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Abstract—We consider the problem of protection in multilayer
networks. In single-layer networks, a pair of disjoint paths can be
used to provide protection for a source-destination pair. However,
this approach cannot be directly applied to layered networks
where disjoint paths may not always exist. In this paper, we take
a new approach which is based on finding a set of paths that may
not be disjoint but together will survive any single physical link
failure. We consider the problem of finding the minimum number
of survivable paths. In particular, we focus on two versions of
this problem: one where the length of a path is restricted, and the
other where the number of paths sharing a fiber is restricted. We
prove that in general, finding the minimum survivable path set is
NP-hard, whereas both of the restricted versions of the problem
can be solved in polynomial time. We formulate the problems as
Integer Linear Programs (ILPs), and use these formulations to
develop heuristics and approximation algorithms.

I. INTRODUCTION

Multilayer network architectures such as IP-over-WDM
have played an important role in advancing modern communi-
cation networks. Typically, a layered network is constructed by
embedding a logical topology onto a physical topology such
that each logical link is routed using a path in the physical
topology. While such a layering approach makes it possible
to take advantage of the flexibility of upper layer technology
(e.g., IP) and the high data rates of lower layer technology
(e.g., WDM), it raises a number of challenges for efficient
and reliable operations. In this paper, we focus on the issue
of providing protection in layered networks.

The protection problem in single-layer networks is rather
straightforward; namely, providing a pair of disjoint paths (one
for primary and one for backup) guarantees a route between
two nodes against any single link failure. This approach, how-
ever, cannot be directly applied to layered networks, because a
pair of seemingly disjoint paths at the logical layer may share
a physical link and thus simultaneously fail in the event of a
physical link failure. To address this issue [1] introduced the
notion of physically disjoint logical paths.

In [2], this notion was generalized as Shared Risk Link
Group (SRLG) disjoint paths, i.e., two paths between the
source and destination nodes that do not share any risk (e.g.,
fiber and conduit). Nearly all the previous works in the context
of layered network protection have focused on finding SRLG-
disjoint paths [3], [4], [5], [6].

Although the SRLG-disjoint paths problem has been well
studied, there are networks in which the SRLG-disjoint paths
do not exist between a source and a destination. In order

This work was supported by NSF grants CNS-0830961 and CNS-1017800,
and by DTRA grants HDTRA1-07-1-0004 and HDTRA-09-1-005.

to address this challenge, we take an alternative approach
that is based on finding a set of paths that together will
survive any single physical link failure. Thus, in the case that
SRLG-disjoint paths do not exist, we may find three or more
paths such that in the event of a fiber failure, at least one of
the paths remains connected. This notion of survivable path
set generalizes the traditional notion of SRLG-disjoint paths,
and enables us to provide protection for a broader range of
scenarios. Our contributions can be summarized as follows:
• We introduce a new notion of survivable path set to

provide protection even for the case where SRLG-disjoint
paths do not exist.

• We prove the NP-hardness of the minimum survivable
path set (MSP) problem.

• We show that under certain practical restrictions, the MSP
problem is polynomially solvable.

• We develop heuristics and approximation algorithms for
the MSP problem.

In Section II, we present the network model. In Section
III, we study the problem of finding a minimum set of paths
that will survive any single fiber failure and develop several
approximation algorithms. Finally, we provide simulation re-
sults in Section IV and conclusions in Section V. Due to the
page limit, the proofs of some theorems and lemmas have been
omitted, and can be found in [7].

II. NETWORK MODEL

We consider a layered network that consists of a logical
topology GL = (VL, EL) built on top of a physical topology
GP = (VP , EP ) where V and E are the sets of nodes and
links respectively, and VL ⊂ VP . Each logical link (i, j) in
EL is mapped onto an i − j path in the physical topology.
This is called lightpath routing. Different lightpaths may use
the same fiber (physical link), therefore when a fiber fails, all
the lightpaths using that fiber will fail. Hence, a logical path
survives the failure of any fiber that it does not use.

