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Abstract—We consider the optimal control problem for net-
works subjected to time-varying channels, reconfiguration de-
lays, and interference constraints. We model the network by a
graph consisting of nodes, links, and a set of link interference
constraints, where based on the current network state, the
controller decides either to stay with the current link-service
configuration or switch to another service configuration at the
cost of idling during schedule reconfiguration. Reconfiguration
delay occurs in many telecommunications applications and is
a new modeling component of this problem that has not been
previously addressed. We show that the simultaneous presence
of time-varying channels and reconfiguration delays significantly
reduces the system stability region and changes the structure of
optimal policies. We first consider memoryless channel processes
and characterize the stability region in closed form. We prove
that a frame-based Max-Weight scheduling algorithm that sets
frame durations dynamically, as a function of the current queue
sizes and average channel gains is throughput-optimal. Next, we
consider arbitrary Markov modulated channel processes and
show that memory in the channel processes can be exploited
to improve the stability region. We develop a novel approach to
characterizing the stability region of such systems using state-
action frequencies which are stationary solutions to a Markov
Decision Process (MDP) formulation. Finally, we develop a frame-
based dynamic control policy, based on the state-action frequen-
cies, and show that it is throughput-optimal asymptotically in the
frame length. The FBDC policy is applicable to a broad class of
network control systems, with or without reconfiguration delays,
and provides a new framework for developing throughput-optimal
network control policies using state-action frequencies.

Index Terms—Reconfiguration delay, time-varying channels,
scheduling, queueing, switching delay, Markov Decision Process

I. INTRODUCTION

Scheduling in wireless networks subject to interference

constraints has been studied extensively over the past two

decades [8], [9], [12], [18], [19], [21]–[24]. However, to the

best of our knowledge, the effects of reconfiguration delays

have not been considered in the context of networks subject to

interference constraints and time-varying channel conditions.

Reconfiguration delay is a widespread phenomenon that is ob-

served in many practical telecommunication systems [1], [5],

[16], [27]. In satellite networks where mechanically steered

antennas are providing service to ground stations, the time

to switch from one station to another can be around 10ms

[5], [25]. Similarly, in optical communication systems, laser

tuning delay for transceivers can take significant time (µs-

ms) [7], [16]. In wireless networks, delays for electronic
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Fig. 1: System model. A single-hop wireless network with interference
constraints, time-varying channels and reconfiguration delays.

beamforming or channel switching that occurs in phased-lock

loops in oscillators can be more than 200µs [1], [5], [25], [27].

Worse yet, such small delay is often impossible to achieve

due to delays incurred during different processing tasks such

as channel estimation, signal to interference ratio calculation,

inner loop closed power control, closed loop transmit diversity

in the physical layer [1], [14], and stopping and restarting the

interrupt service routines of various drivers in upper layers

[1]. Moreover, in various real time implementations, channel

switching delays from a few hundreds of microseconds to a

few milliseconds have been observed [27].

We consider an optimal control problem for single-hop

networks given by a graph structure G(N ,L) of nodes n ∈ N
and links ℓ ∈ L, subject to reconfiguration delays, time-

varying channels, and arbitrary interference constraints. For

the time-varying channel states, we consider both i.i.d. or

Markov modulated processes for which the structure of the

stability region and the optimal policies differ significantly.

Our system model can be used to abstract single-hop wireless

networks as show in Fig. 1, satellite networks with M servers

and N ground stations as shown in Fig. 2, or NxN input-

queued optical switches [21]. The network controller is to

dynamically decide to stay with the current schedule of

activations or to reconfigure to another schedule based on the

channel process and the queue length information, where each

decision to reconfigure leaves the network idle for a fixed

amount of time, corresponding to the reconfiguration delay.

Our goal is to study the impact of reconfiguration delays on

system stability and optimal algorithms. We show that, as

compared to systems without reconfiguration delays [18], [19],

[23], [24], the stability region can be significantly reduced, and

that optimal policies take on a different structure.

We first consider the case of memoryless (i.i.d.) channel

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 990



λ1 λ2 λ3 λ4

Server 1 Server 2 Server 3

C1 C2 C3 C4

TrTrTr

Fig. 2: An example 4x3 satellite network. Ground stations are subject to
time-varying channels C1, C2, C3, C4 and the servers are subject to
Tr slot reconfiguration (switchover) delay. Server 2 is forced to be idle due
to interference constraints.

processes where we characterize the stability region in closed

form as the convex hull of feasible activation vectors weighted

by the average channel gain of each link. This result shows

that in the presence of reconfiguration delays, it is not possible

to take advantage of the diversity in time-varying channels

because the i.i.d. channel processes refresh during each recon-

figuration interval. Moreover, we show that a class of Variable-

size Frame-based Max-Weight (VFMW) algorithms that make

scheduling decisions based on time-average channel gains and

queue lengths stabilize the system by keeping the current

schedule over a frame of duration that is a function of the

queue lengths.

Next, we consider Markov modulated channel processes

with memory and develop a novel methodology to characterize

the stability region of the system using state-action frequen-

cies, the steady-state solutions to an MDP formulation for the

corresponding saturated system. We show that the stability

region enlarges with the memory in the channel processes,

which is in contrast to the case of no reconfiguration delays

[12], [19], [24]. Furthermore, we develop a novel frame-based

dynamic control (FBDC) policy based on the state-action

frequencies which achieves the full stability region. To our

knowledge, this is the first throughout-optimal scheduling al-

gorithm for wireless networks with time-varying channels and

reconfiguration delays. The state-action frequency approach

and the FBDC policy are applicable to many network control

systems as they provide a general framework that reduces

stability region characterization and throughput-optimal algo-

rithm development to solving Linear Programs.

