an alternative protection routing using the

recovery domain model. Two recovery domains are created by

using the links below the primary path as the backup paths: one

recovery domain between nodes v1 and v3, and one between v3
and v5. If link {v2, v3} fails, it would take up to 20 ms for the

fault notification to propagate to v1, and then 20 ms for the data

that was switched to the protection route to reconnect with the

primary path at node v3. The other recovery domain will have

a similar recovery time after a failure. In this example, only 4

additional links are needed to meet protection guarantees when

using recovery domains, as opposed to the 7 needed for FRR.

Previous work has examined providing differentiated reliabil-

ity for connections, including maximum recovery times. These

papers build off of the segment protection framework [13],

where segments of a primary path are individually protected,

but can overlap by any number of edges. Various heuristics

have been considered for segment protection with recovery

time considerations [14–16], and an integer linear program

(ILP) was presented in [17]. In contrast, recovery domains

simplify recovery by separating a flow into disjoint protection

regions, where each region guarantees protection for the flow

between its end-points. This flow partitioning approach allows

the network to be decomposed into a set of individual recovery

domains, simplifying capacity allocation and flow control.

To the best of our knowledge, the guaranteed recovery time

problem using recovery domains has not yet been examined.

Our novel formulation to provide Guaranteed Recovery

Times using Recovery Domains (GRT-RD) allows for a general

and efficient set of solutions and algorithms. We first present

a model of the problem in Section II. We then show in

Section III that the recovery domain problem is NP-Hard,

and formulate the optimal solution using an MILP. In Section

IV, we decompose the end-to-end recovery domain problem

into more tractable subproblems, which allows us to more

easily construct a solution for the end-to-end problem. This

allows for the development of flexible and efficient solutions,

including an optimal algorithm using Lagrangian relaxation,

which simulations show to converge rapidly to an optimal

solution. In Section V, an algorithm is developed for the case

when backup sharing is allowed.

II. MODEL AND PROBLEM DESCRIPTION

In this paper, solutions to the problem of Guaranteed Recov-

ery Time using Recovery Domains (GRT-RD) are developed

and analyzed. The objective is to provide a primary and

protection path for each demand, such that the amount of

time flow is disrupted after a failure is guaranteed to be no

greater than some maximum value. In order to meet these

recovery time guarantees, we separate an end-to-end flow into

“recovery domains”, where within each recovery domain, the

maximum time to recover from a failure cannot exceed a given

value. We borrow the definition of recovery domains from

[12]: “A recovery domain is defined between two recovery

reference end-points which are located at the edges of the

recovery domain... To guarantee protection in all situations,

a dedicated recovery entity should be pre-provisioned using

disjoint resources in the recovery domain, in order to protect

against a failure of a working entity.”

Adding the constraint for time guaranteed recovery, we

implement GRT-RD as follows: an end-to-end recovery domain

routing is a set of recovery domains connecting at their respec-

tive end-points such that they form a path from the source

to the destination, and that the maximum amount of time a

flow can be disrupted after any single-link failure is guaranteed.

An example was shown in Fig. 1. We implement guaranteed

protection within a recovery domain using the 1:1 protection

scheme, which reserves an edge-disjoint backup path for each

primary path, and guarantees the full flow to be available at all

times after any single-link failure [18, 19].

The following network model is used for the remainder of

the paper. A graph G has a set of vertices V and edges E.

We assume a single-link failure model. An end-to-end recovery

domain routing will comprise of a set of recovery domains,

connected via their reference end-nodes, which form an end-

to-end flow from a source to its destination. The maximum

recovery time T will be the maximum time data flow can be

interrupted: after a link failure of the primary path in some

recovery domain, the length of time for the primary flow

to be rerouted from the upstream reference end-node to the

downstream reference end-node cannot exceed the maximum

recovery time of T . This includes the time for fault detection,

switching delays, and the time necessary for the flow to reach

the end-point of the recovery domain. For ease of exposition,

we assume that the link traversal times include all the various

switching and detection delays.

Consider the recovery domain in Fig. 3, with link traversal

times (in ms) as labeled. After a failure occurs on link {j, d},
the failure will be seen at j in at most 10 ms, and then it will

2013 Proceedings IEEE INFOCOM

693

s

i

d
j

10 10

10 10

Fig. 3: Recovery domain example

take another 10 ms for that information to reach s. The primary

flow will take an additional 20 ms to reach d through i, which

gives a total recovery time of 40 ms. Hence, for a recovery

domain, the maximum recovery time will be the sum of all

the link traversal times within that domain (which includes

switching and detection delays).

III. A MINIMUM-COST FORMULATION

This section investigates minimum-cost allocations to find a

routing that offers protection after a failure with a guaranteed

recovery time by using recovery domains (GRT-RD). Each edge

{i, j} will have an associated cost cij and link traversal time

tij . The set of link costs and traversal times will be labeled C
and T , respectively. We begin by demonstrating that finding a

minimum-cost end-to-end routing using recovery domains with

recovery time guarantees is NP-Hard. Subsequently, in Section

III-A a mixed integer linear program (MILP) is formulated to

find a minimum-cost solution to the end-to-end recovery do-

main problem with recovery time guarantees. In Section III-B,

GRT-RD is compared to the common MPLS local recovery

scheme of Fast ReRoute (FRR).

We first show that solving for an individual recovery domain

with a guaranteed recovery time is NP-hard. Afterwards, the

end-to-end problem is shown to be NP-hard as well.

