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Abstract—Adaptive CSMA algorithms have attracted con-
siderable attention, due to their throughput optimality, utility
maximizing properties, and amenability to simple distributed
implementation. In this paper, we investigate the impact of heavy-
tailed traffic on the performance of a queue length based adaptive
CSMA algorithm. Specifically, we consider two conflicting links
that share a channel using adaptive CSMA. One of the links
serves heavy-tailed traffic, while the other link serves light-tailed
traffic. Our main contribution is in demonstrating a threshold
phenomenon in the relationship between the arrival rates and the
queue backlog distributions. In particular, we show that when the
arrival rate of the light-tailed traffic is less than a threshold value,
the light-tailed traffic experiences a light-tailed queue backlog at
steady state, whereas for arrival rates above the same threshold,
the light-tailed traffic experiences a heavy-tailed queue backlog.

Comparing this result to a corresponding result for max-
weight scheduling [8], we conclude that adaptive CSMA is
potentially more robust to bursty traffic, compared to max-weight
scheduling.

I. INTRODUCTION

In the context of communication networks, link scheduling
for maximum throughput is a well studied problem. Maximum
weight scheduling, first proposed in [17], [18], forms the basis
for most of the literature on this topic. Unfortunately, finding
the maximum weight schedule is in general NP-complete,
and requires global information of the queue lengths, making
such algorithms difficult to implement. Randomized versions
of the max-weight algorithm such as the ones proposed in [5],
[16] are computationally simpler, but still require centralized
control. In [12], a distributed throughput optimal algorithm,
based on randomized scheduling and gossip-based information
exchange is proposed. This algorithm, though simple and
distributed, requires network-wide information exchange for
each new scheduling decision.

Greedy approximations to max-weight scheduling which
are simpler to implement in a distributed fashion have been
proposed in [1], [2], [19], but these approaches often lead to
guaranteed stability only in a fraction of the stability region.
Sufficient conditions on the network topology are derived
in [3], [11] for throughput optimality of greedy algorithms.
Random access techniques such as ALOHA and Carrier Sense
Multiple Access (CSMA) have also been widely studied for
many years, but their potential optimality properties were not
well understood until recently.

In a series of recent papers [10], [13]–[15], adaptive CSMA
based algorithms have been proposed to achieve maximum
throughput. The key idea of adaptive CSMA scheduling is
to adjust the transmission aggressiveness (TA) of each link
according to its local queue length. Specifically, when the
queue length of a link increases, the link transmits more ag-
gressively by using smaller backoff time or larger transmission
time; and the link does the opposite when its queue length
decreases.1 Adaptive CSMA based algorithms are expected to
find wide-spread applications in wireless networks, owing to
their optimality, extreme simplicity of operation, and inherent
scalability.

In this paper, we study the performance of an adaptive
CSMA algorithm in a queueing network that serves highly
heterogeneous traffic. Such a study is motivated by the fact
that packet switched networks serve a wide variety of bursty as
well as benign traffic sources, and otherwise desirable network
control policies (such as adaptive CSMA) must be evaluated
for robustness under such varied traffic characteristics. To this
end, we consider a simple queueing network consisting of two
conflicting links that access a server using adaptive CSMA.
One of the links serves heavy-tailed traffic, while the other
link serves light-tailed traffic. We prove the existence of a
threshold arrival rate λ∗ such that when the arrival rate of the
light-tailed traffic is less than λ∗, the light queue has light-
tailed queue backlog in steady-state. When the arrival rate of
the light-tailed traffic exceeds λ∗, the light-tailed traffic suffers
a heavy-tailed queue backlog in steady-state.

