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Abstract—We consider the problem of providing protection
against failures in wireless networks subject to interference
constraints. Typically, protection in wired networks is provided
through the provisioning of backup paths. This approach has
not been previously considered in the wireless setting due to the
prohibitive cost of backup capacity. However, we show that in the
presence of interference, protection can often be provided with no
loss in throughput. This is due to the fact that after a failure, links
that previously interfered with the failed link can be activated,
thus leading to a “recapturing” of some of the lost capacity.

We provide both an ILP formulation for the optimal solution,
as well as algorithms that perform close to optimal. More impor-
tantly, we show that providing protection in a wireless network
uses as much as 72% less protection resources as compared to
similar protection schemes designed for wired networks, and that
in many cases, no additional resources for protection are needed.

I. INTRODUCTION

Multi-hop wireless mesh networks have become increas-

ingly ubiquitous, with wide-ranging applications from military

to sensor networks. As these networks continue gaining in

prominence, there is an increasing need to provide protection

against node and link failures. In particular, wireless mesh

networks have recently emerged as a promising solution for

providing Internet access. Since these networks will be tightly

coupled with the wired Internet to provide Internet services

to end-users, they must be equally reliable. Wired networks

have long provided pre-planned backup paths, which offer

rapid and guaranteed recovery from failures. These protection

techniques cannot be directly applied to wireless networks

due to interference constraints. As opposed to wired networks,

two wireless nodes in close proximity will interfere with one

another if they transmit simultaneously in the same frequency

channel. So, in addition to finding a backup route, a schedule

of link transmissions needs to be specified. In this work, we

consider the problem of providing guaranteed protection in

wireless networks with interference constraints via pre-planned

backup routes, as well as their corresponding link transmission

schedules.

Guaranteed protection schemes for wired networks have been

studied extensively [1–5], with the most common scheme being
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1 + 1 guaranteed path protection [5]. The 1 + 1 protection

scheme provides an edge-disjoint backup path for each working

path, and guarantees the full demand to be available at all

times after any single link failure. Protection schemes optimized

for wireless networks with interference constraints have not

yet been considered. Typically, an approach for resiliency in

wireless networks (in particular sensor networks) is to ensure

that there exists “coverage” for all nodes given some set of link

failures [6, 7]. This approach to resiliency does not consider

routing and scheduling with respect to interference constraints,

and assumes that there exists some mechanism to find a route

and schedule at any given point in time. Furthermore, there is

no guarantee that sufficient capacity will be available to protect

against a failure. The idea of applying 1 + 1 protection in

wireless networks is briefly mentioned in [8]. However, [8] does

not study the specific technical details of such an approach to

wireless protection. The goal of this paper is to study protection

mechanisms for wireless networks with a particular focus on

the impact of wireless interference and the need for scheduling.

The addition of interference constraints makes the protection

problem in a wireless setting fundamentally different from the

ones found in a wired context. After a failure in a wireless

network, links that could not have been used due to interference

with the failed link become available, and can be used to

recover from the failure. In fact, it is often possible to add

protection in a wireless setting without using any additional

resources.

Consider allocating a protection route for the following

example, shown in Fig. 1. The wireless network operates in a

time-slotted fashion, with equal length time slots available for

transmission. Any two nodes within transmission range have

a link between them, and each link’s time slot assignment is

shown in the figures. We assume a 1-hop interference model

where any two links that have a node in common cannot be

active at the same time. Additionally, we assume unit capacity

links. Before any failure, the maximum flow from s to d is 1,

and can be achieved using a two time slot schedule, as shown in

Fig. 1a. At any given point in time, only one outgoing link from

s can be active, and similarly, only one incoming link to d can

be active. Wireless links {s, c}, and {c, d} cannot be used prior

to the failure of {s, b}, but become available after {s, b} fails.

After the failure of {s, b}, flow can be routed from s to c during

time slot 2, and from c to d during slot 1, as shown in Fig. 1b.
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Fig. 1: Time slot assignment for protection in a wireless network

Similar schedules can be found for failures of the other links.

The maximum flow from s to d is 1 for both before and after

a failure; i.e., there is no reduction in maximum throughput

when allocating resources for a protection route on {s, c} and

{c, d}: protection can be assigned for “free”. This is in contrast

to a wired network where the maximum throughput without

protection from s to d is 3, and the maximum throughput when

assigning a protection route on {s, c} and {c, d} is 2, which

amounts to a 1
3 loss in throughput due to protection.

The novel contributions of this paper is introducing the

Wireless Guaranteed Protection (WGP) problem in multi-

hop networks with interference constraints. In Section II, the

model for WGP is presented. In Section III, properties of an

optimal solution are presented for a single demand with 1-

hop interference constraints, which are then used to motivate

the development of a polynomial timed optimal algorithm. In

Section IV, an optimal solution is developed via a mixed integer

linear program for general interference constraints. In Section

V, time-efficient algorithms are developed that perform within

4.5% of the optimal solution.