Optimal control of queuing systems and communication net-

works has been a very active research topic over the past two

decades (e.g., [8], [12], [19], [23], [24]). In the seminal papers

[23] and [24], Tassiulas and Ephremides characterized the sta-

bility region of multihop wireless networks and parallel queues

with randomly varying connectivity. Later, these results were

extended to power allocation and routing, scheduling under

delayed or limited channel state information, and scheduling

in switches (e.g., [7], [19], [21], [22]). However, these works

do not consider the reconfiguration delays.

Switchover delay has been considered in Polling models in

the Queuing Theory community (e.g., see [2] and the review

in [26]), however, time-varying channels were not considered

since they do not typically arise in classical Polling applica-

tions. Scheduling in optical networks under reconfiguration

delay was considered in [7], [9], again in the absence of

randomly varying connectivity. A detailed survey of the works

in this field can be found in [26]. In [8] we considered a

simple queuing system of two queues and a single server

subject to ON/OFF channels and a single-slot switchover

delay, where we developed the state-action frequency approach

and the throughput-optimality of a frame-based policy. Here

we generalize this model to arbitrary single-hop networks.

The main contribution of this paper is in solving the

scheduling problem in single-hop networks under arbitrary

reconfiguration delays, time-varying channels and interference

constraints for the first time. We introduce the system model

in detail in Section II. For systems with memoryless channel

processes, we characterize the stability region and propose the

class of throughput-optimal VFMW policies in Section III.

We develop the state-action frequency approach and charac-

terize the stability region for systems with Markov modulated

channels in Section IV-A. We develop the throughput-optimal

FBDC policy in Section IV-B and present simulation results

in Section IV-C. For brevity, all proofs are omitted and can

be found in our technical report [10].

II. MODEL

Consider a single-hop wireless network given by a graph

structure G(N ,L) of nodes N and links ℓ ∈ L
.
= {1, 2, ..., L},

where L
.
= |L|. Data packets arriving at each link ℓ are

to be transmitted to their single-hop destinations, where we

refer to the packets waiting for service at link ℓ as queue

ℓ. We consider a discrete-time (slotted) system where an

integer number of data packets can arrive at or depart from

the corresponding queue at each link during each time slot.

Let the i.i.d. stochastic process Aℓ(t) with arrival rate λℓ

denote the number of packets arriving to the source node

of link ℓ at time slot t, where E[A2
ℓ (t)]≤A2

max, ℓ ∈ L. Let

Q(t)={Q1(t), ..., QL(t)} denote the queue sizes at the links

at the beginning of time slot t. Each link ℓ ∈ L is subject to

a time-varying channel process denoted by Cℓ(t) that takes

values in a set C = {0, µmin, ..., µmax} with K
.
= |C|, where

Cℓ(t) corresponds to the number of packets that can be served

from queue ℓ at time t. We consider both memoryless channel

processes and Markovian channels with memory:

Definition 1 (Memoryless Channels): The channel process

{Cℓ(t); t ≥ 0}, ℓ ∈ L, takes independent and identically

distributed (i.i.d.) values from the set C at each time slot t,
according to a probability distribution for link ℓ, Pℓ.

A simple example of a memoryless channel process is the

Bernoulli process with 2-state i.i.d. ON-OFF channels.

Definition 2 (Channels With Memory): The channel pro-

cess {Cℓ(t); t≥0} forms the K-state irreducible and aperi-

odic Markov chain over the set C, according to a transition

probability distribution P
ℓ(·|j), j ∈ C.

The basic example of a Markovian channel process with

memory is the commonly used Gilbert-Elliot channel model

shown in Fig. 3. We let Cℓ denote the time-average channel
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Fig. 3: Markov modulated ON/OFF channel process. The case of p10+p01 <

1 provides positive correlation.

quality of link ℓ, ℓ ∈ L, defined by

Cℓ
.
= lim

t→∞

1

t

t−1
∑

τ=0

Cℓ(τ). (1)

The limit exists both for memoryless and Markovian channel

processes and is equal to the corresponding ensemble (steady

state) average with probability (w.p.) 1 due to the Strong Law

of Large Numbers (SLLN) [11]. We assume that all the arrival

and channel processes, Aℓ(t), Cℓ(t), ℓ ∈ L, are independent.

Let Tr denote the system reconfiguration delay, namely,

it takes Tr time slots for the system to change a schedule,

during which all the servers are necessarily idle. The set

of all schedules in the system, I, is given by the set of

feasible binary activation vectors I = (Iℓ)ℓ=1,...,L, Iℓ ∈ {0, 1}.

If the activation vector I(t) is used at time slot t, then

min {Cℓ(t)Iℓ(t), Qℓ(t)} packets depart from queue ℓ. We in-

clude the vectors dominated by the feasible activation vectors,

as well as the zero vector I = 0 in I, where the activation

vector I(t) is equal to 0 for all time slots at which the system

is undergoing reconfiguration. A policy π is a mapping from

the set of all possible queue length and action histories, to the

set of all probability distributions on I.

The availability of a schedule is determined by the inter-

ference constraints in the system, which are assumed to be

arbitrary. For instance, in a wireless mesh network as shown

in Fig. 1, the set I can be determined according to the well-

studied k-hop interference model [12]. Alternatively, for a

satellite network of N queues and M servers where there are

a possible L = NM links as shown in Fig. 2, the set I can be

the set of all binary vectors of dimension NM with at most

M nonzero elements such that no two active servers interfere

with each other [9]. Finally, for an NxN input-queued optical

switch, the set I can be the set of all matchings [21].

We say that an activation vector I is ready to be activated in

the current time slot if the system does not need to reconfigure

in order to activate I, i.e., in such a case the servers that will

be activated under I are present at their corresponding links

at the beginning of the time slot. Finally, we assume that the

queues are initially empty and that the arrivals take place after

the departures in any given time slot. Under this model, the

queue sizes evolve according to the following expression.

Qℓ(t+1)=max{Qℓ(t)− Iℓ(t)Cℓ(t), 0}+Aℓ(t), ∀ℓ ∈ L. (2)

Definition 3 (Stability [17], [19]): The system is stable if

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

ℓ∈L

E[Qℓ(τ)] < ∞.