As mentioned above, we generalize the traditional notion of
SRLG-disjoint paths to account for the case where there does
not exist a pair of SRLG-disjoint paths. In a layered network,
a set of logical paths is said to be survivable if at least one
of the paths remain connected after any single physical link
failure. Hence, a survivable set consisting of two paths is a pair
of SRLG-disjoint paths. Note that there may exist a survivable
path set even if SRLG-disjoint paths do not exist. For example,
consider the physical and logical topologies in Fig. 1. Each
dashed line in Fig. 1(c) shows the lightpath routing of each
logical link over the physical topology. Under this lightpath
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routing, each pair of logical paths between nodes 1 and 4
shares some fiber.

Suppose that we want to find a set of logical paths between
nodes 1 and 4 that can survive any single physical link failure.
Clearly, there does not exist a pair of SRLG-disjoint paths
as each pair of logical paths shares a fiber. However, it is
straightforward to check that the set of 3 paths can survive
any single fiber cut, although they are not SRLG-disjoint. This
example shows that the traditional protection schemes based
on SRLG-disjoint paths (such as the ones in [2]) may fail to
provide protection against single physical link failures, while
there exists a set of paths that can together provide protection.
Our goal in this paper is to address the problem of finding
a set of survivable paths that together will survive any single
fiber failure.

(a) Physical Topology

(b) Logical Topology

(c) Mapping

Fig. 1. Topologies in Multilayer Networks

III. MINIMUM SURVIVABLE PATHS SET (MSP)

We start with the problem of finding a minimum survivable
path set, i.e., the minimum cardinality set of paths between
a pair of nodes s and t that survive any single physical link
(fiber) failure. We first present a path-based Integer Linear
Program (ILP) formulation for this problem, assuming that
the entire set of s − t paths with their routings over fibers is
given. For each path j, let Pj be a binary variable which takes
the value 1 if path j is selected, and 0 otherwise. The matrix
A ∈ Rm×n refers to the mapping of all n paths over the m
fibers such that aij = 0 if path j uses fiber i and aij = 1
otherwise. Let e be a m × 1 vector of ones. The minimum
survivable path set problem can be expressed as follows:

minimize
n∑
j=1

Pj (1)

subject to A× P ≥ e (2)
Pj ∈ {0, 1}, j = 1, · · · , n (3)

In the above, the objective function is the number of selected
paths. Each row i ∈ {1, · · · ,m} in constraint (2) requires
that at least one selected path survives the failure of fiber i,
i.e., the selected path set should be survivable. Hence, the
optimal solution to the above optimization problem gives a
minimum survivable path set whenever exists. Although this
formulation requires the knowledge of every path (which is

possibly exponential in the number of fibers), the compact
and clean expression of the path-based formulation enables
us to analyze the useful properties of survivable path sets.
Later, we will use this formulation to develop heuristics and
approximation algorithms for finding a minimum survivable
path set. In addition, the MSP problem can be described
by link-based formulation using a polynomial number of
constraints and variables without enumerating all of the paths.

A. MSP in general setting

In this section, we show that the MSP problem is NP-hard
in general and discuss some algorithms that can be used to
solve the problem. In Sections III-B and III-C, we will study
the MSP problem under practical constraints. Our first result
pertains to the complexity of the MSP problem as stated in
Theorem 1 below.

Theorem 1: Computing the minimum number of survivable
paths in multilayer networks is NP-hard. In addition, this
minimum value cannot be approximated within any constant
factor, unless P = NP .

The proof of Theorem 1 relies on a mapping between
the survivable path set problem and the minimum set cover
problem. Suppose that each path corresponds to a set of fibers
that are not used by that path, i.e., survived. Then, finding
a minimum survivable path set is equivalent to finding a
minimum path set that survives (covers) all of the fibers. The
complete proof can be found in [7].