Theorem 1. Finding the minimum-cost allocation for a pair
of disjoint paths between nodes k and l such that the sum of
the link traversals across the two paths does not exceed some
maximum time T is NP-hard.

Proof: We reduce the NP-hard Constrained Shortest Path

(CSP) problem [20] to ours. In CSP, each edge {i, j} has two

associated values: cij and tij . In our case cij is the cost of

the edge, and tij is the link traversal time. If xij is a binary

flow variable for edge {i, j}, then the objective is to find a

path from k to l that minimizes
∑

{i,j}∈E cijxij , such that∑
{i,j}∈E tijxij ≤ T . To find a minimum-cost solution to CSP

by solving GRT-RD with a maximum recovery time of T , add

a path between k and l with a total traversal time of zero and

a cost of −(∑{i,j}∈E |cij | + 1). A minimum-cost solution to

GRT-RD, if it exists, will always use this path as one of the two

disjoint paths, and the other path will be the solution for CSP

from k to l with a maximum traversal time of T . In addition,

we note that our problem is clearly in NP.

Next, we show that finding an end-to-end routing using

recovery domains that guarantees the maximum length of flow

interruption is NP-hard by using a similar proof to Theorem

1. An end-to-end recovery domain routing can have a series

of recovery domains in sequence, each guaranteeing recovery

time for its respective flow.

Theorem 2. Finding the minimum-cost allocation for a protec-
tion routing between nodes s and d that guarantees a maximum
recovery time of T by using end-to-end recovery domains is
NP-hard.

Proof: We add a path between s and d with a total traversal

time of zero and a cost of−(∑{i,j}∈E |cij |+1). Any minimum-

cost solution to the end-to-end GRT-RD will use this negative

cost path if a constrained shortest path (CSP) from s to d exists

with maximum traversal time of T . Hence, if the minimum-cost

solution to the end-to-end problem uses this negative cost path,

then the CSP problem has also been solved. If the negative cost

path is not used, there exists no solution to CSP on the given

network. In addition, we note our problem is clearly in NP.

A. MILP to find a Minimum-Cost Solution

Since finding a minimum-cost solution for the guaranteed

recovery time problem using recovery domains is NP-hard,

in this section a mixed integer linear program (MILP) is

developed to solve for the minimum-cost solution. Two versions

are developed: one for when backup capacity sharing is not

allowed, and one when it is. Backup capacity can be shared

between two demands if their primary path edges are disjoint

under a single-link failure model. If a failure occurs, and the

two primary paths are disjoint, then at most one demand can

fail. Hence, at most one demand will need backup protection

at a time, and the two demands can share backup protection

resources. Due to space constraints, only the MILP for the

non-sharing case is presented here. The formulation for when

protection sharing is allowed can be found in [21].

Solving for an end-to-end protection routing between nodes

s and d using recovery domains relies on the following ob-

servations: each pair of nodes in the network is a potential

recovery domain, and an end-to-end recovery domain routing

will be some subset of these recovery domains. Additionally,

in an end-to-end recovery domain routing, recovery domains

connect only via their reference end-points, and each recovery

domain consists of a pair of edge-disjoint paths. Hence, an

end-to-end recovery domain routing is, in fact, a pair of edge-

disjoint paths between s and d (potentially connected at certain

nodes). Using these observations, the MILP is structured as

such: a pair of disjoint paths is found from s to d, where each

edge from that pair of disjoint paths is associated with exactly

one recovery domain. Additionally, any active recovery domain

(i.e., part of the solution) must itself consist of a pair of disjoint

paths between the end-nodes of that recovery domain, and the

sum of the link traversal times of that recovery domain may not

exceed the maximum recovery time. Without loss of generality,

a unit demand between s and d is assumed.

The following values are given:

• G = (V,E) is the graph with a set of vertices and edges

• s is the source and d is the destination

• cij is the cost of link {i, j}
• tij is the traversal time for link {i, j}
• T is the maximum recovery time

The following variables will be solved for:

2013 Proceedings IEEE INFOCOM

694

• xij is 1 if flow is assigned on link {i, j}, and 0 otherwise

• Rkl is 1 if the recovery domain with end nodes k and l is

active (part of the solution), 0 otherwise

• rklij is 1 if link {i, j} is in recovery domain (k, l), 0

otherwise

The objective is to minimize the total cost of allocating

capacity for an end-to-end routing between s and d using

recovery domains such that the maximum recovery time of T
is not exceeded.

minimize
∑

{i,j}∈E

cijxij (1)

Subject to the following constraints:

• Find two edge-disjoint paths between the source and

destination. Since xij is strictly 0 or 1, routing two units

between s and d will result in two edge-disjoint paths.

∑
{i,j}∈E

xij −
∑

{j,i}∈E

xji =

⎧⎪⎨
⎪⎩

2 if i = s

−2 if i = d

0 otherwise

, ∀i ∈ V

(2)

• If an edge has allocation, it belongs to exactly one recovery

domain.

∑
(k,l)∈(V,V)

rklij = xij , ∀{i, j} ∈ E (3)

• Mark active recovery domains

– If any edge in a recovery domain is active, then that

recovery domain is marked as active.

∑
{i,j}∈E

rklij ≤ |E| ·Rkl, ∀(k, l) ∈ (V, V) (4)

– If no edge in a recovery domain is active, then that

recovery domain is marked as not active.