For the case of integer valued arrival and departure processes

as in this paper, this stability criterion implies the existence of

a long-run stationary distribution for the queue size Markov

chain with bounded first moments [17].

Definition 4 (Stability Region [17], [19]): The stability re-

gion Λ is the closure of the set of all arrival rate vectors

λ = (λ1, ..., λL) such that there exists a control algorithm

that stabilizes the system.

The δ-stripped stability region is defined for some δ > 0 as

Λδ .
=

{

λ|(λ1 + δ, ..., λL + δ) ∈ Λ

}

.

Throughout the paper, we represent vectors, matrices, and

sets with bold letters and we explicitly state when a variable is

a matrix. We use the following notation for the inner product

of two L-dimensional vectors: u · v
.
=

∑L
ℓ=1 uℓvℓ.

III. MEMORYLESS CHANNELS

A. Stability Region

We start by characterizing the system stability region for

the case of memoryless channels.

Theorem 1 (Stability Region Λ - Memoryless Channels):

The stability region Λ is given by

Λ=

{

λ

∣

∣

∣
∃α≥0,

∑

I∈I

αI≤1, such that λℓ≤ Cℓ

∑

I∈I

αIIℓ, ∀ℓ∈L

}

.

(3)

We prove the sufficiency of (3) in the next subsection where

we show that for all λ ∈ Λ, a novel variable-size frame-based

algorithm stabilizes the system. Here we highlight the basic

ideas behind the necessity proof. Let Λ′ denote the set at the

right hand side of (3). This set can be rewritten as

Λ′ =
{

λ|C−1λ ∈ Conv{I}
}

, (4)

where C is a diagonal matrix with the ℓth diagonal element

equal to Cℓ, and Conv{I} denotes the convex hull of the set

of all activations and their descendants given by

Conv{I}
.
=

{

∑

I∈I

αII
∣

∣ for all α ≥ 0 such that
∑

I∈I

αI = 1

}

.

Fix λ /∈ Λ′. We show that Λ ⊆ Λ′ by proving that λ /∈ Λ.

From the closed convex set separation theorem [4], there exist

a hyperplane, i.e., a vector h≥0 and a constant b>0, such that

λ · h > b > (Cµ) · h, ∀µ ∈ Conv{I}. (5)

For contradiction, suppose that there exists a stabilizing policy

π. The following expression, similar to (2), holds for all links:

Qℓ(t) ≥ Qℓ(0) +
t−1
∑

τ=0

Aℓ(τ)−
t−1
∑

τ=0

Iℓ(τ)Cℓ(τ). (6)

Consider (6) for a link ℓ with λℓ > 0. Let µℓ(t)
.
=

1
t

∑t−1
τ=0 Iℓ(τ)Cℓ(τ). Let Î(t) be the activation vector that is

ready to be activated at the beginning of time slot t under

policy π. Note that the vectors Î(t) and I(t) are different

only if t is the first time slot of a reconfiguration interval.

Let the counting process Mℓ(t) be the number of time slots
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between times 0 and t for which an activation vector Î that

activates link ℓ is ready to be activated under policy π, and

let t0, t1, ..., tMℓ(t) be these time slots. By definition we have

Mℓ(t) =
∑t−1

τ=0 Îℓ(t). Note that limt→∞ Mℓ(t) = ∞, because

if limt→∞ Mℓ(t) < B for some constant B, then the time-

average service rate of link ℓ is 0 and queue ℓ is unstable, a

contradiction. We have

µℓ(t) =
1

t

t−1
∑

τ=0

Iℓ(τ)Cℓ(τ) ≤
1

t

tM
ℓ
(t)

∑

τ=t0

Îℓ(τ)Cℓ(τ),

≤
Mℓ(t)

t

1

Mℓ(t)

tM
ℓ
(t)

∑

τ=t0

Cℓ(τ). (7)

Since Mℓ(t) → ∞ in the infinite time horizon, the
infinite sequence {Cℓ(τ)}τ∈{t0,t1,t2,...} forms an i.i.d. se-

quence. Therefore, we have from the SLLN [11] that

limt→∞
1

Mℓ(t)

∑tM
ℓ
(t)

τ=t0
Cℓ(τ) = Cℓ. Hence, for some large

time t, µℓ(t) is at most about CℓMℓ(t)/t, where
Mℓ(t)

t
=

1
t

∑t−1
τ=0 Îℓ(t) belongs to Conv{I} for all t [12]. Now for

λ /∈Λ′, we utilize the convex set separation theorem as in (5)

to obtain that (λ−C(1
t

∑t−1
τ=0 Îℓ(t))) ·h > 0. The rest of the

proof is based on the fact that this creates a positive drift for

the queue sizes upon taking expectation of (6).

Theorem 1 shows that in the presence of reconfiguration

delays, no policy can take advantage of the diversity in time-

varying memoryless channels and achieve a greater rate than

the average channel gain for each link. This is because the

system cannot switch to another schedule instantly in order to

opportunistically exploit better channel states and observes an

average channel gain upon switching. This is in sharp contrast

to the corresponding systems without reconfiguration delay

considered in [18], [19], where throughput-optimal policies

are able to take advantage of the diversity in i.i.d. channels

by instantly and opportunistically switching schedules. As

shown in the example below for a simple two-queue system,

this negative impact of the reconfiguration delay reduces the

stability region considerably as compared to systems without

reconfiguration delays [19].

Theorem 1 also establishes that the duration of the recon-

figuration interval has no effect on the stability region for

memoryless channel processes. This is because for memo-

ryless channels, giving infrequent reconfiguration decisions

minimizes the fraction of time slots lost to reconfiguration.

