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Abstract-We consider scheduling over a wireless system, 
where the channel state information is not available a priori to 
the scheduler, but can be inferred from the past. Specifically, the 
wireless system is modeled as a network of parallel queues. We 
assume that the channel state of each queue evolves stochastically 
as an ON/OFF Markov chain. The scheduler, which is aware of 
the queue lengths but is oblivious of the channel states, has to 
choose one queue at a time for transmission. The scheduler has 
no information regarding the current channel states, but can 
estimate them by using the acknowledgment history. 

We first characterize the capacity region of the system using 
tools from Markov Decision Processes (MDP) theory. Specifically, 
we prove that the capacity region boundary is the uniform limit 
of a sequence of Linear Programming (LP) solutions. Next, we 
combine the LP solution with a queue length based scheduling 
mechanism that operates over long 'frames,' to obtain a through­
put optimal policy for the system. By incorporating results from 
MDP theory within the Lyapunov-stability framework, we show 
that our frame-based policy stabilizes the system for all arrival 
rates that lie in the interior of the capacity region. 

I. INTRODUCTION 

In this paper, we consider the scheduling problem in a 
wireless uplink or downlink system, when there is no explicit 
instantaneous Channel State Information (CSI) available to the 
scheduler. The lack of CSI may arise in practice due to several 
reasons. For example, the control overheads, as well as the 
delay and energy costs associated with channel probing, might 
make instantaneous CSI too costly or impractical to obtain. 

Our system consists of N wireless links, which are modeled 
as N parallel queues that are fed by stochastic traffic. We 
assume that only a single queue can be chosen at each time 
slot by the server for transmitting its data. The state of each 
wireless link is time-varying, evolving as an independent 
ON/OFF Markov chain. A given transmission is successful 
only if the underlying channel is currently ON. 

Our basic assumption in this paper is that the scheduler 
cannot observe the current state of any of the wireless links. 
Nonetheless, when the scheduler serves one of the queues in 
a given time slot t, there is an ACK-feedback mechanism 
which acknowledges whether the transmission was successful 
or not, thereby revealing the channel state a posteriori. Since 
the channels are correlated across time by the Markovian 
assumption, this a posteriori CSI can be used for predicting 
the channel state of the chosen queue in future time slots. 
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The capacity region (or the rate region) of the system 
described above, is the set of all arrival-rate vectors that are 
stably-supportable by some scheduling policy. Our aim is to 
characterize the capacity region of the system, and to design 
a throughput optimal scheduling policy. 

The general problem of scheduling parallel queues with 
time-varying connectivity has been widely studied for almost 
two decades. The seminal paper of Tassiulas and Ephremides 
[6] considered the case where both channel states and queue 
lengths are fully available to the scheduler. It was shown in 
[6] that the max-weight algorithm, which serves the longest 
connected queue, is throughput optimal. 

Following this paper, several variants of imperfect and 
delayed CSI scenarios have been considered in the literature 
[2], [5], [7], [8]. However, our scheduling problem fundamen­
tally differs from the models considered in these references. 
Specifically, no explicit CSI is ever made available to the 
scheduler, and acquiring channel state information is a part 

of the scheduling decision made at each time instant. This 
adds significant difficulties to the scheduling problem. 

Two recent papers consider the scheduling problem where 
the CSI is obtained through an acknowledgment process, as 
in our model. In [1], the authors consider the objective of 
maximizing the sum-rate of the system, under the assumption 
that the queues are fully-backlogged (Le., there is always data 
to send in each queue). It is shown that a simple myopic policy 

is sum-rate optimal. The suggested policy keeps scheduling 
the channel that is being served as long as it remains ON, and 
switches to the least recently served channel when the current 
channel goes OFF. 

In [4], the authors propose a randomized round-robin 
scheduling policy for the system, which is inspired by the 
myopic sensing results in [1]. That policy is shown to stabilize 
arrivals that lie within an inner-bound to the rate region. 
However, the policy is not throughput optimal, and their 
method cannot be used to characterize the capacity region. 