∑
{i,j}∈E

rklij ≥ Rkl, ∀(k, l) ∈ (V, V) (5)

• For each active recovery domain, find two edge-disjoint

paths between its respective end-nodes k and l.

∑
{i,j}∈E

rklij −
∑

{j,i}∈E

rklji =

⎧⎪⎨
⎪⎩

2Rkl if i = k

−2Rkl if i = l

0 otherwise

,

∀i ∈ V, (k, l) ∈ (V, V) (6)

• The sum of the traversed time delays of the edges in

a given recovery domain cannot exceed the maximum

recovery time.

∑
{i,j}∈E

rklij tij ≤ T, (k, l) ∈ (V, V) (7)

2

1

3

4
5

6

7

8

9

10

11

12

13

14

(a) NSFNET (b) Lata ‘X’

Fig. 4: Network topologies used for simulations

B. Simulation Results for GRT-RD

The minimum-cost solution found by the MILP for the

guaranteed recovery time problem using recovery domains is

compared to the common MPLS local recovery scheme of

Fast ReRoute (FRR). The simulations were run using both the

NSFNET and Lata ‘X’ topologies (Fig. 4) with 100 random

unit demands. Each link’s traversal time was set to be the

propagation delay of that link, plus a 3 ms switching delay.

Two versions of the network were tested: one with all unit

costs, and one with random integer link costs of uniform

distribution between 1 and 5. Both the non-sharing and sharing

cases were tested. A dynamic model for routing demands was

used: connections are serviced in the order of their arrival

(in this case, the 100 demands were randomly ordered), and

once a connection is routed, it can no longer be changed. The

maximum recovery time was set to the MPLS standard of 50

ms [1]. Fast ReRoute (FRR) is implemented using an MILP,

which is omitted for brevity and can be found in [21].

Guaranteed recovery time using recovery domains (GRT-

RD) is compared to Fast ReRoute (FRR) for the cases when

protection resources can and cannot be shared. The additional

cost of spare resources1 needed to meet protection constraints

for the two schemes are compared, with the percent savings of

GRT-RD over FRR being shown in Table I.

No Sharing Sharing
Edge Costs NSFNET Lata ‘X’ NSFNET Lata ‘X’

Random 30% 27% 38% 45%
Deterministic 32% 35% 40% 36%

TABLE I: Percent savings of spare resources of GRT-RD over FRR

As can be seen from Table I, significant savings in the cost of

protection resources over the MPLS local recovery scheme of

Fast ReRoute are achieved when using GRT-RD. The savings

for the case without backup sharing with random edge costs

was 30% for NSFNET and 27% for Lata ’X’; with unit edge

costs, the savings were 32% and 35% for NSFNET and Lata

’X’, respectively. When backup sharing is allowed, the savings

were larger: with random edge costs, the savings were 38%

for NSFNET and 45% for Lata ’X’, and with unit edge cost,

40% and 36%. Further discussion of why backup sharing is

more flexible for recovery domain routing (and hence, larger

potential savings over other protection schemes) can be found

in Section V. Overall, GRT-RD offers significant savings in

cost over FRR, while providing the same level of resiliency.

1Spare resources is the capacity needed beyond that of the shortest path
routing to meet protection guarantees.

2013 Proceedings IEEE INFOCOM

695

IV. EFFICIENT ALGORITHMS FOR GUARANTEED

RECOVERY TIMES USING RECOVERY DOMAINS

In the previous section, an MILP was presented to find a

minimum-cost solution for GRT-RD, which is not generally

computationally efficient. In this section, efficient and flexible

algorithms are presented to solve GRT-RD. A gradient algo-

rithm is developed that converges rapidly to an optimal solution,

and polynomial time heuristics are developed that offer bounds

on their solution with respect to the optimal time and cost.

In Section IV-A, we demonstrate how finding the optimal

solution to the end-to-end recovery domain problem can be

solved by decomposing the problem into a set of easier to solve

individual recovery domain problems. In Section IV-B, a gradi-

ent algorithm using Lagrangian relaxation is developed, which

simulations show converges rapidly to an optimal solution. In

Section IV-C, polynomial timed heuristics that offer bounds

with respect to the optimal solution are presented. The different

algorithms developed are compared to the optimal solution

found by the MILP in Section IV-D. Since it is NP-hard to

simply determine if a feasible solution exists for the guaranteed

protection problem when backup sharing is used [19], we first

consider the case without backup sharing. Recovery domain

routing that guarantees recovery times with the use of backup

capacity sharing is examined in Section V.

A. Decomposing the End-to-End Recovery Domain Problem
An optimal end-to-end recovery domain routing requires

optimizing across the set of possible recovery domains such

that a flow from the source to destination is found where the

maximum amount of time the flow can be interrupted after

a failure is guaranteed. Each individual recovery domain is

wholly responsible for protecting against a failure between

its respective end-points, and for ensuring that recovery time

guarantees are met. This requirement not only allows for easier

rerouting after a failure, but, as we demonstrate, allows the end-

to-end problem to be simplified by considering only the more

tractable individual recovery domains.

The key observation that allows flexibility for finding a

solution is that each pair of nodes in the network marks the

end-points of a potential recovery domain. Since an end-to-end

recovery domain routing will be a series of recovery domains

connected via their end-points, the optimal solution will be the

lowest cost subset of individual recovery domains that form a

flow from the source to the destination. We note that there are

O(|V |2) potential recovery domains in a network.

