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Abstract—Failures in fiber-optic networks may be caused by
natural disasters, such as floods or earthquakes, as well as other
events, such as an Electromagnetic Pulse (EMP) attack. These
events occur in specific geographical locations, therefore the
geography of the network determines the effect of failure events
on the network’s connectivity and capacity.

In this paper we consider a generalization of the min-
cut and max-flow problems under a geographic failure model.
Specifically, we consider the problem of finding the minimum
number of failures, modeled as circular disks, to disconnect
a pair of nodes and the maximum number of failure disjoint
paths between pairs of nodes. This model applies to the scenario
where an adversary is attacking the network multiple times with
intention to reduce its connectivity. We present a polynomial time
algorithm to solve the geographic min-cut problem and develop
an ILP formulation, an exact algorithm, and a heuristic algorithm
for the geographic max-flow problem.

I. INTRODUCTION

Fibers in optical networks are laid out along physical paths,

hence they are susceptible to geographical physical events

such as earthquakes and Electromagnetic Pulse (EMP) attacks

[5], [12]. These types of disasters may lead to multiple

geographically correlated failures on the fiber infrastructure.

Thus, the survivability of the fiber network is affected by its

geographical layout. In this paper, we attempt to account for

geographically correlated failures on network connectivity and

flow.

Previous works considered the problem of finding the worst-

case location for a failure in a geographic network with respect

to certain network connectivity measures [1], [10]. The impact

of a single randomly located disaster on network connectivity

is considered in [8], [9], [15]. In this work we consider the

problem of finding the minimum number of failures, modeled

as circular disks, to disconnect a pair of nodes and the

maximum number of failure disjoint paths between pairs of

nodes.

Min-cut and max-flow problems similar to the ones pre-

sented here have also received some attention in the literature.

Recently [14] considered the problem of a geographic max-

flow and min-cut in a wireless network setting. In [7] the

problem of finding the maximum number of geographically
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Fig. 1. The light gray area (yellow area in online color version) above
represents the protected zone that no circular failure may be centered. The
gray disks (red disks in online color version) represent disasters that remove
links (of unit capacity) they intersect. Two disasters are required to disconnect
the two nodes S and T (shown above), so the geographic min-cut is two. Also,
since the top pair of paths can be intersected by the same failure, geographic
max-flow is two; two failure disjoint paths are given by the topmost and
bottommost path. In contrast, the standard min-cut and max-flow is three.

disjoint paths with minimum total cost is discussed in a

continuous setting where paths may be placed anywhere within

a polygonal domain. Finally, [2] considers a related problem to

the geographic max-flow and min-cut, where failures of nearly

arbitrary shape occur at a finite set of candidate locations. Here

we take the geography into account by allowing failures to take

place at any location, yet restricting the shape of a failure to

a geometric disk.

We first consider a geographical variant of the min-cut

problem. Given a set of points on the plane, each of which

represents a node, and non-crossing line segments between

these points representing links, what is the minimum number

of circular attacks such that two nodes, S and T , are dis-

connected from each other. If applied to the national fiber

plant, the solution to this problem is the number of geographic

failures required to disconnect two cities. If we do not restrict

the locations of potential failure sites, the geographic min-

cut will be at most one because nodes S or T can trivially

be eliminated with a single failure. In order to make the

problem more relevant and realistic we restrict potential failure

locations (see Fig. 1). This can represent fibers that have been

hardened against EMP attacks or a well defended city. We

show that we only need to consider a polynomial number of

possible failure sites, thus reducing the geographic min-cut

to a discrete problem. Then applying methods from [2], we

show how to find a solution in polynomial time. We obtain

numerical results for a specific backbone network [6], thereby

demonstrating the applicability of our min-cut algorithm to a

real-world network.

Next, in the context of geographic attacks and path-
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protection algorithms we study a geographic max-flow prob-

lem: the largest set of paths between nodes S and T such

that no two paths can be intersected by the same failure.

The solution to this problem gives the maximum number of

paths that are geographically disjoint with respect to disasters

of a particular radius. See Fig. 1 for an example. We then

develop an ILP formulation, an exact algorithm, and a heuristic

algorithm for this geographic max-flow problem.