Since the problem is computationally hard to solve, we
consider heuristics and approximation algorithms that give
a set of survivable paths in polynomial time. Owing to the
similarity to the set cover problem, the heuristics that have
been developed for set cover problems can be used here. In
particular, a common approach to solve the set cover problem
is the greedy algorithm. In order to apply the greedy algorithm
to our setting, one needs to enumerate all of the paths with
their routings on the fibers. In general, the number of paths
in a multilayer network is exponential in the total number of
fibers. Moreover, in each iteration, the greedy algorithm tries
to find a path that survives the maximum number of fibers.
This is equivalent to the Minimum Color Path problem, which
is known to be NP-hard. [8]

Another approach which can be used to approximate the
set cover problem is randomized rounding which is based on
solving the Linear Program (LP) relaxation of the original ILP
formulation, and rounding the solution randomly. Randomized
rounding gives an O(logm) approximation, where m is the
number of fibers [9]. This is the best possible approximation
for the MSP problem, which is due to the fact that the
minimum set cover problem cannot be approximated within
better than a logm factor [10].

Fortunately, practical systems impose certain physical con-
straints that make the survivable path-set problem easier to
solve. For example, due to physical impairments and delay
constraints, paths are typically limited in length. Furthermore,
in WDM networks, the sharing of a fiber by the logical links
is limited by the number of available wavelengths. In the
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following, we show that these physical limitations make the
MSP problem tractable.

B. The Path Length Restricted Version

In this section, we assume that each logical path is restricted
to use at most K fibers. Restricting the length of paths (i.e.,
number of fibers on each path) is a realistic assumption,
because each logical link is typically constrained in the number
of fibers that it may use, and each logical path is constrained
in the number of logical links.

Lemma 1: Under the path length restriction, the optimal
number of survivable paths is at most K + 1.

Proof: By the assumption, each path uses at most K
fibers, and thus at least m−K fibers are survived by a path.
Suppose that we have selected an arbitrary path, and want to
add other paths to form a survivable path set. In the worst case,
each of the newly selected paths can survive only a single fiber
which is not survived by the previously selected paths. Since
there are at most K fibers that are not survived by the first
path, we need at most K additional paths to survive the rest of
the fibers. Therefore, the total number of paths will not exceed
K + 1.

Lemma 2: In the path length restricted version of MSP, the
total number of paths is polynomial in the number of fibers
m, and can be enumerated in polynomial time.

Proof: Under the assumption, a path can consist of up to
K fibers, and thus at most K logical links. In a graph with n
nodes there can be O(nK) paths of length up to K. Since the
number of nodes is at most 2m, the total number of logical
paths of length up to K is O(mK). A simple exhaustive search
can be used to enumerate the paths.

Theorem 2: The path length restricted version of the MSP
problem can be solved in polynomial time.

Proof: By Lemma 1, MSP needs at most K + 1 paths to
survive any single failure. Therefore, one can find the exact
solution by searching through all subsets of paths with sizes
2, 3, ...,K+ 1. This will take O(PK+1) iterations where P is
the total number of paths. On the other hand, by Lemma 2, the
total number of paths is O(mK). Therefore, the total running
time of exhaustive search is O(mK(K+1)) which is polynomial
in the total number of fibers.

Although this exhaustive search returns an optimal solution,
its running time can be prohibitive for large values of m and
K. This motivates us to study heuristics and approximation
algorithms with better running time. First, we consider a
greedy algorithm, followed by a randomized algorithm based
on ε-net which is a well-known technique in the area of
computational geometry.

1) Greedy Algorithm: The first heuristic we consider is a
greedy algorithm which is similar to the greedy algorithm
for the minimum set cover problem. The input to the greedy
algorithm is the set of paths with the set of fibers used by
each path and the set of all fibers. The greedy algorithm is
an iterative algorithm that works as follows. In the first step,
it selects a path using the minimum number of fibers. In the
second step, it selects the path that survives the maximum

number of fibers that are not survived yet. The second step is
repeated until the selected path set survives all of the fibers.
Following the proof of Lemma 1, it can be shown that the
greedy algorithm also finds a survivable path set with size at
most K + 1.

As discussed in Section III-A, the greedy algorithm gener-
ally gives an O(logm) approximation to the minimum sur-
vivable path set. However, under the assumption of restricted
path length, it provides a better approximation as stated in
Theorem 3.

Theorem 3: The greedy algorithm provides an O(logK)
approximation in polynomial time for the path length restricted
version of MSP.