II. MODEL AND PROBLEM DESCRIPTION

In this paper, solutions to the guaranteed protection problem

for multi-hop wireless networks subject to interference con-

straints are developed and analyzed. Our goal is to provide

protection in a manner similar to what has been done in

the wired setting. Namely, after the failure of some network

element, all connections must maintain the same level of flow

that they had before the failure. In order to do so, resources

are allocated and scheduled in advance on alternate (backup)

routes to protect against failures.

In wired networks, two adjacent nodes can transmit simul-

taneously because they do not interfere with one another; if

capacity exists on a set of links, a path can be routed using

that capacity. Wireless networks are different; interference

constraints must be considered. A set of links in close proximity

cannot transmit simultaneously on the same frequency channel;

only one link from that set can be active at a time, or else they

will interfere with one another. Not only must a path between

the source and destination be found with available capacity, but

also a schedule of link transmissions needs to be determined.

This is known as the routing and scheduling problem [8–16],

which is known to be NP-Hard [9].

The addition of interference constraints adds complexity to

the traditional wired protection problem, but also presents an

opportunity to gain protection from failures with minimal loss

of throughput. After a failure in a wireless network, links that

could not have been used due to interference with the failed link

become available, and can be used to recover from the failure.

In fact, it is often possible to add protection in a wireless setting

without any loss in throughput.

The following network model is used for the remainder of

the paper. A graph G has a set of vertices V and edges E.

An interference matrix I is given, where Iklij ∈ I is 1 if

links {i, j} and {k, l} can be activated simultaneously (do not

interfere with each other), and 0 otherwise. The interference

matrix is agnostic to the interference model used (i.e., it can

be used to represent nearly any type of link interferences). For

the remainder of this work, we focus on the 1-hop interference

model (any two links that share a node cannot be activated

simultaneously), but our schemes can be adapted to the K-hop

[17] interference model as well. Our goal in this paper is to

develop a framework for routing and scheduling with protection

under interference constraints. We assume nodes are fixed, links

are bidirectional, and that the network uses a synchronous time

slotted system, with equal length time slots; the set of time

slots used is T . Only link failures are considered, and a single-

link failure model is assumed; it is straightforward to apply the

solutions developed in this paper to node failures as well. For

now, we assume centralized control; the algorithms presented

can be modified to work in a distributed fashion, as done in

[18]. Additionally, we only consider a single frequency channel.

III. OPTIMAL SOLUTION FOR A SINGLE DEMAND

In this section, we aim to achieve insight into providing

protection for wireless networks with interference constraints

by examining the optimal solution for a single demand under a

basic set of network parameters: 1-hop interference constraints

and unit capacity links. In Section III-A, properties of an

optimal solution are shown for routing and scheduling with and

without protection. In Section III-B, a polynomial time optimal

algorithm is developed using the properties found. All proofs

in this section are omitted for brevity, and can be found in [19].

A. Properties of an Optimal Solution

In this section, properties of an optimal solution for WGP for

a single demand are found. First, routing and scheduling with-

out protection is examined, and then the results are extended

to the protection setting.

Observation 1. The maximum flow that can be routed and
scheduled between the source s and destination d under 1-hop
interference constraints without protection is 1.

The intuition behind Observation 1 is that since at most one

unit-capacity edge leaving the source can be active during any

given time slot, the maximum flow that can leave the source

is 1. While this indicates that a flow of 1 is possible, it does

not necessarily mean that a flow of 1 can be achieved. We now

give the properties of maximum flows in a wireless network

under 1-hop interference constraints.

Lemma 1. To achieve the maximum flow of 1, there must exist
at least two node-disjoint paths from s to d.
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Corollary 1. If two node-disjoint paths from s to d do not exist,
then the maximum flow is 1

2 .

Any path from s to d can have an interference-free schedule

by alternating between time slots 1 and 2 for each edge of the

path; hence, any edge of the path will only be active for half

of the time, and the path will support a flow of 1
2 . If two or

more node-disjoint paths do exist, then a maximum flow of 1
or 2

3 is obtainable depending on the total number of edges in

the disjoint paths.

Lemma 2. If there exists two node-disjoint paths between s
and d with an even total number of edges over both paths,
then the maximum flow of 1 is achievable. If there exists only
two node-disjoint paths with an odd total number of edges over
both paths, then the maximum flow is 2

3 .

To help see Lemma 2, three simple examples are shown

in Fig. 2, with the time slot assignments for the links shown

in the figures. In Fig. 2a and 2b, there are two node-disjoint

paths from the source s to destination d that have an even total

number of edges. In Fig. 2a, each path has an even number of

edges, and in Fig. 2b, each path has an odd number of edges.

An interference-free schedule for the two paths can be found

using two time slots. Each link is active for 1
2 of the time;

hence, each path can support a flow of 1
2 , giving a total flow

of 1. In Fig. 2c, the two node-disjoint paths have an odd total

number of edges; three time slots are needed to schedule the

two paths. Each link is active for 1
3 of the time, and each path

can support a flow of 1
3 , which gives a total flow of 2

3 .
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Fig. 2: Node-disjoint paths with an even or odd total number of edges

Corollary 2. If there exists more than two node-disjoint paths
between s and d, a maximum flow of 1 is always achievable.

If there exists more than two node-disjoint paths, then there

always exists a pair of node-disjoint paths with an even number

of edges.