Finally, we explore the analogue to the min-cut max-flow

theorem in the geographic setting. In particular, we show that

the cardinality of the solutions to these geographic min-cut and

max-flow problems are not the same. Supported by simulation

results, we conjecture this difference is no greater than one,

i.e. max-flow ≤ min-cut ≤ max-flow +1.

II. GEOGRAPHIC MIN-CUT

We start by formulating the geographic min-cut problem and

presenting an algorithm to solve this problem in polynomial

time.

A. Network Model and Problem Formulation

Let N be an ordered set of points in the plane representing

nodes. Assume the points representing the nodes are in general

position, that is no three points are collinear. A link from node

i to node j is represented as a line segment in the plane with

endpoints at node i and node j. Let the set of undirected links

be given by E. We assume that the graph is simple (contains

no self-loops or multiple edges) and connected, and links do

not intersect each other except at node locations.

We model disasters as disks of radius rb and refer to these

disks as holes. We assume a hole removes all links that

intersect it. We also assume a hole may be centered anywhere

in the plane, except inside a protective disk of radius rp
centered at nodes S and T .

We now define the following problem and demonstrate its

formulation.

Geographical Min-Cut By Circular Disasters (GMCCD)

Problem: Given a graph drawn in the plane G = {N,E}, two

distinct nodes S and T , hole radius rb, and protection radius

rp, find a minimum cardinality set of holes that disconnect S

from T .

B. Algorithm to Solve GMCCD Problem

We describe an algorithm that finds a solution to the

GMCCD problem. For clarity of presentation we break down

the algorithm into steps. We initially note that holes may be

centered anywhere not inside the protective disks; thus there

are an infinitely uncountable number of holes to consider

in general. The first step (step 1) of the algorithm reduces

this infinitely sized set of potential holes to a polynomial

sized set by extending the methods in [10]. Once this set of

holes is enumerated, we can apply a simplified algorithm for

computing geographic min-cut based on [2]. We do this by

first creating a dual-like graph (step 2) and then running an

algorithm based on shortest closed walks on this new dual-like

graph to solve the GMCCD problem (step 3).

Step 1: There are an infinite number of hole locations centered

outside the protective disks; in this step we find a polynomial

sized set of holes from which we can construct a solution to

the GMCCD problem.

Before proceeding, we introduce some notation. Let

H(e, rb) be the set of points whose shortest distance to line

segment e is less than or equal to rb. Such a shape is known

as a hippodrome [4]. Note that a hole of radius rb is centered

in H(e, rb) if and only if the hole intersects e.

In [10] we considered the same failure model without the

protected zones. Under this model we found a polynomial size

set of hole locations such that every hole in the plane can be

represented by one of these locations and intersects at least

the same set of links.

The polynomially sized set of potential failure locations

found in [10] cannot be used for the GMCCD problem

because of the restriction that holes cannot be placed inside

the protected zones. For example, in a particular network some

of the holes found using the methods in [10] may be centered

inside the protected zone and thus cannot be considered. If we

consider additional holes that are centered at the intersection

of the boundaries of the protected zones and hippodromes

associated with links, we can show that this expanded set of

potential failure locations is sufficient. For brevity we omit

the details, which can be found in [11]. Let this polynomially

sized set of potential hole locations for the GMCCD problem

be given by U .

Step 2: We construct an undirected dual-like graph from G, the

original graph, and U , the polynomially sized set of potential

hole locations. Let this dual-like graph be denoted by K .

We first introduce some notation. The drawing of G in the

plane partitions the rest of the plane into connected regions

called faces (including the outer, infinitely large region). For

example, the graph in Fig. 2 divides the plane into five faces,

four bounded faces and one infinitely large face.

We now describe the dual-like graph K . Every node in the

dual-like graph K corresponds to a face in G. For example,

in Fig. 2 G has five faces; each of these faces represents

a node in K (shown as dashed circles). There exists a link

between two nodes in K for each hole u ∈ U that intersects

the faces they represent. For example, in Fig. 2 there exist two

holes intersecting face one and face five, u1 and u2. So there

exist two links between node one and node five in K; one

corresponding to u1 and the other corresponding to u2. Note,

because every link in K is associated with a hole, there exist

more than one edge between two nodes in K if more than one

hole intersects their corresponding faces.