Proof: Let ξ be the size of minimum survivable path set.
Let ni be the number of fibers that are not survived after the ith

iteration of the greedy algorithm. Clearly, we have n1 ≤ K.
Now, note that there is a path that survives at least n1

ξ of the
remaining n1 fibers, because otherwise the size of the optimal
path set would be larger than ξ. Hence, in the second iteration,
the greedy algorithm would select a path that survives at least
n1

ξ of fibers. Thus,

n2 ≤ n1 −
n1
ξ
≤ K(1− 1

ξ
). (4)

Similarly,

n3 ≤ n2 −
n2
ξ
≤ K(1− 1

ξ
)2, (5)

and in general,

ni ≤ K(1− 1

ξ
)i. (6)

The greedy algorithm will terminate when nt < 1, and this
condition is satisfied when

K(1− 1

ξ
)t < 1, (7)

where t is the total number of iterations. Since 1 − x < e−x

for x > 0, inequality (7) is satisfied when

Ke−
t
ξ ≤ 1⇔ t ≤ ξ × logK. (8)

Therefore, the greedy algorithm provides an O(logK) approx-
imation.

To prove the polynomial time complexity, note that in each
iteration of the greedy algorithm, the best path can be found
in O(mK) by searching through all the paths (see the proof
of Theorem 2). Furthermore, as mentioned above, the greedy
algorithm terminates in at most K + 1 iterations. Therefore,
the computational complexity of the greedy algorithm is
O(KmK).

Although the greedy algorithm runs significantly faster than
the exhaustive search algorithm, its running time can still be
prohibitive for large K and m. Hence, we develop a novel
randomized algorithm which has a considerably better running
time. This algorithm builds upon solutions to the closely
related Set Cover and Hitting Set problems [11]. In particular,
the algorithm is based on ε-net, a concept in computational
geometry, which provides an approximation algorithm for the
Hitting Set problem.
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2) ε-net Algorithm: Our ε-net algorithm is an iterative
algorithm which selects each path with some probability. If
all the fibers are survived by the selected path set in the first
iteration, the algorithm terminates. Otherwise, it changes the
probability of selecting each path and selects a new set of
paths using the new probabilities, until all fibers are survived.

Let Wj be the weight of path j, initialized as Wj = 1.
Define the weight of each fiber i to be the sum of the weights
of paths surviving fiber i, i.e.,

W (fi) =
∑

j:aij=1

Wj . (9)

Definition 1: A fiber is said to be ε-Survivable if

W (fi) ≥ ε
n∑
j=1

Wj for some ε ∈ (0, 1), (10)

where n is the total number of paths.
Note that when all the paths have the same weight of 1, a

fiber is ε-Survivable if it is survived by at least ε × n paths.
Hence, if a fiber is ε-Survivable with large ε, then it is likely
to be survived by randomly selected paths. This observation
is exploited in our ε-net algorithm as discussed below.

By applying the randomized algorithm for the hitting set
problem from [12] and [13], we can obtain a path-selection
algorithm for selecting a random subset of paths that will
survive all of the ε-Survivable fibers, with high probability. In
particular, the algorithm finds a set of paths via s independent
random draws, such that in each draw, a path is selected from
the entire path set according to the probability distribution
µ(Pj) =

Wj∑n
j=1Wj

,∀j.
Our ε-net algorithm iteratively applies this random path

selection as follows. After each iteration, it checks the sur-
vivability of the selected path set. If not all fiber failures are
survived, the algorithm doubles the weight of all paths that
survive the failure of fibers in S̄, where S̄ is the set all the
fibers that are not survived yet (so that such fibers are more
likely to be survived by the new selected paths). The random
path selection is repeated with the new probability distribution.

Let ξ be the optimal value of the MSP problem. By applying
the results in [14], [15], the following theorem can be proved.

Theorem 4: Let s = c logKε log logK
ε , where c is a constant.

The ε-net algorithm finds a set of survivable paths of size
O(logK log ξ)ξ, with high probability.

Finally, we propose another algorithm which we call the
Random-Sweep greedy algorithm. Although, we could not
quantify the performance of this algorithm, its performance is
nearly optimal in many scenarios as will be shown in Section
IV.