These results can be extended to the case where protection

is required. For protection against any single link failure in

a graph G = (V,E), consider each subgraph after a link

failure: Ge = (V,E \ e), e ∈ E; all the previous results still

apply to each of these new subgraphs. To find the maximum

possible protected flow, the maximum flow is found after each

edge is individually removed (each possible edge failure). The

minimum of these flows is the maximum protected flow.

B. Time-Efficient Optimal Algorithm

With properties of an optimal solution to offer guaranteed

protection for a single demand under 1-hop interference con-

straints established, it is now possible to construct an optimal

polynomial timed algorithm. There are three possible maximum

flows between nodes s and d, which follow from the results in

Section III-A:

• 1 if there exists two node-disjoint paths with an even total

number of edges.

• 2
3 if there exists two node-disjoint paths with an odd total

number of edges.

• 1
2 if there are no node-disjoint paths.

To find the maximum protected flow between nodes s and d
in a graph G = (V,E), the maximum flow is found for each

link failure by using a subgraph with each link e removed:

Ge = (V,E \ e), e ∈ E. The minimum of these maximum

flows is the maximum protected flow possible for the demand.

The key to finding the maximum protected flow is to be able

to identify node-disjoint paths between s and d with either

an even or odd total number of edges. If there are at most

two node-disjoint paths, then the maximum flow can only be

found if it is possible to find a pair of paths with an even total

number of edges. Hence, we focus on trying to find a pair of

node-disjoint paths that have an even total number of edges

over both of the paths. There has been limited work on trying

to identify shortest paths with an even number of edges [20],

but no work looking at such an algorithm for disjoint paths.

Development of the optimal algorithm is as follows: we first

find the shortest pair of edge-disjoint paths with an even number

of total edges, and then we extend this algorithm to find the

shortest pair of node-disjoint paths with an even number of

total edges.

1) Shortest pair of edge-disjoint paths with an even number
of total edges: To find the shortest pair of edge-disjoint paths

with an even number of edges, we begin by considering the

more general case without the even-edge restriction (the paths

can have any number of edges), which was previously consid-

ered in [21]. We use a different formulation for the problem

by using minimum-cost flows, which are defined as finding a

flow of minimum cost between a source and destination in a

network that has both edge costs and edge capacities [22].

Minimum-cost flows have the property that when given all

integer inputs (for edge costs and capacities), they will have all

integer solutions (integer flows). We solve the shortest disjoint

pair of paths problem by solving the following optimization

problem: find a flow of minimum cost to route two units from s
to d in a graph with unit capacity and unit cost edges. This will

find the shortest pair of disjoint paths since two units of flow

need to be routed, no edge can have more than a single unit of

flow, and with integer inputs, the solution will be integer, which

will be two edge-disjoint paths of unit flow and minimum cost.

One algorithm to solve the minimum-cost flow problem is the

successive shortest paths (SSP) algorithm [22]. SSP finds the

shortest path, and routes the maximum flow possible onto that

path. This repeats until the desired flow between the source and

destination is routed. SSP runs in polynomial time to solve the

minimum-cost flow formulation for the shortest pair of disjoint

paths; further details of SSP can be found in [22].

Using SSP to solve for a minimum-cost flow requires the use

of some shortest path algorithm. Assume there exists a shortest
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path algorithm that is capable of finding a path with an even

or odd number of edges; label these algorithms Even and Odd

Shortest Path (ESP and OSP, respectively). Using SSP to solve

for the shortest pair of disjoint paths with either ESP or OSP

as the shortest path function will always yield a pair of disjoint

paths with an even total number of edges (if they exist). We call

this the Even Shortest Pair of Edge-Disjoint Paths algorithm.

Lemma 3. The Even Shortest Pair of Edge-Disjoint Paths
algorithm will find, if it exists, the shortest pair of disjoint paths
with an even total number of edges.

In order to use SSP to find the shortest pair of disjoint paths

with an even number of edges, a shortest path algorithm is

needed that can find a path with an even or odd number of

edges. The algorithm in [20] that finds the shortest path with

an even number of edges cannot be easily extended to find the

shortest pair of disjoint paths with an even number of edges.

Hence, we first focus on developing an algorithm to find the

Even Shortest Path (ESP), and then extend ESP to find the Odd

Shortest Path (OSP).

We modify the standard Bellman-Ford recursion [22] to

search for only paths with an even number of edges, which

is shown in Equation 1. We label Sz(s, k) to be the minimum-

cost path from node s to k using at most 2z edges. The cost

of edge {i, j} is cij ; in our case cij = 1, ∀{i, j} ∈ E. Instead

of checking if a path from s to j plus edge {j, k} is of lower

cost than the existing path from s to k, we check to see if the

path from s to i plus two edges {i, j} and {j, k} are of lower

cost than the existing path from s to k.

Sz(s, k) = min[ min
{i,j}∈E
{j,k}∈E

i �=k

(Sz−1(s, j) + cij + cjk), Sz−1(s, k)],

∀z = 1..|V |, ∀k ∈ V (1)

To find the shortest path from the source s with an odd

number of edges, we run ESP from all neighboring nodes of s
(nodes that are one hop from s). The lowest cost path leading

back to the source is the solution to OSP.
2) Shortest pair of node-disjoint paths with an even number

of total edges: In order to optimally solve for routing and

scheduling under 1-hop interference constraints, a pair of node-

disjoint paths with an even number of edges must be found.