Step 3: The final step finds a solution to the GMCCD problem

by considering a set of closed walks in K and then from

this set finds the shortest walk whose corresponding holes

disconnect S from T (see Fig. 3). This is similar to a known

algorithm to find the min-cut in a planar graph (in the standard
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Fig. 2. The dual-like graph is shown by the dotted potion of the figure above.
The solid dots and line segments represent the original network G. For ease
of presentation, we take the set of gray disks (red disks in the online color
version) above to be U . G has five faces; each of these faces represents a
node in K (shown as dashed circles). There exists a link between two nodes
in K for each hole in U that intersects the faces they represent. Note, there
exist two holes intersecting face one and face five, u1 and u2. So there exist
two links between node one and node five in K; one corresponding to u1

and the other corresponding to u2. Also, for presentation purposes the only
self-loop in K shown is located at node 4 and corresponds to u5; there are
more self-loops in K (see Fig. 4).

S

T

Fig. 3. The dashed links above represents a closed walk in K such that the
corresponding holes (shown as disks) remove links which disconnect S and
T . By searching over a set of closed walks in K , we will be able to find a
solution to the GMCCD problem.

sense); the algorithm finds the shortest closed walk in the dual

graph that disconnects S from T [13].

We now describe the algorithm. First, for all nodes in the

dual-like graph run Dijkstra’s algorithm [3]. This gives a

shortest path tree rooted at each node. Denote links in this

tree for node n by Cn. Notice that when a set of links is

removed from the graph new faces are created. Intuitively, a

shortest path in K between two nodes gives the minimum

number of disasters such that the faces corresponding to these

nodes will be contained in a larger face after the disaster. It is

worth emphasizing that this face is not necessarily the outer

face of the new graph.

Next, for every link e in K consider the closed walk in

Cn ∪ e which contains node n and link e. A solution to the

GMCCD problem is given by finding the closed walk in Cn∪e
for all nodes n and links e in K and then searching over

these walks for the shortest one whose corresponding holes

disconnect S from T .

For example, consider Fig. 4. Let the link from node ni

to nj associated with hole u be given by
{

(ni, nj) , u
}

.

The solid links are the links in the shortest path tree

rooted at node 2, C2. Consider the link
{

(1, 5) , u2

}

.

Now C2 ∪ {(1, 5) , u2} contains a closed walk given

by
{

{

(1, 2) , u2

}

,
{

(2, 5) , u2

}

,
{

(1, 5) , u2

}

}

. Since hole u2

does not disconnect S and T (every hole in this cycle is marked

with u2), {u2} is not a candidate solution. Now consider

1

2
3

5

4

u1

u1

u1

u2

u2

u2

u2

u2
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u3
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Fig. 4. The graph shown above is K from Fig. 2 complete with self-loops.
Every link is marked with its respective hole.

the link
{

(1, 5) , u1

}

. The resulting closed walk is given by
{

{

(1, 2) , u2

}

,
{

(2, 5) , u2

}

,
{

(1, 5) , u1

}

}

. Since disasters u1

and u2 disconnect S and T , {u1, u2} is a candidate solution.

Enumerating over all nodes and edges in K and finding the

minimum cardinality candidate solution solves the GMCCD

problem (in this example, a solution is given by {u1, u2}).

Theorem 1: The algorithm described in steps 1-3 finds a

solution to the GMCCD problem.

Proof: In step 1 we identify a polynomial sized set

of locations such that we can find a geographic min-cut

considering only holes placed at these locations. Once these

locations have been identified the correctness of steps 2 and

3 follow from [2].

Let M be the set of nodes in K . As a result of Euler’s

formula [3] |N |− |E|+ |M | = 2, we know |M | is polynomial

in |N |. Since the algorithm considers a closed walk for every

node-link pair in K , we know the algorithm runs in polynomial

time in |N |.

C. Numerical Results

We used the algorithm in the previous section to solve

the GMCCD problem for a major network provider [6]. We

replace every link intersection with a node in this network

which allows our algorithm to be applied. All distance units

mentioned here are in longitude and latitude coordinates (one

unit is approximately 60 miles) and for simplicity we assume

latitude and longitude coordinates are projected directly to

[x, y] pairs on the plane.