In this paper, we propose a throughput optimal scheduling 
policy for the system. In particular, the frame-based policy we 
propose can stabilize arrival rates that lie arbitrarily close to the 
capacity region boundary, with a corresponding tradeoff in the 
computational complexity. Our proof of throughput optimality 
combines tools from Markov decision theory within a Lya­
punov stability framework. We also provide a characterization 
of the capacity region boundary, as the uniform limit of a 
sequence of LP solutions. 

This paper is organized as follows. The model is presented 
in Section II. In Section III, we formulate a linear program 
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Fig. 1. 
. 

A system of parallel queues served by a single server. The channels 
connectmg the queues to the server are randomly time-varying. 

which leads to the characterization of the capacity region. 
In Section IV, we suggest the frame-based policy, which we 
prove to be throughput optimal. Proofs are omitted throughout 
due to space constraints, and can be found in [3]. 

II. SYST EM DESCRIPTION 

The network model. We model the wireless system as 
consisting of N parallel queues (see Fig. I). Time is slotted 
(t = 1, 2, . . .  ). Packets arrive to each queue i E {I, 2, . . .  , N} 
according to an independent stochastic process with rate Ai. 
We assume that the arrival processes are independent of each 
other, and independent and identically distributed (ij.d.) from 
slot-to-slot. 

Due to the shared wireless medium, only a single trans­
mission is allowed at a given time. In our queuing model, 
this is equivalent to having the queues connected to a single 
server, which is capable of serving only a single packet per 
slot. Each queue is connected to the server by an ON/OFF 
channel, which models the time-varying channel quality of the 
underlying wireless link. If a particular channel is OFF and 
the queue is chosen by the scheduler, the transmission fails, 
and the packet has to be retransmitted. If it is ON and chosen 
by the scheduler, a single packet is properly transmitted, and 
an ACK is received by the scheduler. 

We denote the channel state of the i-th link at time t by 
Ci(t) E {ON, OFF}, i = 1, . . .  , N. We assume that the 
states of different channels are statistically independent of each 
other. The time evolution of each of the channels is given by 
a two state ON/OFF Markov chain (see Fig. 2). Although our 
methodology allows for different Markov chains for different 
channels, we shall assume for ease of notation and exposition 
that the Markov chains are identically distributed across users. 
We further assume that f < 0. 5, so that each channel is 
positively correlated in time. 
Information structure. At each time t, we assume that the 
scheduler knows the current queue lengths Qi(t) prior to 
making the scheduling decision. Yet, no information about the 
current channel conditions is made available to the scheduler. 
Only after scheduling a particular queue, does the scheduler 
get to know whether the transmission succeeded or not, by 
virtue of the ACK-mechanism. The scheduler thus has access 
to the entire history of transmission successes and failures. 
However, due to the Markovian nature of the channels, it is 
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Fig. 2. The Markov chain governing the time evolution of each of the 
channels state Ci (t). 

sufficient to record how long ago each channel was served, and 
the state of the channel (ON/OFF) when it was last served. 
Scheduling objective. Given the above information structure 
our objective is to design a scheduling policy that can suppo� 
the largest possible set of input rates. More precisely, an arrival 
rate vector A = (AI, . . .  , AN) is said to be supportable, if there 
exists some scheduling policy under which the queue lengths 
are finite (almost surely). The capacity region r of the system 
is the closure of all supportable rate vectors. A policy is said 
to be throughput optimal if it can support all arrival rates in 
the interior of r. 

III. OPTIMAL POLICIES FOR A FULLY BACKLOGGED 

SYST EM 

In the interest of simplicity of notation and exposition, we 
restrict attention to the case of N = 2 queues in the rest of 
the paper, although our methodology extends naturally to more 
queues. In this section, we assume that the queues are fully 
backlogged, i.e., the queues never empty. As we shall see, 
our analysis of the fully backlogged system gives us insights 
about the optimal scheduling policy for the dynamic system 
with finite queues. 