1) Example: Two Queues and a Single Server: Consider

i.i.d. ON/OFF channels with probability of ON channel state

equal to 0.5 for both queues for all time slots, and 1 slot

switchover delay for the server. The stability region of this

system can be obtained from (3) and it takes a simple structure:

Λ = {(λ1, λ2)
∣

∣λ1 + λ2 ≤ 0.5, λ1, λ2 ≥ 0}. (8)

The stability region of the corresponding system with no

switchover delay was established in [24]: λ1, λ2 ∈ [0, 0.5] and

λ1 +λ2 ≤ 0.75. As depicted in Fig. 4, even 1-slot switchover

delay reduces the stability region of the system considerably.

Note that for systems without time-varying channels, stability

0.5

0.5

λ2

λ1

no-switchover time

i.i.d.
channels

Markovian
channels

Fig. 4: Stability region under memoryless (i.i.d.) channels and channels with
memory (Markovian with p10+p01 < 1) with and without switchover delay.

conditions are given by λ1 + λ2 ≤ 1, λ1, λ2 ≥ 0 and is not

affected by the switchover delay [26]. Therefore, it is the

combination of switchover delay and time-varying channels

that results in fundamental changes in system stability. As we

show in Section IV, and as displayed in Fig. 4, the memory in

the channel processes can be exploited to improve the system

stability region when the reconfiguration delay is nonzero.

B. Variable Frame Based Max-Weight (VFMW) Algorithm

In this section we propose a throughput-optimal algorithm

based on the following intuition: Given that no policy can

take advantage of the diversity in channel processes, giving

infrequent reconfiguration decisions minimizes throughput lost

to reconfiguration. For networks with nonzero reconfiguration

delays, in the absence of randomly varying connectivity, we

proved in [9] that a variable-size frame-based Max-Weight

algorithm which keeps the same schedule over a frame of

duration based on the queue lengths is throughput-optimal.

We show here that an adaptation of the algorithm in [9]

that also takes into account the average channel gains of

time-varying links is throughput-optimal for systems with

memoryless channel processes. Specifically, let tk be the

first slot of the kth frame, let Q(tk) be the queue lengths

at tk, and let S(Q(tk))
.
=

∑

i Qi(tk). The VFMW policy

calculates the Max-Weight schedule with respect to Q(tk) and

C
.
= (C1, ..., CL), and applies this schedule during the frame

as defined in detail in Algorithm 1.

Algorithm 1 VFMW ALGORITHM

1: Find the Max-Weight schedule at time tk, I∗(tk), w.r.t.

Q(tk) weighted by the average channel gains C:

I∗(tk) = argmax
I∈I

∑

ℓ

IℓCℓQℓ(tk)

2: If I∗(tk) 6= I∗(tk−1), then invoke reconfiguration for the

next Tr slots.

3: Apply I∗(tk) for an interval of duration F (S(Q(tk))) slots

where χk
.
=Tr+F (S(Q(tk))), F (·)>0 is a monotonically

increasing sublinear function, i.e., limy→∞ F (y)/y=0.

4: Repeat above for the next frame starting at tk+1 = tk+χk.

The VFMW algorithm sets the frame length as a suitably

increasing sublinear function of the queue lenghts, which dy-

namically adapts the frame duration to the stochastic arrivals.
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For instance, χk = Tr + (
∑

iQi(tk))
α with α ∈ (0, 1)

satisfies the criteria for the frame duration. Under the VFMW

policy, the frequency of service reconfiguration is small when

the queue lengths are large, limiting the fraction of time

spent to switching. Note that this frequency should not be

too small otherwise the system becomes unstable as it is

subjected to a bad schedule for an extended period of time.

When the queue lenghts are small, the VFMW policy gives

frequent reconfiguration decisions, becoming more adaptive

and providing good delay performance.

Theorem 2: The VFMW policy stabilizes the system for all

arrival rates λ ∈ Λ, without requiring knowledge of λ.

An immediate corollary to this theorem is as follows:

Corollary 1: The conditions in (3) are sufficient for stability.

The proof establishes the fact that the drift over the switch-

ing epochs, i.e., E
[

L(Q(tk + χk))−L(Q(tk))
∣

∣Q(tk)
]

, is neg-

ative using the quadratic Lyapunov function, L(Q(t)) =
∑L

ℓ=1Q
2
ℓ(t). The basic intuition behind the proof is that if

the queue sizes are large, the VFMW policy accumulates

sufficient negative drift during the frame, which overcomes the

cost accumulated during reconfiguration. Moreover, for large

queue lengths, since the policy keeps the same schedule during

the resulting long frames, we obtain the time-average channel

gains in the system, as seen in the stability condition in (4).

Note that choosing the frame length as a sublinear function

of the queue sizes is critical. This is because the VFMW

algorithm uses the Max-Weight schedule corresponding to the

beginning of the frame, which “loses weight” as the frame

goes on. Therefore, one needs to make sure that the system

is not subjected to this “light-weight” schedule for too long.

In particular, frame lengths sublinear in queue sizes work,

however, frame lengths that are linear in queue sizes do not

guarantee stability. This is because under linear switching

curves, the drift of the queue lengths over the frames becomes

positive under commonly used polynomial Lyapunov functions

L(·) of power greater than 1.

In Section IV, we show that for channel processes with

memory, delaying the reconfiguration decisions as in VFMW

algorithm does not work and more sophisticated algorithms

are necessary in order to exploit the channel memory.