The Even Shortest Pair of Edge-Disjoint Paths algorithm finds

the shortest pair of edge-disjoint paths with an even number

of edges. To use the edge-disjoint algorithm to solve the node-

disjoint case, each node is transformed into two separate nodes

with an edge of zero cost between them: one node has all

incoming edges, and the other all outgoing (as shown in Fig.

3). If there existed multiple edge-disjoint paths that intersected

at node v, they would no longer be able to be edge-disjoint in

the transformed network, because then they would all have to

share the edge {vin, vout}.
Running the Even Shortest Pair of Edge-Disjoint Paths

algorithm on the transformed network will find node-disjoint

paths, but not necessarily achieve the desired result of a pair of

disjoint paths with an even number of edges. With the addition

v vin
vout

Fig. 3: Node splitting to find node-disjoint paths

of zero-cost edges to the transformed network, finding a pair of

disjoint paths with an even number of edges in the transformed

network may not yield paths with an even number of edges in

the original network. A modification to the algorithm must be

made to account for the new edges: in the transformed network,

when choosing between an existing path from s to k, or some

new path s to i plus a segment i to k, consider only segments

that have an even number of “original” edges. This will ensure

that a final path in the original network will have an even

number of edges. The algorithm now begins to more closely

resemble the Floyd-Warshall algorithm [22], which considers

joining segments to find a shortest path. This new algorithm is

called Even Shortest Pair of Node-Disjoint Paths.

These results can be extended to solve Wireless Guaranteed

Protection problem with a single demand under 1-hop inter-

ference constraints. The maximum flow is found after every

possible edge failure for each subgraph Ge = (V,E \ e),
∀e ∈ E. The minimum of these maximum flows is the

maximum protected flow. For each instance, we first see if there

exists a pair of node-disjoint paths with an even total number

of edges. If this exists, then a maximum flow of 1 is possible.

If not, we check to see if there exists node-disjoint paths with

an odd total number of edges (by running the standard edge-

disjoint path routing algorithm on the transformed graph). If

this exists, then a maximum flow of 2
3 is possible. If no node-

disjoint paths exist, then find some path from s to d, which can

support a flow of 1
2 . Simulations show that the Even Shortest

Pair of Node-Disjoint Paths algorithm is in fact optimal for all

tested cases.

IV. AN OPTIMAL FORMULATION FOR WIRELESS

GUARANTEED PROTECTION

In the previous section, an optimal solution for routing and

scheduling with protection for a single demand was presented.

While this provides insight, typical networks will need to si-

multaneously handle multiple connections. Additionally, many

networks have interference constraints other than the 1-hop

model. This section provides a mathematical formulation to the

optimal solution for the Wireless Guaranteed Protection (WGP)

problem with general interference constraints. In particular, for

a set of demands, a route and schedule needs to be found such

that after any link failure, all end-to-end connections maintain

their same level of flow. For general interference constraints,

the routing and scheduling problem was demonstrated to be

NP-Hard [9]. We conjecture that adding protection constraints

preserves NP-hardness; hence, a mixed integer linear program

(MILP) is formulated to find an optimal solution to WGP.

In wired networks, a typical objective function for protection

is to minimize the total allocated capacity needed to satisfy

all demands. A similar objective cannot be clearly defined for
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wireless networks since the concept of capacity changes in the

presence of interference constraints. Consider some active link

{i, j}. An adjacent link {j, k} cannot be used simultaneously

with {i, j} because of interference; hence, simply adding

additional link capacity (in a wired sense) will not allow its

use. Another time slot must be allocated to allow a connection

to use {j, k} such that it does not interfere with {i, j}. Adding

an additional time slot will reduce the time that each individual

time slot in the schedule is active, which reduces the overall

throughput of the network [8, 9, 13]. For example, consider a

network with two time slots and a connection that supports a

flow of 1 using these two time slots. If a third time slot is added

to the schedule, then the original two time slots are only active

for 2
3 of the total time, and that flow’s scheduled throughput is

reduced from 1 to 2
3 . Thus, the objective we consider is to use

a minimum number of time slots to route and schedule each

demand with protection.

Finding a protection route and schedule using the minimum

number of time slots allows for a simple comparison to existing

wired and wireless protection schemes. The difference between

the number of time slots necessary to route and schedule a set of

demands before and after adding protection will be considered

the reduction of the maximum throughput. To be consistent with

the wireless protection scheme mentioned in [8], wireless flows

are restricted to single paths (no flow splitting allowed). For

ease of exposition, the MILP assigns the same throughput to all

demands; see [19] for the formulation with different throughput

requirements.

