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Abstract—This paper develops a mesh network protection
scheme that guarantees a quantifiable minimum grade of service
upon a failure within a network. The scheme guarantees that a
fraction q of each demand remains after any single link failure.
A linear program is developed to find the minimum-cost capacity
allocation to meet both demand and protection requirements. For
q ≤ 1

2
, an exact algorithmic solution for the optimal routing

and allocation is developed using multiple shortest paths. For
q > 1

2
, a heuristic algorithm based on disjoint path routing is

developed that performs, on average, within 1.4% of optimal,
and runs four orders of magnitude faster than the minimum-cost
solution achieved via the linear program. Moreover, the partial
protection strategies developed achieve reductions of up to 82%
over traditional full protection schemes.

I. INTRODUCTION

Mesh networks supporting data rates of multiple gigabytes
per second are being deployed to meet the increasing demands
of the telecom industry [1]. As data rates continue to increase,
the failure of a network line element or worse, a fiber cut,
can result in severe service disruptions and large data loss,
potentially causing millions of dollars in lost revenue [2].
Currently, there exist few options for protection that offer less
than complete restoration after a failure. Due to the cost of
providing full protection, many service providers offer no pro-
tection whatsoever. By defining varying and quantifiable grades
of protection, service providers can protect essential traffic
without incurring the cost of providing full protection, making
protection more affordable and better suited to user/application
requirements. The protection scheme developed in this paper
provides “partial protection” guarantees, at a fraction of the
cost of full protection, with each session having its own
differentiated protection guarantee.

There are a variety of protection strategies available [3],
[4], [5]. The most common in backbone networks today is
guaranteed path protection [6], which provides an edge-disjoint
backup path for each working path, resulting in 100% service
restoration after any link failure. Best effort protection is still
loosely defined, but generally it offers no guarantees on the
amount of protection provided. A service will be protected, if

This work was supported by NSF grants CNS-0626781 and CNS-0830961,
by DTRA grants HDTRA1-07-1-0004 and HDTRA-09-1-005, and by the
Department of the Air Force under Air Force contract #FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of the
author and are not necessarily endorsed by the United States Government.

possible, with any unused spare capacity after fully protecting
all guaranteed services [2]. Best effort protection can also be
referred to as partial capacity restoration, since a service will
be restored within existing spare capactiy, typically resulting in
less than 100% restoration.

Many users may be willing to tolerate short periods of re-
duced capacity if data rate guarantees can be made at a reduced
cost, especially since link failures are relatively uncommon and
are on average repaired quickly [2]. In this paper, we consider
an alternate form of guaranteed protection, where a fraction of a
demand is guaranteed in the event of a link failure. If provided
at a reduced cost, many users may opt for partial protection
guarantees during network outages.

A quantitative framework for deterministic partial protection
in optical networks was first developed in [7]. In this work,
a minimum fraction q of the demand is guaranteed to remain
available between the source and destination after any single
link failure, where q is between 0 and 1. When q is equal to
1, the service is fully protected, and when q is 0, the service
is unprotected. More recently, [8] examines the savings that
can be achieved by guaranteeing part of the demand in the
event of a link failure, as opposed to full protection. It shows
that the amount of protection that can be guaranteed depends
on the topology of the network. In [9], the partial protection
problem on groomed optical WDM networks is studied, under
the assumption that flows must traverse a single path.

In this work, we further expand upon the framework devel-
oped in [7] and [8]. We develop a “theory” for partial protection
that includes optimal algorithms for capacity allocation, and
explicit expressions for the amount of required spare capacity.
Routing strategies that allocate working and spare capacity to
meet partial protection requirements are derived. Similar to [8],
flow bifurcation over multiple paths is allowed. Bifurcation
reduces the amount of spare capacity needed to support the QoP
requirements. In fact, we show that depending on the value of
q, it may be possible to provide protection without any spare
capacity.

We develop a linear program to find the optimal minimum-
cost capacity allocation needed to guarantee partial protection
in the event of a link failure. Furthermore, a routing and
capacity assignment strategy based on shortest paths is shown
to be optimal for q ≤ 1

2 . For q > 1
2 , a reduced complexity

algorithm based on disjoint path routing is shown to have a cost
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that is at most twice the optimal minimum-cost solution, and
in practice only slightly above optimal. Simulations over many
random network topologies show that this disjoint path routing
algorithm performs on average within 1.4% of the minimum-
cost solution and leads to as much as 82% savings as compared
to traditional full protection schemes.