Fig. 5 shows a solution to the GMCCD problem when rb =
1.3, rp = 3, S = Dallas, and T = Chicago. Only two disasters,

located at ‘choke’ points to the east and west of Chicago, are

required to disconnect these cities. Fig. 6 shows that when rb
is reduced slightly to 1 a total of four disasters are required

to disconnect the two cities.

III. GEOGRAPHIC MAX-FLOW

In the context of geographic attacks and path-protection

algorithms we consider the geographic max-flow problem: the

maximum number of paths between nodes S and T such that

no two paths can be disconnected by the same hole. The

solution to this problem gives the maximum number of paths
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Fig. 5. A solution to the GMCCD problem when rb = 1.3, rp = 3.0,
S = Dallas, and T = Chicago. The gray disks (red disks in the online color
version) represent the hole locations and the light gray disks (yellow disks in
the online color version) represent the protected zones. Only two disasters,
located at ‘choke’ points to the east and west of Chicago, are required to
disconnect these cities.

Fig. 6. A solution to the GMCCD problem when rb = 1, rp = 3.0,
S = Dallas, and T = Chicago. The gray disks (red disks in the online color
version) represent the hole locations and the light gray disks (yellow disks
in the online color version) represent the protected zones. Note four disasters
with rb = 1 are required to disconnect the two cities, whereas only two
disasters are required with rb = 1.3 (see Fig. 5).

which are geographically disjoint with respect to disks of a

particular radius.

In this section we formulate the geographic max-flow prob-

lem, develop an exact algorithm as well as a low complexity

heuristic algorithm for the problem, and present numerical

results based on real-world networks.

A. Problem Formulation

We use the network and disaster model from the last section.

Geographical Max-Flow By Circular Disasters (GMFCD)

Problem: Given a graph drawn in the plane G = {N,E}, two

distinct nodes S and T , hole radius rb, and protection radius

rp, find the maximum cardinality set of paths connecting S

and T such that no hole intersects a pair of these paths.

Let P be a set of paths from S to T . Let H be the set of

all holes in the plane centered outside the open disks of radius

rp centered at S and T (centered outside the protected zone).

The solution to the GMFCD optimization problem below is a

geographical max-flow.

max |P |

such that ∄h ∈ H where

pi ∩ h 6= ∅ and pj ∩ h 6= ∅ ∀ pi∈P
∀ pj∈P , i 6= j

We are able to find an ILP formulation of the GMFCD

problem with a polynomial number of constraints. The idea for

this formulation is to find paths, each with a different ‘label’,

such that each one of these paths obeys some flow constraints

and every pair of these paths is failure disjoint. Due to space

constraints the formulation is not presented here but may be

found in the technical report [11].

B. Bounds on C and F

Denote the cardinality of a solution to the GMCCD problem

by C and denote the cardinality of a solution to the GMFCD

problem by F . We now present a few bounds on C and F . We

first note that C 6= F . A simple example demonstrating this

is given in Fig. 7. Note in this example C = 2 and F = 1;

a geographic min-cut is given by {u1, u2} and the max-flow

is given by the path corresponding to the dashed curve. This

is interesting as it shows the analogue to the max-flow min-

cut theorem [3] does not hold in our setting. Also we know

that F ≤ C because every geographic max-flow path must

be intersected by a hole in a geographic min-cut or otherwise

there would remain a path from S to T after the removal of

holes on the min-cut.

Since only a polynomial number of hole locations need to

be considered (as discussed in step 1 of Section II), it follows

that the GMFCD and GMCCD problems are special cases of

the geographic max-flow and min-cut problems described in

[2]1. Thus, some of the results presented in [2] can be applied

to our setting. For example, in the special case where S and

T share a common face (that is, S and T are both nodes on

the same face) it is known that C ≤ F + 1. Moreover, in

our setting there exists a case where this bound is tight (i.e.,

can be met with equality) as demonstrated by the example in

Fig. 7.