For the MILP, the following values are given:

• G = (V,E) is the graph with a set of vertices and edges

• D is the set of flow requirements

• uij is the capacity of link {i, j}
• I is the interference matrix, where Iklij ∈ I is 1 if

links {i, j} and {k, l} can be activated simultaneously, 0

otherwise

• T is the set of time slots in the system, T ⊂ Z
+

The MILP solves for the following variables:

• xsd
ij is a routing variable and is 1 if primary flow is

assigned for demand (s, d) on link {i, j}, 0 otherwise

• ysdij,kl is a routing variable and is 1 if protection flow is

assigned on link {i, j} for the demand (s, d) after the

failure of link {k, l}, 0 otherwise

• λsd,t
ij is a scheduling variable and is 1 if link {i, j} can be

activated in time slot t for the demand (s, d), 0 otherwise

• δsd,tij,kl is a scheduling variable and is 1 if link {i, j} can

be activated in time slot t after failure of link {k, l} for

the demand (s, d), 0 otherwise

• st is 1 if time slot t is used by any demand, and 0 otherwise

The objective function is to minimize the number of time

slots (the length of the schedule) needed to route all demands

with protection:

Objective: min
∑

t∈T
st (2)

The following constraints are imposed to find a feasible

routing and scheduling with protection.

Before a link failure:

• Flow conservation constraints for the primary flow: route

primary traffic before a failure for each demand.

∑

{i,j}∈E
xsd
ij −

∑

{j,i}∈E
xsd
ji =

⎧
⎪⎨

⎪⎩

1 if i = s

−1 if i = d

0 otherwise

,

∀i ∈ V, ∀(s, d) ∈ D (3)

• In any given time slot, for a given demand, only links

that do not interfere with one another can be activated

simultaneously.
∑

(s,d)∈D
λsd,t
ij +

∑

(s,d)∈D
λsd,t
kl ≤ 1 + Iijkl ,

∀{i,j}∈E, ∀{k,l}∈E
{i,j}�={k,l}, ∀t∈T (4)

• Only one demand can use a given link at a time.
∑

(s,d)∈D
λsd,t
ij ≤ 1, ∀{i,j}∈E∀t∈T (5)

• Ensure enough capacity exists to support the necessary

flow for demand (s, d) on edge {i, j} for the length of

time that the link is active.

xsd
ij ≤

∑

t∈T
λsd,t
ij uij ,

∀{i,j}∈E
∀(s,d)∈D (6)

• Mark if slot t is used to schedule a demand before a failure.

λsd,t
ij ≤ st, ∀{i,j}∈E

∀t∈T , ∀(s,d)∈D
After a link failure:

• Flow conservation constraints for protection flow: route

protection traffic after each link failure {k, l} ∈ E.

∑

{i,j}∈E
{k,l}�={i,j}

ysdij,kl −
∑

{j,i}∈E
{k,l}�={j,i}

ysdji,kl =

⎧
⎪⎨

⎪⎩

1 if i = s

−1 if i = d

0 otherwise

,

∀i ∈ V, ∀{k, l} ∈ E, ∀(s, d) ∈ D (7)

• In any given time slot after the failure of link {k, l}, only

links that do not interfere with one another can be activated

simultaneously.
∑

(s,d)∈D
δsd,tij,kl +

∑

(s,d)∈D
δsd,tuv,kl ≤ 1 + Iijuv,

∀{i,j}∈E, ∀{k,l}∈E
∀{u,v}∈E, ∀t∈T
{i,j}�={k,l}�={u,v}

(8)

• Only one demand can use a given link at a time after the

failure of link {k, l}.
∑

(s,d)∈D
δsd,tij,kl ≤ 1, ∀{i,j}∈E, ∀{k,l}∈E

∀t∈T (9)

• Ensure enough capacity exists after the failure of link

{k, l} to support the necessary flow on edge {i, j} for

the length of time that the link is active.

ysdij,kl ≤
∑

t∈T
δsd,tij,kluij ,

∀{i,j}∈E, ∀{k,l}∈E
∀(s,d)∈D (10)

• Mark if time slot t is used to schedule a demand after the

failure of link {k, l}.
δsd,tij,kl ≤ st, ∀{i,j}∈E, ∀{k,l}∈E

∀t∈T , ∀(s,d)∈D
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Fig. 4: Reduction of throughput when adding protection

To demonstrate how protection can be added to wireless net-

works with minimal reduction of throughput, WGP is compared

to both the wired (without interference) and wireless protection

(with interference) schemes. One hundred random graphs were

generated with 25 nodes each. Nodes that are physically within

a certain transmission range of one another are considered to

have a link, and the transmission range is varied to give different

desired average node degrees. The node degree is varied from

2.5 to 6.5, and for each graph, ten source/destination pairs

are randomly chosen to be routed concurrently. All links have

unit capacity; 1-hop interference constraints were used for the

wireless networks. The simulation results are found in Fig. 4.

For comparison to wired protection, we use the same network

topologies, however, in the wired case we do not enforce the

interference constraints (i.e., all links can be activated simul-

taneously). For wired protection, we compute the reduction in

throughput as the reduction in maximum flow after protection is

added. As compared to the wired protection scheme, WGP has

a lower reduction in throughput for all node degrees examined.

For node degree 2.5, both the WGP and the wired protection

schemes have larger reductions in throughput: 20% for WGP

and 37% for wired. This is because at lower node degrees,

there are fewer available end-to-end paths, and therefore after

a failure, there are fewer routing options available. As the node

degree increases, and there are more available end-to-end paths,

the reduction in throughput decreases when adding protection.