C. Simulation Results - Memoryless Channels

We performed simulation experiments that determine av-

erage queue occupancy values for the VFMW policy, the

ordinary Max-Weight (MW) policy and the Max-Weight pol-

icy with fixed frame sizes (FFMW), where the MW pol-

icy “chooses” the schedule argmaxI
∑

ℓ Qℓ(t)Cℓ(t)Iℓ, and

the FFMW policy applies the same activation vector as

the VFMW policy over frames of constant duration. The

average total queue occupancy over Ts slots is defined by
1
Ts

∑Ts

t=1

∑

ℓ∈L Qℓ(t) and the frame length for the VFMW

policy is chosen as χk = Tr+(
∑

iQi(tk))
0.9. Through Little’s

law, the long-run packet-average delay in the system is equal to

the time-average number of packets divided by the total arrival

rate into the system. We considered a network of 4 links and 3
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Fig. 5: Delay vs throughput under the VFMW, MW, and the FFMW policies.

servers as shown in Fig. 2, where server 1 and 3 are dedicated

to links (queues) 1 and 4 respectively, and server 2 is shared

between queues 2 and 3. Due to interference constraints, no

two links that are “adjacent” to each other can be activated

simultaneously, namely, the feasible activation vectors are

given by I1 = [1010], I2 = [0101], and I3 = [1001]. For each

data point, the simulation length was 100,000 slots, and the

arrival and the channel processes were i.i.d. Bernoulli, with

arrival rate λ, and probability of ON channel state equal to

0.5, respectively.

We simulated delay as a function of sum-throughput
∑

ℓ λℓ

for λ along the line between the origin and the maximum sum-

throughput point λmax given by argmaxλ∈Λ

∑

ℓ λℓ, where

from (3), λmax can be calculated to be [0.33 0.17 0.17 0.33]
with

∑

ℓ λℓ = 1. Note that maximum sum-throughput for the

corresponding system with zero reconfiguration delay is about

1.44 [12], which shows the significant reduction in throughput

due to the reconfiguration delay. Fig. 5 presents the delay as

a function of sum-throughput for the VFMW, MW, and the

FFMW (with frame sizes T=10 and T=25) policies, for Tr=5
slot reconfiguration delay. Fig. 5 confirms that as the arrival

rates are increased, the system quickly becomes unstable under

the MW policy and that the VFMW policy provides stability

for all sum-rates less than 1. The FFMW policy has larger

stability region than that of the MW policy, and increasing

the frame length of the FFMW policy improves it’s stability

region at the expense of delay performance. The VFMW

policy provides a good balance by dynamically adapting the

frame length based on the queue sizes and stabilizes the system

whenever possible, while providing a delay performance that

is similar to that of a FFMW policy with a small frame length

for small arrival rates.

IV. CHANNELS WITH MEMORY

In this section we establish the stability region of the

system and propose a throughput-optimal dynamic control

policy when the time-varying channels have memory. We

generalize the novel framework of characterizing the stability

region in terms of state-action frequencies that we introduced

in [8] to wireless networks with reconfiguration delays, time-

varying channels, and interference constraints. The state-action

frequency approach is a general and unifying framework in
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that, for the simpler case of no-reconfiguration delay in the

system, it provides the stability region characterizations of

classical network control papers such as [18], [21], [24].

We show that the stability region expands with memory in

the channel processes, in particular, it lies between the stability

region for the case of i.i.d. channels and the stability region

for the case of no reconfiguration delay. For classical network

control systems such as [18], [19], [24], the memory in the

channel processes does not affect the stability region [12].

Therefore, scheduling under reconfiguration delays and time-

varying channels calls for new control algorithms that can

improve their performance with increases in channel memory.

A. Stability Region

We start by analyzing the corresponding system with satu-

rated queues, i.e., all queues are always non-empty. Let Λs

denote the set of all time average expected departure rate

vectors r = (r1, ..., rL) that can be obtained in the saturated

system under all possible policies that are possibly history

dependent, randomized, or non-stationary. We will show that

the stability region Λ satisfies Λ = Λs. We show the necessary

stability conditions in the following Lemma and establish

sufficiency in the next section.

Lemma 1: We have that Λ ⊆ Λs.

An intuitive explanation for the proof is that given a policy

π for the saturated system, we apply the same policy in

the system with random arrivals with the same sample path

of channel realizations. It is clear that the total number of

departures from each queue in the saturated system is no less

than that in the original system. We establish the region Λs

by formulating the system dynamics as a Markov Decision

Process (MDP).

1) MDP Formulation For Saturated System: We present the

analysis for the case of a single slot reconfiguration delay,

i.e., Tr = 1, for ease of exposition and we demonstrate how

to generalize the analysis to the case of Tr > 1 whenever

appropriate1. For Tr = 1, let st = (I(t),C(t)) ∈ S denote the

system state at time t, where C(t) is the vector of channel

processes at each link at time slot t, and S is the set of

all states. Also, let at ∈ I denote the action taken at time

slot t, which determines the activation vector that will be

available at the beginning of the next time slot. For Tr > 1
the state has one more variable that represents how far into

the reconfiguration interval the system is.

Let H(t) = [sτ ]|tτ=0 ∪ [aτ ]|
t−1
τ=0 denote the full history of

the system until time t and let Υ(I) denote the set of all

probability distributions on I. For the saturated system, a

policy is a mapping from H(t) to Υ(I) [3], [15], [20]. Namely,

a policy prescribes the probability of any particular action for

a given system history. A stationary policy is a policy that

depends only on the current state, and under a stationary policy

the process {st; t ≥ 0} forms a Markov chain. For a stationary

policy, the server observes the current state st and chooses an

1In a slotted system, even a minimal reconfiguration delay will lead to a
loss of a slot due to synchronization issues.

action at. Then the next state j is realized according to the

transition probabilities P(j|s, a), which depend on the random

channel processes. Now, we define the rewards as a function

of the state s = (I,C) as follows:

rl(s, a)
.
=Cl, if Iℓ = 1 and a=I, (9)

and rℓ(s, a)
.
= 0 otherwise. That is, a reward of Cℓ is obtained

if the controller decides to stay with the current schedule and

if link ℓ is active under the current schedule. We are interested

in the set of all possible time average expected departure rates.