Consider the network G in Fig. 5a, with link traversal times

as labeled (in ms), and unit cost links. We wish to find a

minimum-cost recovery domain routing from node s to d, with

a maximum recovery time of 50 ms. For each pair of nodes in

the network, a minimum-cost recovery domain is found. A new

network GR is constructed with the same set of nodes as the

original network G, and with an edge being placed between any

two nodes i and j if there exists a recovery domain between

those nodes that meets recovery time guarantees. The cost of

all the edges that comprise the recovery domain between nodes

i and j is the cost of edge {i, j} in GR.

s

15

15 15

15 15

15

25

25
a

b

c

d

(a) Original network G

s

a

bc

d

(b) Transformed network GR

Fig. 5: Decomposing G into its individual recovery domains

The graph transformation GR is shown in Fig. 5b. An edge

between a pair of nodes represents a recovery domain between

those same two nodes in G that meets recovery time guarantees.

For example, edge {s, a} in GR has a cost of 3, and is a

recovery domain consisting of the following edge in G: {s, a},
{s, b}, and {b, a}. It is easy to verify that for this example,

each link in GR has a cost of 3. A shortest path is found in

GR from the source s to the destination d, where each edge

of that path represents a recovery domain that is used in the

optimal end-to-end recovery domain solution. The shortest path

from s to d in GR is {s, b} and {b, d}, which represents the

recovery domains in G between s and b (consisting of the edges

{s, a}, {a, b}, and {s, b} in G), and b and d (consisting of the

edges {b, c}, {c, d}, and {b, d} in G).

This algorithm is labeled end_to_end_RD. We note that

this approach does not preclude two recovery domains from

sharing edges between them, but the essence of recovery do-

main routing is preserved: the end-nodes of a recovery domain

maintain full responsibility for protecting against a failure for

the primary flow contained within it, and for guaranteeing that

the amount of time that flow can be interrupted does not exceed

the maximum allowed. This allows us to now focus on solving

the individual recovery domain problem, i.e., for a given a pair

of nodes, finding the shortest-pair of disjoint paths between

those nodes that meet time constraints. With such an algorithm

at hand, one can use the above approach to solve for the end-to-

end recovery domain routing with guaranteed recovery times.

B. Optimal Algorithm

In this section, an optimal algorithm using a Lagrangian

relaxation is presented. The individual recovery domain prob-

lem is first formulated as an MILP, where we wish to find a

minimum-cost pair of disjoint paths between a source s and

destination d that have some maximum total link traversal

time. The MILP is formulated as such: the objective is to find

a routing of minimum cost, such that two units of flow are

routed between the end-nodes s and d, with flow variables xij

being binary, and the total link traversal time not exceeding

the maximum recovery time of T . Since an edge will have

strictly a flow of 0 or 1, two paths between s and d cannot

overlap; hence, a minimum-cost pair of disjoint paths will be

found subject to the time constraints. We refer to this as the

constrained shortest-pair of disjoint paths problem.

minimize
∑

{i,j}∈E

cijxij (8)

2013 Proceedings IEEE INFOCOM

696

∑
{i,j}∈E

xij −
∑

{j,i}∈E

xji =

⎧⎪⎨
⎪⎩

2 if i = s

−2 if i = d

0 o.w.

, ∀i ∈ V (9)

∑
{i,j}∈E

tijxij ≤ T (10)

xij ∈ {0, 1}, ∀{i, j} ∈ E (11)

The Lagrangian dual is obtained by relaxing the maximum

recovery time constraint (Constraint 10), and placing it into the

objective:

L(μ) = min
∑

{i,j}∈E

cijxij + μ

(∑
{i,,j}∈E

tijxij − T

)

= min
∑

{i,j}∈E

xij(cij + μtij)− μT (12)

For a fixed value of μ, the cost of edge {i, j} becomes cij +
μtij . The recovery domain problem now becomes a minimum-
cost flow problem, which is defined as finding a flow of lowest

cost between a source and destination in a network that has both

edge costs and edge capacities [20]. An important characteristic

of minimum-cost flows is when given strictly integer inputs

(edge costs and capacities), then the solution will always be a

set of integer flows [20]; the flow variables no longer need to be

constrained to integer values in order to ensure that flows are

strictly integer. Hence, by relaxing the binary flow variables

xij , we can write the Lagrangian dual as a linear program,

which becomes polynomial time solvable [22].

∑
{i,j}∈E

xij −
∑

{j,i}∈E

xji =

⎧⎪⎨
⎪⎩

2 if s = i

−2 if t = i

0 o.w.

, ∀i ∈ V

0 ≤ xij ≤ 1, ∀{i, j} ∈ E

For a fixed value of μ, the Lagrangian relaxation simply

becomes finding the shortest-pair of disjoint paths with respect

to the edge costs cij + μtij , ∀{i, j} ∈ E. The shortest-

pair of disjoint paths can be found in polynomial time using

Suurballe’s algorithm [23].

To solve the Langrangian relaxation, we wish to find L∗ =
L(μ∗) = maxμ≥0 L(μ). The constrained shortest-pair of dis-

joint paths has similarities to the constrained shortest path

(CSP) problem, for which Lagrangian relaxation techniques

have been considered [24–27]. In [25], a geometric approach

is proposed for solving the Lagrangian relaxation for CSP.