In fact, it is often possible for WGP to have no reduction in

the throughput between the protected and unprotected setting.

For an average node degree of 3.5, WGP only loses about 10%

of throughput when adding protection, while the wired scheme

loses 32%. For 20% of the simulations at node degree 3.5, there

was no loss in throughput for WGP. When the node degree goes

to 6.5, WGP no longer has any loss in flow, while the wired

setting still has a loss of 11%.

We compare WGP to a wireless 1+1 protection scheme.

In particular, wireless 1+1 protection applies the wired 1+1

protection scheme to wireless networks (as mentioned in [8]):

i.e., find a schedule for the shortest pair of disjoint paths in the

network between the source and destination, with the primary

flow before a failure routed onto one path, and the backup flow

routed onto the other. To compare WGP to wireless 1+1, the

number of time slots needed beyond the non-protection routing

are compared; these are the time slots needed to meet the

Avg. Node Degree
% Reduction of

Protection Time Slots
2.5 72
3.5 63
4.5 60
5.5 52
6.5 46

TABLE I: WGP vs. Wireless 1+1

protection requirements. Table I shows the percent reduction

in number of time slots needed to provide protection using

WGP over wireless 1+1. When the average node degree is 2.5,

WGP has up to a 72% reduction of time slots needed to meet

protection requirements. The reason for this is that wireless

1+1 is scheduling two paths for each demand, a primary and a

backup, and not trying to recapture any capacity after a failure;

this in turn causes a significant increase in interference between

connections. As the node degree increases, there is increased

path diversity and more opportunities to find interference-free

routings; hence, wireless 1+1 has better performance. But at

all times, wireless 1+1 needs significantly more time slots to

provide protection for all of the demands than WGP does,

which is able to recapture capacity after a failure.

V. ALGORITHMS FOR PROVIDING WIRELESS PROTECTION

In the previous section, an MILP was presented to find an

optimal solution to Wireless Guaranteed Protection (WGP),

which is not a computationally efficient method of finding

a solution. In this section, two time-efficient algorithms are

presented to solve the Wireless Guaranteed Protection problem

for a set of demands. Similar to the previous section, primary

and backup flows are restricted to single paths, and the ob-

jective is to minimize the length of the schedule to route all

demands with protection. We first show that this problem is NP-

Hard under 1-hop interference constraints. Next, algorithms are

developed assuming unit demands, unit capacity edges, and a

single link failure model; the algorithms can be modified to

reflect other values of demand and capacity. The algorithms

are developed for dynamic (one-at-a-time) arrivals: an incoming

demand needs to be routed and scheduled over an existing set

of connections; the existing set cannot have their routings or

schedules changed. A 1-hop interference model is used. We find

that when compared to the optimal batch case (all connections

are routed and scheduled simultaneously), the dynamic routing

performs within a few percentage points of optimal.

First, in Section V-A, we demonstrate WGP to be NP-Hard

under 1-hop interference constraints when flows are restricted

to a single path. Next, in Section V-B, an algorithm to find a

shortest 1-hop interference-free path using a minimal number

of time slots is presented. This serves as the building block

for the next two algorithms that are developed. In Section V-C,

an algorithm for finding a minimal length schedule for WGP

is presented, where a backup route and schedule is found for

each possible failure. This approach has drawbacks in that after

any failure, a new route is found; hence, a route and schedule

for each failure event needs to be stored. To overcome this,

an algorithm is developed in Section V-D using disjoint paths
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such that only two paths are needed: a primary and a backup.

In Section V-E, the performance of the two algorithms are

compared to the optimal MILP formulation.

A. Complexity Results under 1-hop Interference Constraints

Without protection, the routing and scheduling problem is

NP-Hard under general interference constraints [9]. But if flows

for each demand are allowed to be split, a polynomial timed

algorithm is possible for 1-hop interference constraints [11]. We

demonstrate that when flows cannot be split, the routing and

scheduling problem becomes NP-Hard under 1-hop interference

constraints.

Theorem 1. Finding the minimum length schedule to route a
set of demands under 1-hop interference constraints when flow
splitting is not allowed is NP-Hard.

We first consider the following necessary and sufficient

condition for routing a set node-disjoint1 pairs, (s1, d1), ...,

(sN , dN ), in only two time slots without flow splitting.

Lemma 4. Under 1-hop interference constraints, a set of
demands that are node-disjoint can be routed and scheduled
using two time slots without flow splitting if and only if there
exists node-disjoint paths between each of the node pairs.

The proof is omitted for brevity, and can be found in [19].

Using Lemma 4, Theorem 1 can be quickly demonstrated.

Proof of Theorem 1: We reduce the Disjoint Connecting

Paths Problem (DCPP) [23] to ours. DCPP asks the following

question: given a graph G = (V,E) and a collection of N
node-disjoint pairs (s1, d1), ..., (sN , dN ), does G contain N
mutually node-disjoint paths, one connecting si and di for each

i, 1 ≤ i ≤ N? We can ask an equivalent question for our

routing and scheduling problem: can a set of N node-disjoint

pairs be routed and scheduled using the minimal number of

time slots (two) under 1-hop interference constraints without

flow splitting? If yes, then by Lemma 4 that means we have

found N mutually node-disjoint paths, one connecting si and

di for each i, 1 ≤ i ≤ N , which solves DCPP. An answer of

no means a solution to DCPP does not exist.