Therefore, given some αℓ ≥ 0, ℓ ∈ L,
∑

ℓ αℓ = 1, we

define the system reward at time t by the weighted sum-rate

r(st, at)
.
=

∑

ℓ∈L αℓrℓ(st, at). The average reward of policy

π is defined by

rπ
.
= lim sup

K→∞

1

T
E
[

T
∑

t=1

r(st, a
π

t )
]

. (10)

Given weights αℓ, ℓ∈L, we are interested in the policy that

achieves the maximum time average expected reward r∗
.
=

maxπ rπ. This optimization problem is a discrete time MDP

characterized by the state transition probabilities P(.|s, a) with

KL|I| states and |I| actions per state, where K is the number

of channel states. Furthermore, any given pair of states are

accessible from each other (i.e., there is a positive probability

path between the states) under some stationary deterministic

policy. Therefore, this MDP belongs to the class of Weakly

Communicating MDPs [20], for which there exists a stationary

deterministic optimal policy independent of the initial state,

given as a solution to the standard Bellman’s equation [20].

2) State-Action Frequency Approach: The state-action fre-

quency approach, or the Dual Linear Program (LP) approach,

given below provides a systematic and intuitive framework

to solve such average cost MDPs, and it can be derived using

Bellman’s equation and the monotonicity property of Dynamic

Programs [Section 8.8] [20]:

Maximize
∑

s∈S

∑

a∈I

r(s, a)x(s, a)

subject to the balance equations
∑

a∈I

x(s, a) =
∑

s′∈S

∑

a∈I

P
(

s|s′, a
)

x(s′, a), ∀ s ∈ S, (11)

the normalization condition
∑

s∈S

∑

a∈I x(s, a)=1, and the

nonnegativity constraints x(s, a)≥0, for s ∈ S, a ∈ I, where

the transition probabilities P
(

s|s′, a
)

are functions of the

channel transition probabilities. The feasible region of this LP

constitutes a polytope called the state-action polytope X and

the elements of this polytope x ∈ X are called state-action

frequency vectors. It can be shown that X is convex, bounded,

and closed. Note that a point x ∈ X corresponds to a stationary

randomized policy that takes action a ∈ I at state s w.p.

P(action a at state s)=
x(s, a)

∑

a′∈I x(s, a′)
, a ∈ I, s ∈ Sx, (12)

where Sx is the set of recurrent states given by Sx ≡ {s ∈ S :
∑

a∈I x(s; a) > 0} [15], [20]. For transient states s ∈ S/Sx,
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an action that leads the system to a recurrent state is chosen.

Every point x at an interior or a corner point of X can

be achieved by a stationary randomized policy as defined

in (12) [15], [20]. An inverse statement also holds, namely,

the expected empirical state-action frequency vector of any

policy lies in X regardless of the initial state distribution.

The following lemma establishes the equivalency between

the corners of the state-action polytope X and stationary

deterministic policies [15], [20].

Lemma 2: The vertexes of the LP in (11) have a one-to-one

correspondence with stationary-deterministic policies.

If x is an extreme point of X, it cannot be expressed as a

convex combination of any two other elements in X, therefore,

for each state s only one action has a nonzero probability.

3) The Rate Polytope Λs: Using the theory of state-action

polytopes in the previous section, we characterize the set of all

achievable time-average expected rates in the saturated system,

Λs. The following linear transformation of the state-action

polytope X defines the L dimensional rate polytope [15]:

Λs =
{

r
∣

∣rℓ =
∑

s∈S

∑

a∈I

x(s, a)rℓ(s, a), ℓ ∈ L
}

, (13)

where rℓ is the reward function for link ℓ defined in (9). This

polytope is the set of all time average expected departure

rate pairs that can be obtained in the saturated system, i.e.,

it is the rate region Λs. Furthermore, because Λs is a linear

transformation of X, corner points of Λs are also achieved

by stationary deterministic policies. An explicit way of char-

acterizing Λs is given in Algorithm 2. Note that (14) is

Algorithm 2 Stability Region Characterization

1: Given α1, ..., αL≥0,
∑

ℓ αℓ = 1, solve the following LP

max
x

.

L
∑

ℓ=1

αℓrℓ(x)

subject to x ∈ X. (14)

2: There exists an optimal solution (r∗1 , ..., r
∗
L) to this LP

that lies at a corner point of Λs and hence of X. Find all

possible corner points and take their convex combination.

an LP because rℓ(x), ℓ ∈ L, are linear functions of x(s, a)
defined through (9), where s = (I,C). This is because rℓ
is a linear combination of those x(s, a) vectors for which

the action a is the same as the current schedule in the state

I, the lth component of I is 1, and Cℓ is the coefficient in

the linear combination. The fundamental theorem of Linear

Programming guarantees existence of an optimal solution to

(14) at a corner point of the polytope X and hence of Λs

[6]. We will establish in the next section that the rate region

Λs is in fact achievable in the dynamic queueing system,

which will imply that Λ = Λs. For the simple two-queue

system introduced in Section III-A1, the structure of the rate

polytope in (14) is analyzed in detail in [8]. Furthermore,

the one-to-one correspondence between the extreme points of

the polytope X and stationary deterministic polices stated in
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Fig. 6: Stability region for the simple system with and without switchover
time for Gilbert-Elliot channel model with p10 = p01 = 0.40.

Lemma 2 is useful for finding the solutions of the above LP.

For instance, for the two-queue system, the LP in (14) can be

solved explicitly for all α values to derive the rate region Λs,

which is displayed in Fig. 6. As expected, the stability region

is improved for channels with memory as compared to the

stability region for the case of i.i.d. channels shown in Fig. 4.

Moreover, the region Λs is significantly reduced as compared

to the stability region for the corresponding system with zero

switchover delays shown with dashed lines in Fig. 6 [24].

B. Frame Based Dynamic Control Policy

We propose a frame-based dynamic control (FBDC) policy

inspired by the state-action frequency approach and prove that

it is throughput-optimal asymptotically in the frame length.