Since the queues are assumed to be infinitely backlogged 
in this section, the state of the system is completely specified 
by the state of each channel the last time it was served, and 
how long ago each channel was served. In a system with two 
fully backlogged queues, the information state during slot t 
has the form s(t) = [kl(t), bl(t), k2(t), b2(t)], where ki(t) is 
the number of slots since the queue i was served, and bi(t) E 
{O, I} is the state of the channel the last time it was observed. 1 
Since the channels are Markovian, s(t) is a sufficient statistic 
for the fully backlogged system. Note that min(kl (t), k2(t)) = 

1, V t, and max(kl(t), k2(t)) � 2 V t. Let S denote the 
(countably infinite) set of all possible states s(t). 

Denote the l step transition probabilities of the channel 

Markov chain in Fig. 2 by p�l{ , pg{ , p�2 , and pg6 . It can 
be shown by explicit computation that for l � 1, 

(I) 
= 

(I) _ 
1 -(1 - 2f)1 (I) _ (I) _ 1 + (1 - 2f)1 

POI PlO - 2 ' PH - Poo - 2 
Next, define the belief vector corresponding to state s E 
S as [Wl(S), W2(S)], where Wi(S), i = 1, 2 is the condi­

�ional probability that the channel i is ON. For example, 
If s = [1, ON, 3, OFF], the corresponding belief vector is 

1 Throughout, 0 is used interchangeably to denote the channel state OFF 
and 1 is used to denote ON. 

' 
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[1 - E, p��)l. It can be shown that the belief vector has a one­
to-one mapping to the information state, and is therefore also 
a sufficient statistic for the fully backlogged problem. 

In each slot, there are two possible actions, a E {1,2}, 
corresponding to serving one of the two queues. Given a state 
and an action at a particular time, the belief for the next slot 
is updated according to the following equation. 

{(I - E)Wi(t) + E(l - �i(t)), if a(t) -I- i, 
Wi(t + 1) = 1 - E, If a(t) = t, Ca(t)(t) = 1, 

E, if a(t) = i, Ca(t)(t) = 0, 

where we have abused notation to write Wi(t) = Wi(S(t)). 
A policy for the fully backlogged system is a rule that 

associates an action a(t) E {I, 2}, to the state s(t) for each t. 
A deterministic stationary policy is a map from S to {1,2}, 
whereas a randomized stationary policy picks an action given 
the state according to a fixed distribution 1P' {als(·)} . 

Suppose that a unit reward is accrued from each of the two 
channels, every time a packet is successfully transmitted on 
that channel, i.e., when the server is assigned to a particular 
channel and the channel is ON. Given a state s(t) at a 
particular time, and an action a(t), the probability that a unit 
reward is accrued in that time slot is simply equal to the 
belief of the channel that was chosen. We are interested in the 
long term time average rate achieved on each of the channels 
under a given policy. From the viewpoint of the reward defined 
above, the average rate translates to the infinite horizon time 
average reward obtained on each channel under a given policy. 

We say that rate pair (AI, A2) is achievable in the fully 
backlogged system, if there exists some policy for which the 
infinite horizon time average reward vector equals (AI, A2). 
The closure of the set of all achievable rate pairs is called 
the rate region A of the fully backlogged system. It should 
be evident that a rate pair that is not achievable in the fully 
backlogged system, cannot be supportable in the dynamic 
system with random arrivals. Thus, the capacity region r of 
the queueing system is contained in the rate region A of the 
fully backlogged system. In fact, we show in Section IV that 
the two rate regions have the same interior, by deriving a queue 
length based policy for the original system that can stabilize 
any arrival rate in the interior of A. We now proceed to obtain 
an implicit characterization of the rate region boundary. 

A. MDP formulation and state action frequencies 

Let us consider a Markov decision process (MDP) formu­
lation on the belief space for characterizing the rate region 
boundary. 