In Section II, the partial protection model is described. In
Section III, the partial protection problem is formulated as a
linear program with the objective of finding the minimum-
cost allocation of working and backup capacity. In Section IV,
a simple path based solution for q ≤ 1

2 is developed. In
Section V, properties of the minimum-cost solution for q > 1

2
are determined and used to develop a time-efficient heuristic
algorithm. The results of the algorithm are compared to the
optimal solution and to traditional protection schemes. All
proofs are omitted for brevity and can be found in [10].

II. PARTIAL PROTECTION MODEL

The objective of partial protection is to find an allocation
that ensures that enough capacity exists to support the full
demand before a link failure and a fraction q of the demand
afterward. We assume that the graph G, with a set of vertices
V and edges E, is at least two-connected. Each link has a
fixed cost of use: cij for each edge {i, j} ∈ E. We consider
only single link failures. We assume that demands do not share
protection capacity with one another. Both working traffic and
protection flows (defined as the flow after a failure) can be
bifurcated to traverse multiple paths between the source and
destination. After the failure of a link, a network management
algorithm reroutes the traffic along the allocated protection
paths. Without loss of generality, we assume unit demands,
unless noted otherwise.

For now assume that link costs are all 1; in the next section
we will consider non-uniform link costs. With uniform link
costs, the objective is to minimize the total capacity needed to
support the flow and the partial protection requirements.

(a) 1 + 1 protection (b) 1 + q protection, q = 2
3

Fig. 1: Standard protection schemes

One routing strategy for providing this backup capacity is to
use a single primary and a single backup path similar to the
1+1 guaranteed path protection scheme. Consider the network
shown in Figure 1. With 1+1 protection, one unit of capacity is
routed on a primary path and one unit of capacity on a backup,
as shown in Figure 1a. Upon a link failure, 100% of the service
can be restored on the backup path. Now, consider a partial
protection requirement to provide a fraction q = 2

3 of backup
capacity in the event of a link failure. A naı̈ve protection scheme
similar to 1+1 protection would be to route one unit along the
primary path and 2

3 along a disjoint protection path, as shown
in Figure 1b. This simple protection scheme will be referred to

as 1 + q protection. If the primary path fails, sufficient backup
capacity remains to provide service for 2

3 of the demand.

(a) q = 1 (b) q = 2
3

Fig. 2: Protection using risk distribution

For both partial and full protection requirements, in many
cases capacity savings can be achieved if the risk is distributed
by spreading the primary allocation across multiple paths.
For example, by spreading the primary allocation across the
three available paths, as shown in Figure 2a, any single link
failure results in a loss of at most 1

3 of the demand. To fully
protect this demand against any single link failure (i.e. q = 1),
additional spare allocation of s = 1

6 needs to be added to each
link. With this strategy, a total of 1.5 units of capacity are
required, as opposed to the total of 2 units needed by 1 + 1
protection. If instead the protection requirement was q = 2

3 , no
spare allocation is needed since after any failure 2

3 units are
guaranteed to remain. By spreading the primary and backup
allocation across the multiple paths between the source and
destination, the risk is effectively distributed and the fraction
of primary allocation lost by a link failure is reduced.

III. MINIMUM-COST PARTIAL PROTECTION

In this section, a linear program is developed to achieve an
optimal minimum-cost solution to the partial protection prob-
lem. The objective of the linear program is to find a minimum-
cost routing strategy to meet demand d and partial protection
requirement q between two nodes s and t. In particular, the
full demand must be met before any failure, and in the event
of any link failure, a fraction q of that demand must remain.
The linear program to solve for the optimal routing strategy,
denoted LPPP , is defined below.