3) Random-Sweep Greedy (RSG) Algortihm: Random
Sweep Greedy algorithm is a modified version of the greedy
algorithm. Here, the RSG removes a path (from the selected
path set) which survives the fibers covered by other selected
paths; so that the size of the selected path set can be further
reduced while maintaining the survivability.

The RSG algorithm also requires the knowledge of the set
of paths and associated fibers. Let Pi be the set of selected

paths in the first i iterations, and Sj be the set of fibers that
are survived by path j. Define the amortized cost ACj as
the inverse of the number of newly survived fibers by path j.
The first two iterations of RSG are the same as the greedy
algorithm. That is, in each iteration, it selects a path with
minimum amortized cost. If the first two paths survive all of
the fibers, the algorithm terminates. Otherwise, it continues as
follows.

Suppose the RSG algorithm is in the ith iteration. First,
find a path, say i, with minimum amortized cost among the
remaining paths. Then, pick a path, say j, randomly from the
previously selected path set Pi−1, and find S∗ = ∪k∈Pi,k 6=jSk,
which is the set of fibers that are survived by any of the
selected paths other than path j. If Sj ⊂ S∗, remove path
j from the set Pi. Note that removing such a path does not
affect the survivability of the selected path set, i.e., the same
set of fibers are still survived after the removal. However, it
will decrease the number of selected paths by one. Repeat this
procedure for all paths j, and check if they can be removed
from the selected path set Pi.

Table I summarizes the performance of each algorithm
under the path length restriction.

Method Approximation Running Time T
ExS Exact Solution O(mK(K+1)) D

Greedy O(logK) O(KmK) D
ε-net O(logK log ξ) O(K log(K) log(m) log(log(K))) P

TABLE I
PERFORMANCE BOUNDS UNDER PATH LENGTH RESTRICTED VERSION:

EXS-EXHAUSTIVE SEARCH, T-TYPE, D-DETERMINISTIC,
P-PROBABILISTIC

C. Wavelength Restricted version

Another important practical constraint is that in WDM-
based networks, the number of lightpaths using a fiber is lim-
ited to say W , which is the number of wavelengths supported
over a fiber. In this section, we assume that a set of logically
disjoint paths with their mapping on the physical topology is
given, and the goal is to find a minimum survivable path set
among those paths under the WDM restriction. Note that the
set of logically disjoint paths can be abstracted as a logical
topology with two nodes and parallel links (e.g., the one in
Fig. 2(a)). Clearly, under this assumption, the WDM restriction
implies that each fiber can be used by at most W paths. Using
this property, it can be shown that the MSP problem under the
WDM restriction can be solved in polynomial time. To prove
this, we need the following lemma.

Lemma 3: Under the wavelength restriction, the minimum
number of survivable paths is at most W + 1.

Theorem 5: Under the wavelength restriction, the MSP
problem can be solved in polynomial time.

Although there exists a polynomial time optimal algorithm,
it requires excessive computation for large values of W and
m. As in the case of restricted path length, we developed
approximation algorithms such as greedy and ε-net algorithms
which have better running time. Table II shows the summary of
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(a) Logical Topology

(b) Routing

Fig. 2. Routing in Multilayer Network

our approximation algorithms under the wavelength restriction
(See [7] for details).

Method Approximation Running Time T
ExS Exact Solution O(WW+1mW+1) D

Greedy O(logm) O(W 2m) D
ε-net O(logW log ξ) O(W log(W ) log(m) log(log(W ))) P

TABLE II
APPROXIMATION BOUNDS UNDER WAVELENGTH RESTRICTED VERSION:

EXS-EXHAUSTIVE SEARCH, T-TYPE, D-DETERMINISTIC,
P-PROBABILISTIC

IV. SIMULATION RESULTS

We compare the performance of our algorithms using both
large-scale random network topologies, as well as the US
backbone network topology. In particular, we compare the
following algorithms:
• ILP-based optimal algorithm computed by CPLEX; de-

noted by ILP
• Simple Greedy algorithm from Section III-B1; denoted

by MSPG
• Random-Sweep Greedy algorithm from Section III-B3;

denoted by RSG
• ε-net algorithm from Section III-B2; denoted by EPS
• Randomized rounding algorithm from Section III-A; de-