It is easy to show that the rate region A is convex. Indeed, 
given two points in the rate region, each attainable by some 
policy, we can obtain any convex combination of the rate 
points by time-sharing the policies over sufficiently long 
intervals. Further, the rate region is also closed by definition. 
Therefore, any point on its boundary maximizes a weighted 
sum- rate expression. That is, if (ri , r2) is a rate pair on the 
boundary of A, then 

(ri ,r2) = argmax(>'1,A2)EAWlAl +W2A2 (1) 

for some weight vector w = [WI, W2], with WI + W2 = 1. The 
following proposition shows that if the rate pair (AI, A2) is in 
A, then there must necessarily exist state action frequencies 

that satisfy a set of balance equations. 
Proposition 1: Let (AI, A2) E A. Then, for each state s E S 

and action a E {1,2}, there exists state action frequencies 
x(s; a), that satisfy 

0 :::; x(s; a) :::; 1, (2) 

the balance equations (3)-(6) (next page), the normalization 
condition 

L x(s; 1) + x(s; 2) = 1, (7) 
sES 

and the rate constraints 

Ai :::; L x(s; i)Wi(S), i = 1,2. (8) 
sES 

Intuitively, a set of state action frequencies corresponds to 
a stationary randomized policy such that x(s; a) equals the 
steady-state probability that in a given time slot, the state is s 
and the action is a. Further, conditioned on being in state s, 
the action a is chosen with probability x�{�}), where 1P' {s} = 

x(s; 1) + x(s; 2). (If 1P' {s} = 0, the policy prescribes actions 
arbitrarily). 

Let us now provide an intuitive explanation of the balance 
equations. Equations (3)-(6) simply equate the steady-state 
probability of being in a particular state, to the total probability 
of entering that state from all possible states. For example, 
the left side of (3) equals the steady-state probability of being 
in the state [1, bl, k, b2], k > 2, while the right side equals 
the total probability of getting to the above state from other 
states, and similarly for the other balance equations. Equation 
(7) equates the total steady-state probability to unity. Finally, 
in Equation (8), the term x(s; i)Wi(S) equals the probability 
that the state is s, the action i is chosen, and the transmission 
succeeds. Thus, the right-side of (8) equals the total expected 
rate on channel i. 

We now return to the characterization of the rate region 
boundary. In light of Proposition 1, Equation (1) can be 
rewritten as follows. 

Problem INFINITE(w): 

(r; , r2) = arg max(Al,A2)WlAl + W2A2 (9) 

subject to (2)-(8). 

Since the state-space of this MDP is countably infinite, the 
optimization in (9) involves an infinite number of variables. 
In order to make this problem tractable, we now introduce an 
LP approximation. 

B. LP approximation using a finite MDP 

In this section, we introduce an MDP with a finite state 
space, which as we show, approximates the original MDP 
arbitrarily closely. The state action frequencies corresponding 
to the finite MDP approximation can then be solved as an LP. 
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x([l , b1, k, b2]i 1) + x([l , b1, k, b2]i 2) 
x([l , b1, 2, b2]i 1) + x([l , b1, 2, b2]i 2) 

(3) 

(4) 

x([k, b1, 1, b2]i 1) + x([k, b1, 1, b2]i 2) 
x([2, b1, 1, b2]i 1) + x([2, b1, 1, b2]i 2) 

x([k -1, bl, 1, b2]i 2)(1 -E) + x([k -1, b1, 1, 1 -b2]i 2)E, k > 2, 
L x([l , b1, l, b2]i 2)pil{ + x([l , b1, l, 1 -b2]i 2)p�?, 

(5) 

(6) 
1�2 

First note that the belief of a channel that has not been 
observed for a long time increases monotonically toward the 
steady state value of 0. 5 if it was OFF the last time it was 
scheduled. Similarly, the belief decreases monotonically to 0. 5 
if the channel was ON the last time it was scheduled. The key 
idea now is to construct a finite MDP whose states are the same 
as the original MDP, with the exception that the belief of a 
channel that remains unobserved for a long time is clamped 
to the steady state ON probability, 0. 5. Specifically, when a 
channel has not been scheduled for 7 or more time slots, its 
observation history is entirely forgotten, and the belief on it is 
assumed to be 0. 5. The action space and the reward structure 
are exactly as before. We show that this truncated finite MDP 
closely approximates the original MDP when 7 gets large. 