The motivation behind the FBDC policy is that a policy π∗ that

achieves the optimization in (14) for given weights αℓ, ℓ ∈ L,

for the saturated system should achieve a good performance

in the original system when the queue sizes Q are used as

weights. This is because first, the policy π∗ will lead to similar

average departure rates in both systems for sufficiently large

queue lengths, and second, the usage of queue lengths as

weights creates self adjusting policies that dynamically capture

the changes due to stochastic arrivals, similar to the Max-

Weight scheduling algorithm. Specifically, we divide the time

into equal-size intervals of T slots and let Q(jT ) denote the

queue lengths at the beginning of the jth interval, normalized

by
∑

ℓ Qℓ(jT ). We find the stationary deterministic policy that

optimally solves (14) when Q1(jT ), ..., QL(jT ) are used as

weights and then apply this policy throughout the frame in

the dynamic queueing system. The FBDC policy is described

in detail in Algorithm 3. The LP in (15) can be restated as

Algorithm 3 FRAME BASED DYNAMIC CONTROL POLICY

1: Find the policy π∗ that optimally solves the following LP

max
x

.
∑L

ℓ=1 Qℓ(jT )rℓ(x)

subject to x ∈ X (15)

2: Apply π∗ in each time slot of the frame.

max.{r}
∑L

ℓ=1 Qℓ(jT )rℓ subject to r ∈ Λs. There exists an

optimal solution r∗ of the LP in (15) that is a corner point of

X (and hence of Λs) [6], and the policy π∗ that corresponds
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to this point is a stationary deterministic policy by Lemma 2.

Theorem 3: For any δ > 0, there exists a large enough

frame length T such that the FBDC policy stabilizes the system

for all arrival rates within the δ-stripped stability region Λδ
s =

Λs − δ1.
This theorem immediately implies that Λ = Λs. The proof

performs a drift analysis using the standard quadratic Lya-

punov function. However, it is novel in utilizing the MDP

framework within the Lyapunov drift arguments. The basic

idea is that, for sufficiently large queue lengths, when the

optimal policy solving (15), π∗, is applied over a sufficiently

long frame of T slots, the average output rates of both

the actual system and the corresponding saturated system

converge to r∗. For the saturated system, the probability of

a large difference between empirical and steady state rates,

captured by the parameter δ, decreases exponentially fast in

T [15], similar to the convergence of a positive recurrent

Markov chain to its steady state. Therefore, for sufficiently

large queue lengths, the difference between the empirical rates

in the actual system and r∗ also decreases with T . This

ultimately results in a negative Lyapunov drift since r∗ is

the solution to max.r
∑L

ℓ=1 Qℓ(jT )rℓ, r ∈ Λs, leading to
∑

ℓQℓ(jT )r
∗
ℓ ≥

∑

ℓ Qℓ(jT )λℓ, for all λ in Λs.

The FBDC policy implemented without any frames, i.e., for

T = 1, has a similar performance to the original FBDC policy.

This is because for large queue lengths, the optimal solution of

the LP in (15) depends on the queue length ratios, and hence,

the policy π∗ that solves the LP optimally does not change

fast when the queue lengths get large.

Remark 1: The FBDC policy provides a new framework

for developing throughput-optimal policies for network con-

trol. Namely, given any queuing system whose corresponding

saturated system is Markovian with finite state and action

spaces, throughput-optimality is achieved by solving an LP in

order to find the stationary MDP solution for the corresponding

saturated system and applying this solution over frames in the

actual system. The FBDC policy can also be used to achieve

throughput-optimality for classical network control systems

[18], [24], optical switches [21], or systems with delayed

channel state information [22].

It is well-known that the celebrated Max-Weight scheduling

policy is not throughput-optimal for systems with reconfigu-

ration delays [9]. In the absence of time-varying channels,

or for systems with i.i.d. channel processes as in Section III,

variable frame-based generalizations of the Max-Weight policy

are throughput-optimal [9]. However, under the simultaneous

presence of reconfiguration delays and time-varying channels

with memory in a network, the FBDC policy is the only policy

to achieve throughput-optimality and it has a significantly

different structure from the Max-Weight policy.

The state space of the LP needed to be solved under the

FBDC policy increases exponentially with the number of links

in the system. For a single-hop network with interference

constraints, the Max-Weight policy has to solve a maximum-

independent set problem over all links at each time slot,

which is a hard problem whose state space also increases
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Fig. 7: Delay vs the throughput under the FBDC policy with frame length 10

and MW policies, (a) for p10 = p01 = 0.25, and (b) for p10 = p01 = 0.10.

exponentially in the number of links. The FBDC policy, on

the other hand, only has to solve an LP, for which there are

standard solvers available such as CPLEX. Furthermore, the

FBDC policy has to solve the LP once per frame, whereas

the the Max-Weight policy performs maximum-independent

set computation each time slot. If the frame length for the

FBDC policy is chosen to be bigger than the computational

complexity of the LP in (15), then the per-slot computational

complexity of the algorithm is reduced to O(1). Finally, the

FBDC policy requires the knowledge of the channel process

statistics. To deal with this problem, one can estimate the

channel parameters periodically and use these estimates to

solve the LP in (15).

C. Simulation Results - Channels with Memory

We performed simulation experiments that determine av-

erage queue occupancy values for the FBDC policy and the

ordinary Max-Weight (MW) policy. We consider the same sim-

ulation model as in Section III-C, except that we have Gilbert-

Elliot channel model with two sets of transition probabilities

p10 = p01 = 0.10 and p10 = p01 = 0.25 for each channel and

that the switchover delay Tr is taken to be 1 slot. As for the

case of i.i.d. channels considered in Section III-C, the steady

state probability of ON channel state for each queue is 0.5
under both sets of transition probabilities. As we demonstrate

in this section, the stability region is larger for the case of

channels with memory. This is in sharp contrast to systems

with zero reconfiguration delays for which the stability region

only depends on the steady state behavior of the channel pro-

cesses [12]. Furthermore, the maximum sum-throughput for

this system can be calculated to be 1.14 for p10 = p01 = 0.25,

and 1.30 for p10 = p01 = 0.10 by numerically solving the LP

in (14) for weights αi = αj , i, j ∈ L. While these values are

significantly larger than the maximum sum-throughput of 1
for the case of i.i.d. channels considered in Section III-C, they

are less than the sum-throughput of 1.44 for the corresponding

system with zero reconfiguration delays, as expected.