In a closely related paper [8] regarding the performance
of max-weight scheduling in the presence of heavy-tailed
traffic, it was shown that maximum weight scheduling induces
heavy-tailed delays on the light-tailed traffic, for any non-
zero traffic arrival rates. Thus, max-weight scheduling may
be undesirable in networks carrying bursty or heterogeneous
traffic, its throughput optimality notwithstanding. In compari-
son, adaptive CSMA induces heavy-tailed delays on the light-
tailed traffic only when the arrival rate of the light-tailed traffic

1Despite the intuitive idea, the proof to establish throughput-optimality
is sophisticated. It utilizes the product-form stationary distribution of the
transmission states under CSMA (roughly equivalent to the so-called Glauber
Dynamics in statistical physics), and relates that to either a maximal-entropy
problem [10] or max-weight scheduling [15].
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Fig. 1. A queueing system with two conflicting links. One of the links
receives heavy-tailed traffic, while the other receives light-tailed traffic.

is ‘high.’ In other words, adaptive CSMA seems to exhibit
superior robustness to heterogeneous and bursty traffic sources
compared to max-weight scheduling, in addition to being much
simpler to implement.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and the requisite
mathematical preliminaries. In Section III, we state and prove
our main results. In Section IV, we discuss the implications
of our main result and draw conclusions.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a system consisting of two queues, sharing a com-
mon server. The queues access the server through conflicting
wireless links, i.e., the two queues cannot be served at the
same time. Time is slotted, with bursts of packets arriving
at random to each queue at the beginning of each slot. The
server is capable of serving one packet per time slot. Although
we postpone the precise assumptions on the traffic statistics,
let us loosely say that one of the queues receives light-tailed
traffic, while the other receives heavy-tailed traffic (Fig. 1). We
will refer to the two queues as the light queue and the heavy
queue, respectively. Before we specify the precise assumptions
on the arrival processes, we pause to present some relevant
definitions.

Heavy-tailed and light-tailed random variables
Definition 1: A non-negative random variable X is said to

be light-tailed if there exists θ > 0 for which E [exp(θX)] <
∞. A random variable is heavy-tailed if it is not light-tailed.
In other words, a light-tailed random variable is one that has
a well defined moment generating function in a neighborhood
of the origin. The complementary distribution function of a
light-tailed random variable decays at least exponentially fast.
Heavy-tailed random variables are those which have com-
plementary distribution functions that decay slower than any
exponential. We now define the tail-coefficient of a random
variable.

Definition 2: The tail coefficient of a random variable X is
defined by

CX = sup{c ≥ 0 | E [Xc] < ∞}.

In words, the tail coefficient is the threshold where the power
moment of a random variable starts to blow up. Note that the
tail coefficient of a light-tailed random variable is infinite. On
the other hand, the tail coefficient of a heavy-tailed random
variable may be infinite (e.g., log-normal distribution) or
finite (e.g., Pareto distribution). In this paper, we restrict our

attention to the class of heavy-tailed random variables which
have a finite tail coefficient.

We now state the precise assumptions on the arrival pro-
cesses.

Assumptions about the arrival processes
1) The arrival processes to the two queues are independent

of each other.
2) The arrival process to each queue is independent and

identically distributed (i.i.d.) from slot-to-slot.
3) The number of packet arrivals to the light queue during

any slot is a light-tailed random variable, with mean λL.
4) The number of packet arrivals to the heavy queue during

any slot is a heavy-tailed random variable, with tail
coefficient CH (1 < CH < ∞), and mean λH .

CSMA scheduling algorithm
Assume that each link runs a CSMA-based algorithm to

transmit packets. Without loss of generality, we assume that
the discrete-time CSMA algorithm in [13] is utilized, where
time is slotted and one unit of data can be transmitted in one
slot. We note, however, that our main results are not affected if
the continuous-time CSMA in [10] are adopted. As mentioned
before, the key idea of adaptive CSMA scheduling is to adjust
the transmission aggressiveness (TA) of each link according
to its queue length. In this paper, we assume that the TA
is adjusted at every frame boundary, where each frame has
T time slots. Specifically, at the beginning of time slot jT
(j = 0, 1, 2, . . . )2, the TA of link k (k = H,L) is updated as
according to,

rk[j] = min
{α

T
Qk[j], rmax

}
(1)

where Qk[j] is the queue length of link k at the beginning of
time slot jT , α < 1 is a constant, and the constant parameter
rmax is the maximum possible TA.