While not considered beyond a single constrained path, we

demonstrate that the geometric approach can be extended to

the constrained shortest-pair disjoint pair of paths problem.

L(μ) can be rewritten as L(μ, x) = f(x) + μg(x), where

f(x) =
∑

{i,j}∈E cijxij and g(x) =
∑

{i,j}∈E tijxij − T .

Each path becomes a line in L − μ geometric space, where

g(x) is the slope of the line, and f(x) is the L axis crossing

point. Furthermore, since g(x) =
∑

{i,j}∈E tijxij−T , the paths

associated with g(x) ≤ 0 meets time requirements, where f(x)
is the cost of those disjoint paths.

L

*

L*

Fig. 6: Pair of disjoint paths mapped to lines in L− μ space

We see that the mapping to a geometric space is in fact not

specific to CSP; any discrete optimization problem that takes

the form L(μ, x) = f(x) + μg(x) can be represented as a line

in L−μ space. In our case, each pair of disjoint paths becomes

a line in L−μ space, and the lower envelope of lines gives the

optimal value for μ∗. A visualization is shown in Fig. 6 [27].

Since any discrete optimization problem taking the form

of L(μ, x) = f(x) + μg(x) can be represented in geometric

space, including the constrained shortest-pair of disjoint paths,

a similar method for finding the optimal μ∗ as in [25] can

be applied. The key is being able to solve for the optimal

discrete variable assignments x for a fixed μ in polynomial

time. In the case of constrained shortest-pair of disjoint paths,

Suurballe’s algorithm [23] can be used, as previously discussed.

The algorithm to find the dual optimal solution is labeled

rd_dual_opt, and is presented in Algorithm 1.

Algorithm 1 μ∗ = rd_dual_opt(s, d, T, V,E,C, T)
1: Begin with two pairs of disjoint paths from s to d: L(0) is

the shortest pair without consideration to time, and L(∞)
is the shortest time pair, without consideration to cost.

2: The intersection point is the first guess for μ (call this

μ′). L(μ′) is the new upper bound on the dual-optimal

solution. Any intersection point will be defined by two

lines: one with g(x1) ≤ 0 and the other g(x2) > 0.

Since g(x) =
∑

{i,j}∈E tijxij − T , the disjoint paths

associated with g(x1) ≤ 0 meets the time requirements.

3: Solve for the shortest-pair of disjoints paths with edge costs

cij+μ′tij , ∀{i, j} ∈ E. This will give a new pair of disjoint

paths x”, with some value for f(x′′) and g(x′′).
4: If f(x′′) + μ′g(x′′) = L(μ′), then the optimal value for μ

has been found.

5: while f(x′′) + μ′g(x′′) �= L(μ′) do
6: Add a new line f(x′′) + μ′g(x′′) in L− μ space.

7: The next estimate for μ′ is the new intersection point on

the lower envelope of the lines that gives the max L(μ′).
8: If f(x′′) + μ′g(x′′) = L(μ′), then the optimal value for

μ has been found.

9: end while
10: Return μ∗ = μ′. The pair of dual optimal paths x∗ at μ∗ that

meet time constraints are those associated with g(x∗) ≤ 0.

The algorithm concludes with an upper and lower bound

on solution. Since f(x∗) represents the cost for feasible

paths in the network that meet time constraints, it is an

upper bound on the optimal solution. The lower bound is

the dual-optimal value L(μ∗) = f(x∗) + μ∗g(x∗).

2013 Proceedings IEEE INFOCOM

697

The runtime for rd_dual_opt is not specified in [25], but

a binary search approach for solving the same problem was

presented in [27] with a polynomial runtime.

Since the original problem we are trying solve has integer

constraints (the flow variables), the dual optimal solution may

have a gap in cost between itself and the actual optimal solution,

which is known as a duality gap [22]. To close this gap, we

iterate through the k-shortest pair of disjoint paths with respect

to the dual-optimal edge costs cij +μ∗tij , ∀{i, j} ∈ E, closing

the gap with each iteration until the optimal solution is found.

The authors of [25] step through the k-shortest paths, using

an algorithm [28] that cannot be extended to the k-shortest

pair of disjoint paths. Instead, we use an alternate technique

proposed in [29], which finds the k best solutions for a discrete

optimization problem. The run time to find the kth best discrete

optimization solution is polynomial with respect to the time to

solve the discrete optimization problem, which for the case of

shortest-pair of disjoint paths is also polynomial [23]. Details

of the algorithm are omitted for brevity, and can be found in

[29]. We label the final algorithm, which closes the duality gap,

rd_opt; it is presented in Algorithm 2.

Algorithm 2 (P1, P2) = rd_opt(s, d, T, V,E,C, T)
1: Find the initial dual optimal solution:

μ∗ = rd_dual_opt(s, d, T, V,E,C, T)
2: Find the kth shortest pair of disjoint paths xk for each

k = 1, 2, ... with respect to the dual-optimal edge costs

cij + μ∗tij .

• For each k, L(μ∗, xk) is the new lower bound on

the optimal feasible solution, and is a non-decreasing

function with respect to k.

• An upper bound Uk is maintained: Uk = min1..kf(xk)
for all xk such that g(xk) ≤ 0 (which means that xk

is a solution that meets time constraints). Uk is a non-

increasing upper bound.

3: Continue until Uk ≤ L(μ∗, xk), at which point the optimal

solution has been found.