Next, we extend this complexity result to the case when

protection is required.

Theorem 2. Finding the minimum length schedule to route
a set of demands with protection under 1-hop interference
constraints without flow splitting is NP-Hard.

The proof is omitted for brevity, but follows as an extension

to the proof for Theorem 2; it can be found in [19].

B. Minimum Schedule for an Interference Free Path

We begin by developing an algorithm to find a shortest

interference-free path using the minimum number of time slots

under the 1-hop interference model. This algorithm will be a

building block for the two protection algorithms that will be

discussed in the upcoming sections. We consider an incoming

demand for a connection between nodes s and d. Connections

already exist in the network, with the set of T time slots already

1A node is a source or destination for at most one demand.

in use. Based on how the current connections are routed and

scheduled, a set of edge interferences I can be constructed,

where for every edge {i, j}, Iij ∈ I is the set of time slots

that cannot be used on that edge because either that time slot

is already used by {i, j}, or using that time slot on {i, j} will

interfere with another edge using it at that time. The set of edge

interferences I can be constructed in polynomial time, and will

be given as an input to the algorithm.

First, we wish to determine the shortest interference free path

without using any additional time slots beyond the set T , and

without rescheduling or rerouting existing connections. Each

edge {i, j} has a set of free time slots during which it can be

used: τij = T \Iij . Let P be the set of edges used in a path. If

each edge of a loop-free path P has at least two free time slots,

then that path can be scheduled without interference using the

existing time slot allocation T .

Lemma 5. For 1-hop interference, a loop-free path P can be
scheduled without interference if |τij | ≥ 2, ∀{i, j} ∈ P .

Proof: If |τij | ≥ 2, ∀{i, j} ∈ P , then each edge in P has

an available time slot that does not interfere with its adjacent

set of edges. Since the path is loop-free, any two edges that use

the same time slot will never be less than one hop apart from

one another, and therefore never interfere with each other.

Using the result from Lemma 5, the following algorithm is

constructed to find a 1-hop interference-free path using only the

set of time slots T : remove all edges in G that have |τij | ≤ 1,

find the shortest path Psd between s and d, and assign time

slots to the edges in Psd such that it has an interference-free

schedule.

An improvement can be made to the algorithm by attempting

to maximize the number of free time slots on any edge, so that

future connections will be less likely to require additional time

slots to find an interference-free path. Currently, edges that have

many free time slots are not given any preference. If an edge has

only the minimal number of free time slots, it may be selected

for use in a path. This may hurt finding interference-free paths

for future connections by limiting the number of available time

slots on an edge, thus necessitating new time slots. We assign a

cost for each edge to be equal to the number of time slots that

that edge interferes with: cij = |Iij |. With respect to these new

edge costs, a minimum-cost interference-free path is found. The

more time slots an edge is in conflict with, the more expensive

that edge will be, and the less likely it will be used in a route.

We refer to this algorithm as int_free_path, which will

return the edges and schedule of a path between s and d.

To find an interference free path that tries to minimize future

conflicts, and using minimum additional time slots, we first find

a minimum-cost interference free path for the current set of time

slots assigned in the network, T . If such a path does not exist,

increase the set of available time slots by 1, and repeat. We

note that the set of time slots will never increase by more than

two since a feasible schedule can be found for any path with

two free time slots. We call this algorithm find_path.
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C. Minimum Length Schedule for Wireless Protection
In this section, an algorithm is developed that tries to find

the minimum length schedule for the Wireless Guaranteed

Protection problem, with an approach that is similar to the

optimal solution found by the MILP in Section IV. The problem

is broken up into |E| + 1 subproblems. First, the minimum

length schedule is found to route the set of demands before

a failure. Then, for each possible failure, the minimum length

schedule is found to route the set of demands on a failure graph

Gkl = (V,E \ {k, l}), ∀{k, l} ∈ E (i.e., the graph that remains

after the failure of edge {k, l}). Each of the solutions to these

subproblems represents the route and schedule necessary to

meet the protection requirements for the set of demands before

and after any link failure.

The maximum of any of these minimum length schedules

will be the length of the schedule needed to add protection

to set of demands in a wireless network. The algorithm is

called minimum_protect; it will return the set of paths and

schedules for each demand, indicating which path and schedule

to use after any link failure.

D. Disjoint Path Wireless Guaranteed Protection

In Section V-C, an algorithm was described to find the

minimum number of time slots to route and schedule a set

of demands with protection. After any failure, a new route is

found; hence, many possible routing configurations exist, and a

route and schedule for each failure event needs to be saved. A

more desirable approach may be to limit the number of paths

needed to only two: a primary and a backup. Before continuing

with the development of the algorithm, a complexity result is

presented regarding using disjoint paths to provide protection

in a wireless network with 1-hop interference constraints. For

a set of time slots T , simply determining if any solution exists

to WGP using disjoint paths is NP-Complete.