There exists a family of graphs for which it is known that

C = F [2]. These graphs do not contain what are known

as ‘bad’ holes. Applying a type of greedy algorithm to these

graphs results in a solution to the GMFCD problem. Details

can be found in the technical report [11]. These results are

used to prove the correctness of the exact algorithm presented

in the next subsection.

C. Exact Algorithm

Next we present an algorithm to solve the GMFCD problem

exactly that works by applying a greedy routine to every ST

path. We give a brief overview of the algorithm. Let p be a

ST path in G. We remove every link that is not hole disjoint

with p (effectively, every link outside the protected zone that

intersects a ‘worm’ around p is removed). Denote the resulting

graph by G′ and let F ′ denote the cardinality of the geographic

max-flow for G′. S and T now share a common face on G′

(with a caveat described in [11]). It can be shown that the

greedy algorithm on G′ finds the geographic max-flow for

G′. Additionally, if p belongs to a solution to the GMFCD

problem, then F = F ′ + 1 and so p combined with the set

1In particular, every disaster in [2] must have a shape that is homeomorphic
to a disk.
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replacements
u1

u2
u3

S T

Fig. 7. A simple network where S and T lie in the same face (a version
of this example may be found in [14]). All relevant holes are shown above
in gray (red in online color version); others holes can effectively be ignored.
Note C = 2 and F = 1 (a geographic min-cut is given by {u1, u2} and
max-flow given by path corresponding to the blue dotted curve). This shows
the analogue to the max-flow min-cut theorem [3] does not hold in our setting.
Also, it shows that there exists a case where the bound C ≤ F + 1 (shown
in [2]) is tight for our problem when S and T lie in the same face.

of paths found by the greedy approach is an optimal solution.

Thus, by considering all ST paths we can find a set of paths

that includes p that is an optimal solution to the GMFCD

problem. Due to space constraints, the details and proofs of

the algorithm may be found in the technical report [11].

This algorithm may not be practical since typically the

number of ST paths grows exponentially with the size of a

graph, however, it gives insight to the development of a good

heuristic algorithm.

D. Heuristic

The basis of the heuristic algorithm presented here is to try

to identify the paths that are likely to be in the geographic max-

flow. The algorithm works similarly to the exact algorithm

above except we apply the greedy routine to a subset of

paths, instead of every ST path. In particular, the subset of

paths considered consists of those found by a standard (node

disjoint) max-flow algorithm on the original topology. We

apply the greedy routine on every one of these paths and return

the largest set of disjoint paths found. In the next section we

provide some numerical results using this heuristic. See [11]

for an explicit description.

E. Numerical Results

Similar to Section II-C, we discuss the results of our

developed algorithms for the GMFCD problem when applied

to a major network provider [6].

Fig. 8 shows a result of the GMFCD heuristic algorithm.

The four disks represent hole locations in a geographic min-

cut. The four ‘worms’ correspond to hole disjoint paths found

using the GMFCD heuristic algorithm. Since the cardinality

of the geographic max-flow and min-cut solutions is the same

and F ≤ C, we know the heuristic has found an optimal

solution to the GMFCD problem in this case.

It is known C ≤ 2F + 2 in the more general setting of

[2]. However we believe our geographical setting allows for

this bound to be tightened. We conjecture that C ≤ F + 1.

Using the algorithm in Section II and running CPLEX on the

the ILP in Section III, we solve the GMCCD and GMFCD

problems exactly for 1000 randomly generated geographic

graphs consisting of 13 nodes. We found C = F for 99%

Fig. 8. Result of GMFCD heuristic algorithm when rb = 1.0, rp = 3.0, S =
Dallas, and T = Chicago. The four gray disks (red disks in the online color
version) represent the hole locations in a geographic min-cut and the light
gray disks (yellow disks in the online color version) represent the protected
zones. The four light gray ‘worms’ (teal ‘worms’ in the online color version)
correspond to hole disjoint paths found using the heuristic algorithm. Since
the cardinality of the max-flow and min-cut solutions is the same and F ≤ C,
we know the heuristic has found an optimal solution to the GMFCD problem.

of the instances and C = F + 1 for the remaining 1%. There

was not a single example where C exceeded F by more than

1, thus supporting our conjecture.
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