A. Linear Program to Meet Partial Protection: LPPP

The following values are given:
• G = (V,E) is the graph with its set of vertices and edges
• (s, t) is the source and destination, respectively
• d is the total demand between the source and destination
• q is the fraction of the demand that must be supported on

the event of a link failure
• cij is the cost of link {i, j}

The LP solves for the following variables:
• wij is the working flow assigned on link {i, j}, wij ≥ 0
• sij is the spare allocation assigned on link {i, j}, sij ≥ 0
• f ij

kl is the protection flow assigned on link {i, j} after the
failure of link {k, l}, ≥ 0

The objective of LPPP is to:
• Minimize the cost of allocation over all links:

min
∑
{i,j}∈E

cij(wij + sij) (1)
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Subject to the following constraints:
• Route working traffic between s and t to meet demand d:

∑
{i,j}∈E

wij −
∑
{j,i}∈E

wji =


d if i = s

−d if i = t

0 o.w.
, ∀i ∈ V

(2)

• Route flow to meet partial protection requirement q after
failure of link {k, l} between s and t:

∑
{i,j}∈E
{i,j}6={k,l}

f ij
kl −

∑
{j,i}∈E
{j,i}6={k,l}

f ji
kl =


dq if i = s

−dq if i = t

0 o.w.
,

∀i ∈ V, ∀{k, l} ∈ E (3)

• Working and spare capacity assigned on link {i, j} meets
partial protection requirements after failure of link {k, l}:

f ij
kl ≤ wij + sij ,

∀{i,j}∈E
∀{k,l}∈E (4)

A minimum-cost solution will provide a flow to meet the
demand before a link failure and a flow to meet the partial
protection requirement after any single-link failure. As we allow
bifurcation, each of these flows may be routed over multiple
paths. An interesting characteristic of the optimal solution given
by the linear program is that, at each node, flow conservation
for the working flow is maintained, but the total allocation for
working plus spare capacity, given by (wij + sij) for edge
{i, j}, does not necessarily maintain flow conservation.

B. Comparison to Standard Protection Schemes

We compare the optimal solution computed by the above
linear program to the standard scheme of 1 + 1 protection, as
well as 1 + q protection, on 1000 random graph topologies,
each containing 50 nodes with an average node degree of 3.1
and random link costs. Two nodes were randomly chosen from
each graph to be the source and destination. The minimum-cost
allocation for values of q between 0 and 1 was determined by
the linear program using CPLEX. The 1+1 and 1+q protection
schemes were solved using the Bhandari algorithm for shortest
pair of disjoint paths [11].

The average cost to route the demand and protection capacity
using the different routing strategies are plotted in Figure 3 as
a function of q. The top line, showing capacity requirements
under 1 + 1 protection, remains constant for all values of
q. The next two lines from the top are 1 + q and LPPP ,
respectively. As expected, both meet demand and protection
requirements using fewer resources than 1 + 1, however, the
minimum-cost solution produced by the partial protection linear
program uses significantly less capacity. A lower bound on the
capacity requirement is the minimum-cost routing that provides
no protection (q = 0), shown in the bottom line of the figure.
The cost of providing partial protection q is the difference
between the cost of the respective protection strategies and
the minimum-cost routing with no protection. Partial protection
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Fig. 3: Capacity Cost vs. q

achieves reductions in excess resources of 82% at q = 1
2 to 12%

at q = 1 over 1 + 1 protection, and 65% at q = 1
2 to 12% at

q = 1 over 1 + q protection.

IV. SOLUTION FOR q ≤ 1
2

In this section we provide insights on the structure of the
solution to the minimum-cost partial protection problem on
general mesh networks. When q ≤ 1

2 , we are able to derive an
exact algorithmic solution to the partial protection problem. We
show that all minimum-cost solutions for q ≤ 1

2 will never need
spare allocation, allowing us to formulate the partial protection
problem using standard network flow conservation constraints.
A simple path-based algorithmic solution is then derived. The
difficulty in obtaining further insights into the optimal solution
for q > 1

2 stems from the fact that, as mentioned in Section II,
the total working and spare allocation does not necessarily
meet flow conservation requirements at each node. Without this
property, most network flow algorithms do not apply [12] and
analysis of the linear program becomes difficult.

Lemma 1 demonstrates that spare capacity is not needed if
and only if the working capacity on an edge is less than or
equal to (1 − q), because that means that any time a link is
lost, at least q remains in the network.

Lemma 1. Given a partial protection requirement q between
nodes s and t, the spare capacity needed to satisfy demand
and protection requirements is zero if and only if the working
capacity on each link is wij ≤ (1− q), ∀{i, j} ∈ E.

In Section V, we show routings with zero spare allocation
are not necessarily lowest cost for all values of q. However,
Lemma 2 shows that when q ≤ 1

2 , the minimum-cost solution
will never use spare allocation.