Fig. 7(a) presents delay as a function of sum-throughput

along the line between the origin and the maximum sum-

throughput point for the FBDC policy with frame length 10
and the MW policy for p10 = p01 = 0.25. This figure shows

that the system becomes unstable around the sum-throughput
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Fig. 8: Average total queue size for the FBDC policy for p10 = p01 = 0.20.

value of 0.9 under the MW policy. Moreover, the FBDC policy

with frame length 10 has large queue lengths only for sum-

throughputs greater than the maximum sum-throughput value

of 1.14 and the throughput loss due to the fixed frame length

of 10 is negligible. Fig. 7(b) shows delay as a function of

sum-throughput for the FBDC policy with frame length 10
and the MW policy for p10 = p01 = 0.10. While confirming

the results of Fig. 7(a), Fig. 7(b) also shows that the stability

region becomes larger with increasing channel memory.

Fig. 8 presents the total average queue length, Qavg ,
∑100K

t=1 (Q1(t) + Q2(t))/100K , under the FBDC policy with

frame length 25 for p10 = p01 = 0.20 for the simple two-

queue system introduced in Section III-A1. The boundary

of the stability region is shown by (red) lines on the two

dimensional λ1−λ2 plane. We observe that the average queue

lengths are small for all (λ1, λ2) ∈ Λ and the big jumps

in queue lengths occur for points outside Λ. Finally, the

stability region is much larger than the stability region for

the corresponding system with i.i.d. channel processes with

the same steady state, which is represented by the diagonal

line segment between the points (0, 0.5) and (0.5, 0).

V. CONCLUSIONS

We investigated the optimal scheduling problem for sys-

tems with reconfiguration delays, time-varying channels, and

interference constraints. We characterized the stability region

of the system in closed form for the case of i.i.d. channel

processes and proved that a variable-size frame-based Max-

Weight algorithm that makes scheduling decisions based on the

queue lengths and the average channel qualities is throughput-

optimal. For the case of Markovian channels with memory,

we characterized the system stability region using state-action

frequencies which are stationary solutions to an MDP formula-

tion. We developed the novel FBDC policy based on the state-

action frequencies and proved that it is throughput-optimal

asymptotically in the frame length.

The state-action frequency approach provides a novel frame-

work for stability region characterization and throughput-

optimal policy development for general network control sys-

tems, with or without reconfiguration delays. In the future,

we intend to pursue Myopic policies with low computation

complexity and high throughputs as attractive alternatives to

the state-action frequency approach.
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[10] G. D. Çelik and E. Modiano, “Scheduling in Networks with Arbitrary

Interference Constraints, Time-Varying Channels, and Reconfiguration
Delays,” Technical Report, LIDS, MIT, July 2011. [Online] Available:
http://stuff.mit.edu/people/gcelik/publications.htm

[11] R. G. Gallager, “Discrete stochastic processes,” Kluwer, 1996.
[12] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Now Publishers, 2006.
[13] E. N. Gilbert, “Capacity of burst-noise channels,” Bell Syst. Tech. J.,

vol. 39, pp. 12531265, Sep. 1960.
[14] Hawwar et al., “3G UMTS wireless system physical layer: Baseband

processing hardware implementation perspective,” IEEE Comm. Maga-

zine - Topics in Radio Comm., vol. 44, no. 9, pp. 52-58, Sep. 2006.
[15] S. Mannor and J. N. Tsitsiklis, “On the emperical state-action frequen-

cies in Markov Decision Processes under general policies,” Mathematics

of Operation Research, vol. 30, no. 3, Aug. 2005.
[16] E. Modiano and R. Barry, “A novel medium access control protocol for

WDM-based LAN’s and access networks using a Master/Slave scheduler,”
IEEE J. Lightwave Tech., vol. 18, no. 4, pp. 461–468, Apr. 2000.

[17] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Morgan and Claypool, 2010.

[18] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power allocation and routing
in multi-beam satellites with time-varying channels,” IEEE Trans. Netw.,
vol. 11, no. 1, pp. 138–152, Feb. 2003.

[19] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas

Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.
[20] M. Puterman, ”Markov Decision Processes: Discrete stochastic dynamic

programming,” Wiley, 2005.
[21] D. Shah and D. J. Wischik, “Optimal scheduling algorithms for input-

queued switches,” In Proc. IEEE INFOCOM’06, Mar. 2006.
[22] L. Ying, and S. Shakkottai, “On throughput-optimality with delayed

network-state information,” In Proc. ITA’08, Jan. 2008.
[23] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Auto. Control, vol. 37, no. 12,
pp. 1936-1948, Dec. 1992.

[24] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Infor. Theory,
vol. 39, no. 2, pp. 466-478, Mar. 1993.

[25] A. Tolkachev, V. Denisenko, A. Shishlov, and A. Shubov, “High gain
antenna systems for millimeter wave radars with combined electronical
and mechanical beam steering,” In Proc. IEEE Symp. Phased Array Sys.

Tech., Oct. 2006.
[26] V. M. Vishnevskii and O. V. Semenova, “Mathematical methods to study

the polling systems,” Auto. and Rem. Cont., vol. 67, no. 2, pp. 173-220,
Feb. 2006.

[27] M. Yun, Y. Zhou, A. Arora, and H. Choi, “Channel-assignment and
scheduling in wireless mesh networks considering switching overhead”,
In Proc. IEEE ICC’09, Jun. 2009.

998