noted by RR

A. Performance in Large-scale Random Topologies with Path
Length Restriction

We first consider a random layered network where the
logical topology consists of 10 paths between nodes s and
t. This layer is mapped onto the physical topology containing
100 fibers, using the mapping structure shown in [16]. In the
K restricted version of the problem, each path consists of at
most K fibers. For each value of K, we generate 1000 random
topologies each with 10 paths routed on the physical topology
in a way that each path can select up to K fibers at random,
uniformly and independently. We then apply our algorithms to
each network in order to find a minimum survivable path set
(i.e., to solve the MSP problem). Note that the performances
of Randomized Rounding and ε-net algorithms depend on the
survivability guarantee of the algorithms, which are 99.9% and
100% respectively for the results shown below.

Fig. 3. Comparison of algorithms for MSP under path length restriction

Fig. 4. Run Time Comparison of Different heuristics with respect to Optimal

Fig. 3 compares the average number of survivable paths
found by each algorithm. It can be seen that as the value of
K increases, the number of paths increases. This is due to the
fact that when K is large, logical paths consist of more fibers;
therefore, more logical paths are needed since they can share
more fibers. Fig. 4 compares the logarithm of the running
time of the algorithms. It can be seen that the Randomized
Rounding algorithm is the fastest, while the RSG algorithm
and the ε-net algorithm have larger running times. Note also
that the running times are nearly independent of K.

B. Performance in Large-scale Random Topologies with WDM
Restriction

Similar to the previous section, we consider a random
layered network with 20 paths between nodes s and t in the
logical layer. For each W , we generate 1000 random topolo-
gies under the the wavelength restriction where at most W
paths can be assigned to each fiber. In order to solve the MSP
problem, we have applied our algorithms to each network. The
survivability guarantees of the Randomized Rounding and ε-
net algorithms are 99.9% and 100% respectively for the results
shown below.

Fig. 5 compares the average number of survivable paths
found by each algorithm. It can be seen that as the value of
W increases, the number of paths increases. This is due to
the fact that when W is large, more logical paths can share
a fiber, and therefore, more logical paths are needed since
a single physical link failure can lead to a large number of
logical path failures. Note that the Random-Sweep Greedy
(RSG) algorithm is closest to the optimal. Fig. 6 compares
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Fig. 5. Comparison of algorithms for MSP under WDM restriction

Fig. 6. Run Time Comparison of Different heuristics with respect to Optimal

the running time of each algorithm. Similar to the K-restricted
version, we observe that randomized rounding is the fastest.

C. Performance in Real Networks

Fig. 7. Physical Topology

Next, we examine the performance of the approximation
algorithms over the US backbone topology shown in Fig. 7,
with the objective of finding a minimum survivable path set
between nodes 4 and 22 [17]. For the logical topology, we
generated random graphs with eight nodes (including nodes
4 and 22) each of degree 4. We use shortest path lightpath
routing for the logical links.

Table III shows the average number of paths and average
running time of each algorithm. It can be seen that the RSG
and randomized rounding algorithms are nearly optimal, and
furthermore, the randomized rounding gives a solution almost
instantly. We also note that the survivability guarantees of the
Randomized Rounding and ε-net algorithms are 99.9% and
100% respectively for the results shown in the table.

Method Number of Paths Running Time (ms)
ILP 2.0069 7.2133
RSG 2.0160 2.0167
RR 2.0482 0.0272

MSPG 2.2241 0.1911
EPS 2.551 1.6000

TABLE III
COMPARISON OF ALGORITHMS FOR MSP IN REAL NETWORKS

V. CONCLUSION

We considered the problem of finding survivable paths in
layered networks. The traditional disjoint paths approach for
protection cannot be directly applied to layered networks,
since physically disjoint paths may not always exist in such
networks. To address this issue, we introduced the new
notion of survivable path set. We showed that in general
the problem of finding the minimum size survivable path
set (MSP) is NP-hard and inapproximable. However, under
practical constraints, we are able to develop both optimal and
approximation algorithms for the MSP problem. An important
future direction is to develop backup routing schemes based
on survivable path sets.
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