Lemma 2. Given a demand between nodes s and t with
protection requirement q ≤ 1

2 , all minimum-cost solutions use
no spare capacity: sij = 0, ∀{i, j} ∈ E.

Combining Lemmas 1 and 2, it can be seen that an optimal
solution exists that does not use any spare allocation for q ≤ 1

2
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with wij ≤ (1 − q), ∀{i, j} ∈ E. For the case of q ≤ 1
2 ,

no spare allocation is needed and flow conservation constraints
are met. Therefore, the linear program can be written using
a standard flow formulation without using spare allocation,
maintaining flow conservation at each node. The modified linear
program, referred to as LPq≤.5, routes the flows on the paths
in a manner that minimizes total cost and ensures that no edge
carries more than (1− q).

LPq≤.5 : min
∑
{i,j}∈E

cijwij (5)

∑
{i,j}∈E

wij −
∑
{j,i}∈E

wji =


1 if i = s

−1 if i = t

0 o.w.
, ∀i ∈ V (6)

wij ≤ (1− q), ∀{i, j} ∈ E (7)

The above linear program achieves a minimum-cost routing
in a network by using only working allocation to meet the
demand. LPq≤.5 is a network flow problem with directed and
capacitated edges, which is recognized as a minimum-cost flow
problem [12], for which algorithmic methods exist for finding
an optimal solution. In Theorem 1, we show that an optimal
solution for q ≤ 1

2 uses at most three paths with allocation
q on each of the shortest pair of disjoint paths and allocation
(1− 2q) on the shortest path.1

Consider a directed graph G = (V,E) with a source s and
destination t. Let p0 be the cost of the shortest path, p1 and
p2 be the costs of the two shortest pair of disjoint paths, f0

be the flow on the shortest path, f1 and f2 be the flows on
each of the two shortest pair of disjoint paths, respectively, and
Tst(q) be the cost of the allocation needed to meet demand and
protection requirements between s and t for a value of q.

Theorem 1. Given a source s and destination t in a two-
connected directed network G = (V,E) with q ≤ 1

2 , there exists
an optimal solution meeting working and partial protection
requirements with f0 = (1 − 2q) and f1 = f2 = q, giving
a total cost Tst(q) = (1 − 2q)p0 + q(p1 + p2), where path 0
is the shortest path and paths 1 and 2 are the shortest pair of
disjoint paths.

V. SOLUTION FOR q > 1
2

When q ≤ 1
2 , no spare allocation is needed and the

minimum-cost routing to meet partial protection requirements
can be found for any general mesh network. When q > 1

2 ,
it may be necessary to use spare allocation to meet protection
requirements. Since the overall allocation of working plus spare
does not necessarily meet flow conservation at any particular
node, it may not be possible to provide a simple flow-based
description of the optimal solution on general mesh networks.
If we consider N disjoint paths between the source and
destination, with the ith path having cost pi, we see that this is

1It is possible that the shortest path is one of the pair of disjoint paths, in
which case f0 = (1− q) and f2 = q.

equivalent to a two-node network with N links where the ith

link has cost pi. Hence, we start by investigating the properties
of minimum-cost solutions for two-node networks in order to
gain insight on solutions for general networks. Using these
insights, a heuristic algorithm is developed in Section V-B for
general mesh networks.

A. Results for Two-Node Networks

A two-node network is defined as having a source and
destination node with N links between them. Each link has
a fixed cost of use, ci. We first note that a solution that uses no
spare allocation is not necessarily a minimum-cost allocation
when unequal link costs are considered. Consider the example
in Figure 4 and let q = 2

3 . Allocating a capacity of 1
3 onto

each link does not use any spare capacity and has total cost
of 1

3 (1 + 2 + 6) = 3. In contrast, consider using the two
lowest cost links, each with allocation 2

3 . Clearly, the protection
requirement is met, and the total cost is reduced to 2

3 (1+2) = 2,
which is less than the cost of the zero spare capacity allocation.

Fig. 4: Two-node network with link costs

For two-node networks, order the edges such that c1 ≤
c2 ≤ ... ≤ cN . Define xi as the allocation on the ith edge.
From our analysis (see [10]), we are able to define a value
K, which will be important for evaluating two-node networks:
K = argmaxK=2..N (cK ≤ 1

K−1

∑K
i=1 ci). K is the maximum

number of links such that the incremental cost of using an
additional link would not improve the solution.