• Since we individually step through the shortest-pair of

dual-optimal disjoint paths, which are a lower bound

on the solution, until their cost is greater than the upper

bound, which is a feasible solution, the solution must

be optimal. Proof is shown in [25].

4: Return the pair of disjoint paths P1 and P2 associated with

the upper bound Uk, which meets time constraints.

Since the number of possible disjoint paths can be potentially

exponential with respect to the number of edges, the number of

iterations to close the duality gap is not necessarily polynomial

bounded. But, our simulations indicate that the number of

iterations to close the duality gap is in fact minimal: on average,

only 1.46 iterations are needed.

C. Polynomial Timed Heuristics

In this section, two algorithms are presented that run in

polynomial time to solve the guaranteed recovery time problem

using recovery domains. The first is a “fastest paths” algorithm,

where link costs are ignored, and paths are found with respect

to time only. This algorithm is the simplest to implement,

and is most useful when link costs are either not considered,

or are proportional to the link traversal times. The second is

a fully polynomial time approximation scheme (FPTAS) that

guarantees a solution to be within a factor of 1.5 of the optimal

cost and 1.5(1 + ε) of the maximum recovery time.

The fastest paths algorithm is straightforward to implement

using the shortest-pair of disjoint paths algorithm [23]. Instead

of finding a pair of disjoint paths of minimum-cost, a pair of

disjoint paths of minimum time are found. This algorithm is

called rd_fastest, and has the same complexity as finding

the shortest-pair of disjoint paths.

For the approximation scheme, we use an algorithm pre-

sented in [30]. In that work, the authors try to solve for

disjoint QoS (quality-of-service) paths, such that each path is

bounded by some time requirement D. They are not looking at

recovery times or recovery domains, but are instead interested

in ensuring that the end-to-end primary and backup paths do

not exceed some QoS specification. To solve their problem,

they relax each path’s individual time constraint and try to find

a pair of disjoint paths such that the sum of the link traversal

times for both paths does not exceed 2D. By replacing the time

requirement 2D with the maximum recovery time requirement

T , we can solve for a recovery domain with a bound on the

optimal cost and time. We label this approximation algorithm

rd_approx; details of the algorithm are omitted for brevity,

and can be found in [30].

D. Algorithm Simulations

In this section, the algorithms developed in the previous

sections for guaranteed recovery times using recovery domains

are compared to the end-to-end optimal solution found by the

MILP from Section III. A similar simulation to Section III-B

was run, using the Lata ‘X’ topology (Fig. 4b). Table II shows

the percent that each of the algorithms differed in total cost of

resources used over the minimum-cost solution found by the

MILP.

Protection Scheme Unit Edge Costs Random Edge Costs
rd_opt 0 0

rd_fastest 1% 6%
rd_approx 5% 2%

TABLE II: Difference for the algorithms from optimal

As expected, the optimal algorithm rd_opt did not differ

from the optimal solution found by the MILP. Additionally, the

average number of iterations needed to close the duality gap

was 1.46 over all simulated demands. Both the fastest paths

and approximation algorithm also performed close to optimal.

When edge costs were uniform, the fastest paths approach in

fact gave slightly better results. But when edge costs were

changed to be random, the approximation algorithm performed

better since it tries to optimize with respect to cost, and the

fastest paths algorithm does not.

2013 Proceedings IEEE INFOCOM

698

V. ALGORITHM WITH BACKUP CAPACITY SHARING

In the previous section, efficient algorithms that offer bounds

with respect to the optimal solution were presented without the

use of backup capacity sharing. These results are useful for a

basic understanding of the guaranteed recovery time problem

using recovery domains (GRT-RD), and for networks that do

not allow protection sharing. But many times, networks do

utilize backup sharing, and significant savings can often be

achieved. In this section, a time-efficient algorithm for GRT-

RD using backup capacity sharing is presented.
If two primary flows for two different demands are edge-

disjoint from one another, then under a single-link failure

model, at most one can be disrupted at any given point in

time. Since at most one demand will need to be restored after

a failure, two failure-disjoint flows can share backup capacity.

An interesting feature of recovery domain routing is that two

demands can share backup capacity even if their two primary

flows are not failure disjoint. Traditionally, in path protection

schemes, two paths can only share protection resources if their

primary paths are disjoint. However, in the recovery domain

setting, sharing can take place between two recovery domains,

so long as the primary segments in those recovery domains are

disjoint. Thus, end-to-end primary paths that are not entirely

disjoint may still share backup resources.

1
2 3

4

5

p1, p2
b1, b2

b1

b2

p1

p2

b1

b2

Fig. 7: Sharing protection resources in a recovery domain

An example of an end-to-end recovery domain routing for

two demands is shown in Fig. 7. Demand 1 is routed from

node 1 to node 4, and demand 2 is routed from node 1 to

node 5. The primary paths are labeled p1 and p2 for demands

1 and 2, respectively, and backup paths are labeled b1 and b2.