If the TA’s of the two links are fixed at rH and rL, then in
the steady state of the CSMA Markov chain, the service rate
of link k is given by [13]

sk(r) =
exp(rk)

1 + exp(rH) + exp(rL)
, k = H,L. (2)

Let us refer to the interval between the beginnings of time
slots jT and (j+1)T as “frame j”. It is not difficult to see that
{Q[j],σ[j]}j=0,1,... forms a Markov chain [9], where σ[j] is
the transmission state (indicating whether link k (k = H,L)
is transmitting) just before slot jT . In frame j, it has been
shown in [9] that the “empirical service rate” s̃k[j] of link k
(i.e., the units of data transmitted during frame j divided by
T ) satisfies

|Ej{s̃k[j]}− sk(r[j])| ≤ b/T (3)

for some constant b > 0, where Ej{·} is a shorthand for the
conditional expectation E{·|Q[j],σ[j]}. Let us also define the
quantity

λ∗ =
exp(rmax)

1 + 2 exp(rmax)
. (4)

2Here, the indices of time slots start with 0



In light of (2), λ∗ can be understood as the service rate
afforded to each of the queues, when both queues attempt
transmission with the maximum permissible TA of rmax. The
quantity λ∗ will play an important role in our analysis.

The queue dynamics is given by

Qk[j + 1] = {Qk[j]− T · s̃k[j]}+ + ak[j], k = H,L,

where ak[j] is the total number of packet arrivals to link k
during frame j. Recall that aL[j] is assumed to be a light-tailed
random variable, and aH [j] is assumed to be heavy-tailed.

III. MAIN RESULTS

Our first result shows that the adaptive CSMA algorithm
can stabilize arrival rates that lie arbitrarily close to the largest
possible stability region boundary, as long as the parameters
rmax, T and α are chosen appropriately.

Theorem 1: Suppose that rmax > 1, and that

λL + λH ≤ exp(rmax)

1 + exp(rmax) + exp(1)
− 2ε

where ε > 0. Choose T ≥ 2b/ε. Then both queues are stable.
Remark: Clearly, the stability region approaches the largest

possible region (λL + λH < 1) as rmax → ∞ and ε → 0.
Proof: Consider the Lyapunov function L[j] := QL[j] +

QH [j] ≥ 0. We will show that if L[j] ≥ 2rmaxT/α, then the
following holds:

Ej{L[j + 1]− L[j]} ≤ −T ε . (5)

Suppose that L[j] ≥ 2rmaxT/α, then Qk[j] ≥ rmaxT/α
for some k. Without loss in generality, assume that QL[j] ≥
rmaxT/α. So rL[j] = rmax. Since rmax > 1 and α < 1, one
has QL[j] ≥ T . Therefore, QL[j + 1] = QL[j] − T · s̃L[j] +
aL[j].

Now consider two cases.
Case 1: If QH [j] ≥ T , then QH [j + 1] = QH [j] − T ·

s̃H [j] + aH [j]. Consequently,

Ej{L[j + 1]} = L[j] + T{λL + λH − Ej{s̃L[j] + s̃H [j]}}.

With T ≥ 2b/ε, the RHS of (3) is less than or equal to ε/2.
Therefore,

Ej{s̃L[j] + s̃H [j]} ≥ exp(rL[j]) + exp(rH [j])

1 + exp(rL[j]) + exp(rH [j])
− ε

≥ exp(rmax)

1 + exp(rmax)
− ε.

So (5) holds.
Case 2: If QH [j] < T , we have QH [j+1] ≤ QH [j]+aH [j].

So

Ej{L[j + 1]} ≤ L[j] + T{λL + λH − Ej{s̃L[j]}}.

Since QH [j] < T we also have rH [j] < α < 1. Therefore

sL(r[j]) =
exp(rmax)

1 + exp(rmax) + exp(rH [j])

≥ exp(rmax)

1 + exp(rmax) + exp(1)
.