Theorem 3. For an incoming connection between s and d,
using disjoint paths to provide protection in a wireless network
with 1-hop interference constraints for the set of time slots T
is NP-Complete.

A reduction is performed from the Dynamic Shared-Path

Protected Lightpath-Provisioning (DSPLP) [2]. The proof is

omitted for brevity, and can be found in [19].

Our approach for developing an algorithm to solve WGP

using disjoint paths is similar to the wireless 1 + 1 protection

scheme described earlier; however, we take advantage of the

time slot reuse that is possible before and after a failure, as

well as the opportunity to share protection resources between

failure disjoint demands. If an edge in a primary path P uses

time slot t, then for 1-hop interference, all edges adjacent to

that edge also cannot use t. After the failure of an edge in

the primary path, the time slots used to route that path are no

longer needed (since they are not being used). The time slots

on the edges of the primary path that did not fail now can be

reused for protection; furthermore, the time slots on the edges

that interfered with the failed primary path also become free to

use for protection.
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Fig. 5: Disjoint path routing and scheduling with protection

Protection resource sharing can also allow for time slot reuse.

If two primary paths are failure disjoint under a single link

failure model, only one will fail at a time. Hence, a time slot

t on adjacent edges can be shared for protection between the

two failure disjoint connections, since the two adjacent edges

will never be activated simultaneously.

An example is shown in Fig. 5. Two demands need to be

routed under 1-hop interference constraints: one from a to d,

and another from g to i. Each edge is assigned a time slot, with

the time slot labeling shown in the figure. The edges used for

primary flow are indicated by solid lines, and the edges used

for protection are dotted lines. After the failure of edge {a, b},
the entire primary path between a and d is no longer active,

and its time slots will no longer be in use; hence, edges {a, e}
and {f, d} can use time slot 1, even though they would have

conflicted with {a, b} and {c, d} before the failure. Similarly,

{g, e} is assigned time slot 1, even though primary edge {g, h}
is assigned the same time slot. Since both primary paths are

failure disjoint, time slot 2 on {e, f} is shared between the

two connections for protection. Additionally, because at most

one backup path will be used at a time, protection edges {g, e}
and {a, e} can both be assigned time slot 1; they will never

interfere with one another. Similarly, {f, i} and {f, d} can be

both assigned time slot 1.

This idea of time slot reuse after a failure forms the basis

for the the disjoint path wireless protection algorithm, which

we label disjoint_protect. We consider an incoming

demand requesting a connection between nodes s and d.

Connections already exist in the network, with the set of T time

slots already in use. A interference-free primary path between

s and d, Psd, is found using find_path. Once a primary

path fails, none of the time slots needed for that path, or on

the edges that interfered with that path, are needed, and they

become available to be used for protection. Next, a backup path

Bsd is found that is disjoint to Psd, and does not interfere with

any of the other connections that did not fail. Additionally, the

backup path Bsd will not interfere with the protection routings

for the different existing demands that would fail if an edge in

Psd fails (i.e., Bsd will not interfere with the protection paths

for demands whose primary paths are not disjoint with Psd).

Further details of the algorithm are omitted for brevity, and can

be found in [19].

E. WGP Algorithm Simulations

The algorithms minimum_protect and

disjoint_protect are compared to the optimal solution
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found by the MILP in Section IV. A similar simulation setup

is used as that in Section IV. One hundred random graphs were

generated with 25 nodes each. The node degree is varied from

2.5 to 6.5, and for each random graph, ten source/destination

pairs are randomly chosen to be routed concurrently, each

with a unit demand. All links have unit capacity, and 1-hop

interference constraints were used. The algorithms route and

schedule demands one-at-a-time, while the MILP optimizes

the route and schedule for all demands together (in batch). To

compare the two, the algorithms randomly order the set of

demands, and then solves for each demand one-at-a-time. The

simulation results are found in Fig. 6.

Similar to the previous simulation, as node degree increased,

the average minimum length schedule decreased. This is be-

cause of the increased diversity in possible number of end-

to-end path, which leads to a greater opportunity of find-

ing interference free paths. On average, minimum_protect
needed only 4.5% more time slots to meet all requirements than

the optimal MILP needed, and disjoint_protect needed

10.1% more time slots than the MILP.

VI. CONCLUSION

In this paper, the problem of guaranteed protection in a multi-

hop wireless network is introduced. Because of link interfer-

ence, resources that were unavailable prior to a failure can be

used for protection after the failure. In fact, protection can often

be provided using no additional resources. For the case of a

single demand with 1-hop interference constraints, properties

of an optimal solution are presented, and a polynomial time

algorithm is developed that solves the problem of wireless

routing and scheduling with and without protection. For general

interference constraints and multiple concurrent demands, an

optimal solution is developed for the protection problem via

a mixed integer linear program. When compared to using

traditional wired protection schemes on a wireless network, our

Wireless Guaranteed Protection (WGP) scheme uses as much

as 72% less protection resources to achieve the same level of

resiliency. Two low-complexity algorithms to solve WGP are

developed, and on average, these algorithms perform close to

the optimal solution. A future direction for our work is to adapt

the schemes developed in this paper to a distributed setting.
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