Two recovery domains are used for each demand: demand 1

uses recovery domains with the end-points of (1, 2), and (2, 4);
demand 2 uses recovery domains with the end-points of (1, 2),
and (2, 5). The two primary paths overlap in the first recovery

domain on the path segment between nodes 1 and 2; hence,

they cannot share protection resources within that domain, and

each demand has its own dedicated backup path. The primary

segments for the two recovery domains starting at node 2 and

going to their respective destinations are failure disjoint. Even

though the two primary paths overlap between nodes 1 and

2, the two demands can share protection resources for their

recovery domains after node 2. On the path segment between

nodes 2 and 3, only one unit of backup capacity allocation is

needed to protect against a failure for either demand’s primary

path in recovery domains (2, 4) or (2, 5).
Since a failure is local to a recovery domain, and the primary

flow outside of that recovery domain is not affected, a similar

approach can be used as was done previously for the algorithms

without backup capacity sharing: for every pair of nodes,

we find the recovery domain routing that guarantees recovery

time and utilizes backup capacity sharing. Then, an end-to-end

recovery domain routing is constructed from a subset of those

recovery domains using end_to_end_RD (Section IV-A).

Conflict sets are used to determine how much backup capac-

ity can be shared by each incoming demand [19]. A conflict

set indicates how much backup sharing is possible on an edge

by examining how much backup capacity it already has to

protect against any particular edge failure. If some edge has

more backup capacity already assigned to it than is needed to

protect against a particular edge failure, then those resources

can be used at no additional cost. For example, let some

edge {i, j} have one unit of backup capacity allocated to it

to protect against the failure of {k, l}, and with edge {i, j}
not being scheduled to protect against any other link failures.

Now consider some new connection with a primary flow that

uses some other edge {u, v}. Edges {k, l} and {u, v} can

never fail simultaneously under a single-link failure model;

thus, the new connection can use the backup capacity allocated

to {i, j} for protecting against the failure of {u, v} without

incurring additional cost. Further details of protection routing

using conflict sets can be found in [19].

We consider routing demands dynamically (one-at-a-time),

where once a connection is routed, it can no longer be changed;

this model is similar to those used in path protection schemes

[15, 19]. These path protection schemes offer heuristics to

jointly optimize the primary and backup path for each incoming

demand. We instead choose the simple strategy of using the

shortest path for the primary route. After the primary path is

found, the cost to use the remaining edges to protect that path

can be determined (i.e., find out if edges can utilize protection

resource sharing at no additional cost). If the maximum recov-

ery time is T , and the shortest path has traversal time ts, then

a backup path is a constrained shortest path (CSP) that has a

traversal time of at most (T − ts). To solve for the CSP, an

optimal solution can be found in pseudo-polynomial time [31];

if T is rational and polynomial bounded with respect to the

input parameters, the algorithm becomes polynomial. We label

this algorithm rd_sharing. Our simulations show that using

the shortest path for the primary route in fact performs better

than jointly optimizing the primary and backup paths for each

incoming demand.

To test the performance of rd_sharing, a similar sim-

ulation to Section III-B was run. The simulations were run

using both the NSFNET and Lata ‘X’ topologies (Fig. 4) with

75 random unit demands. Each link’s traversal time was set

to be the propagation delay of that link, plus a 3 ms switching

delay. Edges have random integer cost with uniform distribution

between 1 and 5, and the maximum recovery time is set to

the MPLS standard of 50 ms [1]. Three different schemes

were tested: the optimal recovery domain routing with sharing,

which jointly optimizes the primary and backup path for each

incoming demand (using the MILP from Section III), local

2013 Proceedings IEEE INFOCOM

699

Protection Scheme NSFNET Lata ‘X’
Local Recovery with Sharing 583 3459

Optimal Recovery with Sharing 351 2677
End-to-end rd_sharing 349 2605

TABLE III: Cost of allocation for different protection schemes

recovery (FRR) with sharing (found in [21]), and the end-to-end

rd_sharing algorithm developed in this section. A dynamic

model was used: connections are serviced in the order of their

arrival, and once a connection is routed, it can no longer be

changed. Table III shows the total cost of allocation needed

to route all 75 demands using the aforementioned protection

schemes.

As anticipated, the optimal recovery scheme performs better

than the local recovery scheme. Interestingly, the end-to-end

rd_sharing algorithm performs better than the supposed

optimal recovery with sharing. This can be explained by observ-

ing that the algorithm takes the simple strategy of the shortest

path as the primary for each connection. This is as opposed to

the optimal recovery scheme that jointly optimizes the primary

and backup routes for each incoming demand, which may take

a longer primary path to take advantage of backup sharing.

By greedily optimizing every incoming demand, the potentially

longer primary path makes it more difficult for future demands

to find failure disjoint routes, lowering their ability to share

protection resources, and thus increasing the overall cost.

VI. CONCLUSION

In this paper, we examined the problem of providing net-

work protection with guaranteed recovery times using recovery

domains (GRT-RD). The network is partitioned into failure-

independent “recovery domains”, where within each domain,

the time to recover from a failure is guaranteed. To meet these

guarantees, we provide an optimal solution in the form of an

MILP. We demonstrate that the network-wide optimal solution

can be decomposed into a set of more tractable and easier to

solve subproblems. This allows for the development of flexible

and efficient solutions, including an optimal algorithm using

Lagrangian relaxation, which simulations show to converge

rapidly to an optimal solution. Low complexity heuristics are

developed for both with and without backup sharing. For

dynamic arrivals, the algorithm utilizing backup sharing and

using shortest paths performs better than the solution that

greedily tries to optimize for each incoming demand.

REFERENCES

[1] V. Sharma and F. Hellstrand, “Framework for multi-protocol label switch-
ing (MPLS)-based recovery,” IETF RFC 3469, Tech. Rep., 2003.