So (5) still holds.
Therefore, the Lyapunov function has a negative drift

whenever L[j] ≥ 2rmaxT/α. Combined with the fact that
Ej{L[j + 1]} − L[j] is bounded, by the Foster-Lyapunov
Criterion, we conclude that the queues are stable.
In the next theorem, we show that when the arrival rate to the
light queue is less than λ∗, the steady-state queue occupancy
at the light queue is light-tailed.

Theorem 2: Suppose that λL ≤ λ∗−ε where ε > 0. Choose
T ≥ 2b/ε. Then the steady-state queue occupancy QL of the
light queue is light-tailed.

Proof: We show that whenever QL[j] > rmax
T
α , the light

queue has negative drift. Suppose that QL[j] > rmax
T
α . Then,

according to (1), rL[j] = rmax. Since rH [j] ≤ rmax, by (2),
we have

sL(r[j]) ≥
exp(rmax)

1 + 2 exp(rmax)
= λ∗.

Therefore, by (3),

Ej{s̃L[j]} ≥ sL(r[j])− b/T

≥ exp(rmax)

1 + 2 exp(rmax)
− ε

2
.

So λL − Ej{s̃L[j]} ≤ −ε/2 < 0 (i.e., there is a negative
drift). Since the arrival process is light-tailed, we can invoke
Theorem 2.3 (Eq. (2.8)) in [6], to conclude that the light queue
distribution is light-tailed in steady-state.
Our next result is a converse to Theorem 2. In other words,
we show that when the arrival rate of the light-tailed traffic
is greater than the threshold value λ∗, the steady-state queue
occupancy at the light queue is heavy-tailed.

Theorem 3: Suppose λL > λ∗, and that the CSMA pa-
rameters are chosen such that the system is stable. Then, the
steady-state occupancy of the light queue is heavy-tailed. with
tail coefficient at most CH − 1.

Proof: (Outline) We need to show that for any δ > 0,

E
[
QCH−1+δ

L

]
= ∞. (6)

Since the formal proof of this result is rather lengthy and
involved, we will present here an informal proof outline, and
indicate how the arguments can be formalized. In our informal
outline, we will ‘show’ that

lim
j→∞

E
[
QL[j]

CH−1+δ
]
= ∞. (7)

The above (Eq. 7) is the limit of the expectation of a sequence
of random variables, whereas what we really want to show in
(6) is regarding the expectation of the limiting random variable
QL. Although it is by no means obvious that the limit and
the expectation can be interchanged here, we will ignore this
technical detail for now (see Chapter 5 of [7]).

To prove (6), we first note that the time intervals between
two successive frame boundaries at which the system empties
constitute renewal intervals. Let us denote by TR the random
variable representing the number of frames in a renewal
interval. Since the system is stable, we have E [TR] < ∞.



Let us now define the renewal reward function

R[j] = QL[j]
CH−1+δ.

By the key renewal theorem [4],

lim
j→∞

E [R[j]] =
E [R]

E [TR]
,

where E [R] denotes the expected reward accumulated over a
renewal interval, and E [TR] < ∞. It is therefore enough to
show that3

E
[

TR∑

i=0

QL[i]
CH−1+δ

]
= ∞. (8)

To see why the expected reward over a renewal interval is
infinite, we consider a busy period that commences with a
burst of size B that arrives at the heavy queue. This event has
non-zero probability. We next compute the expected reward
over a renewal interval, conditioned on the busy period starting
with a burst of size B > B0, where B0 is chosen suitably
large.

For large enough B0, the TA of the heavy queue will
saturate at rmax starting from frame 1, and remain at rmax

until the occuapncy of the heavy queue falls to Trmax
α . In

other words, the TA of the heavy queue will remain at rmax

for O(B) time frames. During this O(B) time interval, the
light queue receives service at a rate of λ∗ at best, according
to (2), (3) and (4). Since the arrival rate λL is greater than λ∗,
the light queue will build up with high probability during this
O(B) interval, at the rate of λL −λ∗. Indeed, the light queue
will build up with high probability to an O(B) level, over a
duration lasting O(B) time frames.