For q > 1
2 , spare allocation may or may not be needed.

Lemma 3 shows when spare allocation is necessary.

Lemma 3. A minimum-cost allocation for a two-node network
uses spare allocation if and only if q > K−1

K .

Next, the exact edge allocations for a minimum-cost solution
to meet partial protection requirements on a two-node network
are defined. Lemma 4 states that when spare allocation is
needed, edges 1 to K will have an equal allocation, and edges
K +1 to N will have no allocation. Lemma 5 shows that when
spare allocation is not needed, the solution will use J ≤ K
edges. Lemma 5 also provides the allocations across the J
edges.

Lemma 4. A minimum-cost allocation when q > K−1
K will be

an even allocation of q 1
K−1 on the K lowest cost edges, and

no allocation on the remaining edges.

Lemma 5. The minimum-cost allocation when q ≤ K−1
K will

have non-zero allocation on edges 1 to J , where J is the
integer satisfying J−2

J−1 < q ≤ J−1
J . Moreover, the minimum-

cost allocation when q ≤ K−1
K is: xi = (1−q), ∀i = 1..(J−1);

xJ = (J − 1)q − (J − 2); xi = 0, ∀i = (J + 1)..N .
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B. Time-Efficient Heuristic Algorithm

Consider a mesh network with N disjoint paths between the
source and destination, and let pi be the cost of the ith path.
As discussed in the beginning of the section, by treating the
N paths in the general mesh network as a two-node network
with N links, the results from Section V-A can be applied to
develop a heuristic solution for general mesh networks for the
case of q > 1

2 . Recall that for q ≤ 1
2 , the optimal minimum-cost

solution for general mesh networks was derived in Section IV.
The heuristic algorithm is based on finding the k-shortest

edge-disjoint paths for k = 2 to k = N , where N is the
maximum number of edge-disjoint paths and the length of each
path is its cost. These paths can be found using the Bhandari
algorithm [11]. For each set of k disjoint paths, we look to see if
spare allocation is needed, i.e. q > k−1

k , and use the minimum-
cost allocation given by Lemmas 4 and 5. From the different
possible disjoint path routings, the allocation of minimum-cost
is chosen. We call this algorithm the Partial Protection Disjoint
Path Routing Algorithm (PP-DPRA). Theorem 2 gives a bound
on PP-DPRA’s performance.

Theorem 2. PP-DPRA produces a routing with a cost that is
at most twice the optimal minimum-cost.

C. Comparison of PP-DPRA to the Minimum-Cost Solution

The PP-DPRA solution is compared to 1 + 1, 1 + q, and
LPPP . The simulation is identical to the one run in Section
III-B, with PP-DPRA being implemented in C. The average
costs to meet demand and protection requirements over all
random graphs are plotted in Figure 5. Simulation results show
that for q ≤ 1

2 , the routing as given by Theorem 1 matches the
optimal routing produced by LPPP , and for q > 1

2 , the average
cost is greater than optimal by 1.4% on average. Additionally,
on average, the running time for routing a demand with PP-
DPRA was 0.001 seconds, while with the linear program LPPP

it was 22 seconds. This reduction in running time of four orders
of magnitude makes the algorithm suitable for networks that
require rapid setup times for incoming demands.

We note that [8] also developed an algorithm for meeting
partial protection requirements by spreading capacity across
disjoint paths. However, the algorithm in [8] was designed
to minimize capacity over multiple connections, whereas the
algorithms in this paper were designed to minimize costs for
one connection at a time, making a direct comparison of the
algorithms difficult.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have developed a mathematical model to
provide deterministic partial protection for a single commodity.
A linear program was formulated to find a minimum-cost
solution in general mesh networks. Simulations show this LP
offers significant savings over the most common protection
schemes used today. A heuristic algorithm, PP-DPRA, was
developed. Simulation results show that this algorithm comes
within 1.4% of optimal on average and runs four orders of
magnitude faster than the linear program.
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Fig. 5: Cost vs. q for various protection schemes

An important direction for future research will be to con-
sider the additional savings in protection capacity that can
be achieved by resource sharing between demands. Currently,
resources that could be used to protect multiple demands are
potentially being underutilized by being dedicated to only
one demand. Preliminary results show that significant savings
can be achieved with protection resource sharing. A better
understanding of how resources are shared will help develop
more efficient algorithms for the partial protection problem.
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