[2] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an IP backbone,” in Proceedings of the 2nd
ACM SIGCOMM. ACM, 2002, pp. 237–242.

[3] X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic Engineering with
MPLS in the Internet,” Network, IEEE, vol. 14, no. 2, pp. 28–33, 2002.

[4] E. Rosen, A. Viswanathan, R. Callon et al., “Multiprotocol label switching
architecture,” IETF RFC 3031, Tech. Rep., 2001.

[5] “Understanding mpls-tp and its benefits,” White paper, Cisco,
2009. [Online]. Available: http://www.cisco.com/en/US/technologies/
tk436/tk428/white paper c11-562013.pdf

[6] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” IETF RFC 4090, Tech. Rep., 2005.

[7] M. Kodialam and T. Lakshman, “Dynamic routing of locally restorable
bandwidth guaranteed tunnels using aggregated link usage information,”
in INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 1.
IEEE, 2001, pp. 376–385.

[8] S. Raza, F. Aslam, and Z. Uzmi, “Online routing of bandwidth guaranteed
paths with local restoration using optimized aggregate usage information,”
in Communications, 2005. ICC 2005. 2005 IEEE International Confer-
ence on, vol. 1. IEEE, 2005, pp. 201–207.

[9] L. Li, M. Buddhikot, C. Chekuri, and K. Guo, “Routing bandwidth
guaranteed paths with local restoration in label switched networks,” in
Network Protocols, 2002. Proceedings. 10th IEEE International Confer-
ence on. IEEE, 2002, pp. 110–120.

[10] R. Cohen and G. Nakibly, “Maximizing restorable throughput in MPLS
networks,” IEEE/ACM Transactions on Networking (TON), vol. 18, no. 2,
pp. 568–581, 2010.

[11] C. Huang and D. Messier, “A fast and scalable inter-domain MPLS
protection mechanism,” Journal of Communications and Networks, vol. 6,
no. 1, pp. 60–67, 2004.

[12] N. Sprecher and A. Farrel, “MPLS-TP Survivability Framework,” IETF
RFC 6372, Tech. Rep., 2011.

[13] D. Xu, Y. Xiong, and C. Qiao, “Novel algorithms for shared segment
protection,” Selected Areas in Communications, IEEE Journal on, vol. 21,
no. 8, pp. 1320–1331, 2003.

[14] K. Wu, L. Valcarenghi, and A. Fumagalli, “Restoration schemes with
differentiated reliability,” in Communications, 2003. ICC’03. IEEE Inter-
national Conference on, vol. 3. IEEE, 2003, pp. 1968–1972.

[15] C. Ou, S. Rai, and B. Mukherjee, “Extension of segment protection
for bandwidth efficiency and differentiated quality of protection in op-
tical/mpls networks,” Optical Switching and Networking, vol. 1, no. 1,
pp. 19–33, 2005.

[16] S. Arakawa, J. Katou, and M. Murata, “Design method of logical
topologies with quality of reliability in wdm networks,” Photonic Network
Communications, vol. 5, no. 2, pp. 107–121, 2003.

[17] J. Tapolcai, P. Ho, D. Verchére, T. Cinkler, and A. Haque, “A new shared
segment protection method for survivable networks with guaranteed
recovery time,” Reliability, IEEE Transactions on, vol. 57, no. 2, pp.
272–282, 2008.

[18] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable WDM
Mesh Networks,” Journal of Lightwave Technology, vol. 21, no. 4, p. 870,
2003.

[19] C. Ou, J. Zhang, H. Zang, L. Sahasrabuddhe, and B. Mukherjee, “New
and Improved Approaches for Shared-Path Protection in WDM Mesh
Networks,” Journal of Lightwave Technology, vol. 22, no. 5, 2004.

[20] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, New Jersey, 1993.

[21] G. Kuperman and E. Modiano, “Network Protection with Guaranteed
Recovery Times using Recovery Domains,” MIT, Tech. Rep., 2012.
[Online]. Available: http://web.mit.edu/gregk/www/papers/NPGRTRD.
pdf

[22] D. Bertsimas and J. Tsitsiklis, Introduction to linear optimization. Athena
Scientific Belmont, MA, 1997.

[23] J. Suurballe and R. Tarjan, “A quick method for finding shortest pairs of
disjoint paths,” Networks, vol. 14, no. 2, 1984.

[24] Y. Aneja and K. Nair, “The constrained shortest path problem,” Naval
Research Logistics Quarterly, vol. 25, no. 3, pp. 549–555, 1978.

[25] G. Handler and I. Zang, “A dual algorithm for the constrained shortest
path problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[26] J. Beasley and N. Christofides, “An algorithm for the resource constrained
shortest path problem,” Networks, vol. 19, no. 4, pp. 379–394, 1989.

[27] M. Ziegelmann, “Constrained shortest paths and related problems,” Ph.D.
dissertation, Universitat des Saarlandes, 2001.

[28] J. Yen, “Finding the k shortest loopless paths in a network,” management
Science, pp. 712–716, 1971.

[29] E. Lawler, “A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem,”
Management Science, pp. 401–405, 1972.

[30] A. Orda and A. Sprintson, “Efficient algorithms for computing disjoint
qos paths,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, vol. 1. IEEE, 2003.

[31] H. Joksch, “The shortest route problem with constraints,” Journal of
Mathematical analysis and applications, vol. 14, pp. 191–197, 1966.

2013 Proceedings IEEE INFOCOM

700

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