Conditioned on the above event, the reward is at least
O(BCH−1+δ) for O(B) time slots, with high probability. We
can then show that for some constant κ > 0,

E
[

TR∑

i=0

QL[i]
CH−1+δ

]
≥ E

[
κB ·BCH−1+δ

]

= E
[
κBCH+δ

]
= ∞,

where the last expectation is infinite because the initial burst
size has tail coefficient equal to CH . We have thus shown
(8), and from the key renewal theorem, (7) follows. In order
to prove that the limit and expectation can legitimately be
interchanged in (7), one needs to use a truncation argument,
followed by repeated use of the monotone convergence the-
orem and the dominated convergence theorem. The above
arguments can be made precise by adopting the methodology
used in proving [7, Proposition 5.4].

IV. DISCUSSION

In this section, we discuss the results proved in this paper,
and compare them with the corresponding results derived in
an earlier paper on max-weight scheduling. We considered a
system consisting of two conflicting wireless links, where one

3Without loss of generality, we have considered a busy period that com-
mences at time 0.

of the links serves heavy-tailed traffic, while the other receives
light-tailed traffic. We assumed that the links access a shared
server using a recently proposed adaptive CSMA algorithm,
which is throughput maximizing. We proved the existence of
a threshold arrival rate λ∗, such that when the arrival rate of
the light-tailed traffic is less than λ∗, the light queue has light-
tailed queue backlog in steady-state. When the arrival rate of
the light-tailed traffic exceeds λ∗, the light-tailed traffic suffers
a heavy-tailed queue backlog in steady-state. Since λ∗ is close
to one half for large rmax, our result is tantamount to saying
that adaptive CSMA induces heavy-tailed backlog for the light
queue only if the light-tailed traffic is responsible for more
than half the total supportable traffic rate in the system.

In a recent paper [8], an analogous analysis was carried
out for maximum weight scheduling in the presence of heavy-
tailed traffic. Specifically, it was shown in [8] that maximum
weight scheduing and its generalized version called max-
weight-α scheduling induce a heavy-tailed queue backlog at
the light queue. This is true for all non-zero arrival rates of
the heavy-tailed and light-tailed traffic. Furthermore, it was
shown that max-weight scheduling induces the worst possible
asymptotics on the light queue among all non-idling policies.
In comparison, the adaptive CSMA algorithm can perform
better in terms of the delay faced by the light-tailed traffic. In
addition, adaptive CSMA has the same throughput optimality
property as max-weight scheduling.

As explained in [8], max-weight scheduling induces very
poor queue backlog on the light-tailed link because large burst
arrivals to the heavy-tailed link can starve the light queue for
extended durations. On the other hand, with adaptive CSMA,
all links have bounded TA values. As a result, even when
large bursts arrive at a link carrying heavy-tailed traffic, the
link cannot take over the server by attempting to transmit
with arbitrary aggressiveness. This has the effect of ‘shielding’
the light-tailed traffic from the large bursts, at least when the
arrival rate is smaller than the threshold value. Furthermore,
adaptive CSMA does not need any a priori information about
traffic statistics. In contrast, the policies proposed in [8] to
mitigate the effect of heavy-tailed traffic need to have a priori
information about which flow is heavy-tailed.

We wish to point out here that the cap on the TA values
of each link in adaptive CSMA was originally intended as a
mechanism to bound the mixing time of the CSMA Markov
chain. In other words, capped TA values imply bounded
‘fugacities’ in the underlying Glauber dynamics, which leads
to bounded mixing time. However in our context, the bounded
TA values help in another way as well, by preventing the
heavy-tailed link from attempting too aggressively.

In conclusion, our study suggests that adaptive CSMA has
the potential to be more robust than max-weight scheduling,
in queueing networks that serve highly bursty, heterogeneous
traffic.
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