Let us now specify the states and state action frequencies 
for this finite MDP. There are 4(7 - 2) states of the form 
[1, bl, k2, b2], 2 :::; k2 :::; 7 - 1, b1, b2 E {ON,OFF} that 
correspond to the first channel being scheduled in the previous 
slot, and the second channel being scheduled less that 7 time 
slots ago. In a symmetric fashion, there are 4(7 - 2) states of 
the form [k1, b1, 1, b2], 2:::; k1:::; 7-1, b1, b2 E {ON, OFF} 
that correspond to the second channel being scheduled in the 
previous slot. Finally, there are 4 states [1, b1, ¢, ¢], b1 E 
{ON,OFF} and [¢, ¢, 1, b2], b2 E {ON,OFF} in which 
one of the channels has not been seen for at least 7 slots, and 
its belief reset to 0. 5. Let us denote by S the above set of states 
for the finite MDP, and let i:(Si a) , S E S, a E {I, 2} denote 
the state action frequencies for the finite MDP. These state 
action frequencies satisfy normalization, balance equations, 
and rate constraints, analogous to (2)-(8). 

For a fixed w and 7, let us now consider the following LP. 

Problem FINITE(7,w): 

(7\, T2) = argmax('\1,'\2)Wl).1 + W2).2 (10) 

subject to normalization, balance equations and rate con­
straints, analogous to (2)-(8). 

The main result of this section shows that the solution to this 

LP approximates the boundary point specified by the problem 
INFINITE(w) for every w, when 7 is large. 

Proposition 2: For a given w with Wl +W2 = 1, and 7, let 
;'(7, w) denote the solution to the problem FINITE(7,w), and 
let r*(w) denote the solution to INFINITE(w). Then, ;'(7, w) 
converges uniformly to r*(w), as 7 --+ 00. 

We next show a result that asserts that using the state action 
frequencies obtained from the finite MDP in the backlogged 
system entails only a negligible sub-optimality, when 7 is 
large. The finite MDP solution is applied to the backlogged 
system as follows. If the state in the backlogged system is such 
that both channels were served no more than 7 time slots ago, 
then we schedule according to the state action frequencies of 
that particular state in the finite MDP. On the other hand, if 
one of the channels was served more than 7 time slots ago, 
the finite MDP would not have a corresponding state and state 
action frequencies. In such a case, we schedule according to 
the state action frequencies of one of the four states in the 
finite MDP in which the belief is clamped to the steady-state 
value. For example, if the system state is [1, b1, k2' b2], with 
k2 > 7, we schedule according to the state action frequencies 
of the state [1, bl, ¢, ¢] in the finite MDP, and so on. 

Proposition 3: Suppose that the optimal state action fre­
quencies obtained by solving the problem FINITE(7, w) are 
used to perform scheduling in a fully backlogged system, as 
detailed above. Let r(7, w) denote the average reward vector 
so obtained. Then for every w with Wl + W2 = 1, we have 
that r(7, w) converges uniformly to the optimal reward r*(w), 
as 7 --+ 00. 

We pause briefly to emphasize the subtle difference between 
Propositions 2 and 3. Proposition 2 asserts that optimal reward 
obtained from the finite MDP is close to the optimal reward of 
the infinite MDP. In this case, the optimal solution to the finite 
MDP is applied to the finite state-space. On the other hand, in 
Proposition 3, the optimal policy obtained from the finite MDP 
is used on the original infinite state-space, and the ensuing 
reward is shown to be close to the optimal reward. From a 
practical perspective, Propositions 2 yields a characterization 
of the rate region, while Proposition 3 plays a key role in 
the throughput optimality proof of the frame-based policy in 
Section IV. 

C. An Outer Bound 

We now derive an outer bound to the rate region A, using 
'genie-aided' channel information. Although the bound is not 

used in deriving our optimal policy, it is of interest to compare 
the outer bound we obtain to existing bounds in the literature. 

Consider a fictitious, fully backlogged system in which 
the channel processes follow the same sample paths as in 
the original system. However, after a channel is served in 
a particular time slot, a genie reveals the states of all the 
channels in the system. Therefore, at the beginning of a time 
slot in the fictitious system, the scheduler has access to all the 

494 



E = 0.2 
0.5 ,""",:::---�--��-�--�-----, , 

0.45 

0.4 

0.35 

0.3 

«N 0.25 

0.2 

0.15 
-- Capacity region 0.1 . _. _ . Genie-aided outer bound 

0.05 - - - Achievable region in [4] 
Outer bound from [4] 

O�==�==��==�--��--� o 0.1 0.2 0.3 0.4 0.5 

Fig. 3. The capacity region, our outer bound, and the inner and outer bounds 
derived in [4], for E = 0.2. 

channel states in the previous slot, and not just the channel 
that was served. Clearly, the rate region for the genie-aided 
system, denoted by A, is an outer bound to the rate region 
of the original system. The boundary of the region A can be 
explicitly characterized (see [3]) in terms of E: 

{ 

EAI + (1 - E)A2 ::; (1 - E)/2; } 
A = (AI,A2) (1- E)AI + EA2::; (1- E)/2; . 

Al + A2 ::; 3/4 - E/2 

D. Numerical Example 

(II) 

In this section, we use the finite LP approximation obtained 
in Section III-B to numerically compute and plot the capacity 
region for a two queue system. Specifically, we use the 
solution to the problem FINITE(T,w) with large enough T, 
which, according to Proposition 2, uniformly approximates the 
rate region boundary for all w. We also plot the genie-aided 
outer bound obtained above, and compare the rate region and 
our outer bound to the inner and outer bounds derived in [4]. 

Fig. 3 shows the numerically obtained rate region, the genie­
aided outer bound, and the inner and outer bounds derived in 
[4] for our symmetric two queue system with E = 0.2. The 
capacity region, shown with a dark solid line, was obtained 
by solving the LP approximation FINITE( T, w) for all weight 
vectors, and large enough T. The dash-dot curve in the figure 
is our genie-aided outer bound. The achievable region of the 
randomized round-robin policy proposed in [4], is shown by 
a dashed line. Finally, the outer most region in the figure is 
the outer bound derived in [4]. 

Interestingly, we observe that the genie-aided outer bound 
is tight at the symmetric rate point; see [3] for details. 

IV. A THROUGHPUT OPTIMAL FRAME-BASED POLICY 

In this section, we return to the original problem, with 
finite queues and stochastic arrivals. We propose a throughput 
optimal queue length based policy that operates over long 
'frames.' 

In our frame-based policy, the time axis is divided into 
frames consisting of T slots each, and the queue lengths are 

updated at the beginning of each frame. Given the queue length 
vector Q(kT) at the beginning of each frame, the idea is 
to maximize a weighted sum rate quantity over the frame, 
where the weight vector is the queue length vector for that 
frame. The weighted rate maximization is, in tum, performed 
approximately by solving the finite MOP. Intuitively, the 
above procedure has the net effect of performing max-weight 
scheduling over each time-frame, where MOP techniques are 
employed to compute each of the 'optimal schedules.' More 
precisely, our policy operates as follows. 

FRAME-BASED POLICY: 

(i) At the beginning of time frame k, update the queue length 
vector Q(kT). 

(ii) Compute the normalized queue length vector Q(kT), 
whose entries sum to 1. 

(iii) Solve the problem FINITE(T, Q(kT)) and obtain the state 
action frequencies x(s, a) , s E S, a E {I, 2}. 

(iv) Schedule according to the state action frequencies ob­
tained in the previous step during each slot in the frame. 

The main result of this paper is the throughput optimality 
of the frame-based policy, for large enough values of T and 
T. Specifically, our frame-based policy can stabilize all arrival 
rates within a 8-stripped region of A, for any 8 > O. As we 
shall see, a small 8 could require large values of T and T, 
which increases the dimensionality of the LP (depends on T) 
as well as the average delay (depends on T). Thus our policy 
offers a tradeoff between computational complexity and delay 
on the one hand, and better throughput on the other. Our main 
theorem is stated below. Note also that our policy requires 
queue length information only at the beginning of each frame. 

Theorem 1: Given any 8 > 0, there exist large enough T 
and T such that the frame-based policy stabilizes all arrival 
rates in the 8-stripped rate region A - 81. 
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