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Abstract-We investigate the asymptotic behavior of the 
steady-state queue length distribution under generalized max­
weight scheduling in the presence of heavy-tailed traffic. We 
con

.
sider a system consisting of two parallel queues, served by 

a smgle server. One of the queues receives heavy-tailed traffic, 
and the other receives light-tailed traffic. We study the class of 
throughput optimal max-weight-o: scheduling policies, and derive 
an exact asymptotic characterization of the steady-state queue 
length distributions. In particular, we show that the tail of the 
light queue distribution is heavier than a power-law curve, whose 
tail coefficient we obtain explicitly. Our asymptotic characteriza­
tion also shows that the celebrated max-weight scheduling policy 
leads to the worst possible tail of the light queue distribution, 
among all non-idling policies. 

Motivated by the above 'negative' result regarding the max­
wei�ht-o: policy, we analyze a log-max-weight (LMW) scheduling 
pohcy. We show that the LMW policy guarantees an expo­
nentially decaying light queue tail, while still being throughput 
optimal. 

I. INTRODUCTION 

Traditionally, traffic in telecommunication networks has 
been modeled using Poisson and Markov-modulated pro­
cesses. These simple traffic models exhibit 'local randomness' 
in the sense that much of the variability occurs in short tim� 
scales, and only an average behavior is perceived at longer 
time scales. With the spectacular growth of packet-switched 
networks such as the internet during the last couple of decades, 
these traditional traffic models have been shown to be inade­
quate. This is because the traffic in packetized data networks 
is intrinsically more 'bursty',  and exhibits correlations over 
longer time scales than can be modeled by any Markovian 
point process. Empirical evidence, such as the famous Bellcore 
study on self-similarity and long-range dependence in ethernet 
traffic [14] lead to increased interest in traffic models with high 
variability. 

Heavy-tailed distributions, which have long been used to 
model high variability and risk in finance and insurance, were 
considered as viable candidates to model traffic in data net­
works. Further, theoretical work such as [12], linking heavy­
tails to long-range dependence (LRD) lent weight to the belief 
that extreme variability in the internet file sizes is ultimately 
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responsible for the LRD traffic patterns reported in [14] and 
elsewhere. 

Many of the early queueing theoretic results for heavy­
tailed traffic were obtained for the single server queue; see 
[4], [5], [19] for surveys of these results. It turns out that 
the service discipline plays an important role in the delay 
experienced in a queue, when the traffic is heavy-tailed. For 
example, it was shown in [1] that any non-preemptive service 
discipline leads to infinite expected delay, when the traffic is 
sufficiently heavy-tailed. Further, the asymptotic behavior of 
the delay under various service disciplines such as first-come­
first-served (FCFS) and processor sharing (PS), is markedly 
different under light-tailed and heavy-tailed scenarios [4], [24]. 
This is important, for example, in the context of scheduling 
jobs in server farms [11]. 

In the context of communication networks, a subset of the 
traffic flows may be well modeled as heavy-tailed, and the rest 
better modeled as light-tailed. In such a scenario, there are rel­
atively few studies on the problem of scheduling between the 
different flows, and the ensuing nature of interaction between 
the heavy-tailed and light-tailed traffic. Perhaps the earliest, 
and one of the most important studies in this category is [3], 
where the interaction between light and heavy-tailed traffic 
flows under generalized processor sharing (GPS) is studied. 
In that paper, the authors derive the asymptotic workload 
behavior of the light-tailed flow, when its GPS weight is 
greater than its traffic intensity. 

One of the key considerations in the design of a scheduling 
policy for a queueing network is throughput optimality, which 
is the ability to support the largest set of traffic rates that is 
supportable by a given queueing network. Queue length based 
scheduling policies, such as max-weight scheduling [22], [23] 
and its many variants, are known to be throughput optimal in 
a general queueing network. For this reason, the max-weight 
family of scheduling policies has received much attention in 
various networking contexts, including switches [16], satellites 
[17], wireless [18], and optical networks [6]. 

In spite of a large and varied body of literature related 
to max-weight scheduling, it is somewhat surprising that the 
policy has not been adequately studied in the context of heavy­
tailed traffic. Specifically, a question arises as to what behavior 
we can expect due to the interaction of heavy and light-tailed 
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flows, when a throughput optimal max-weight-like scheduling 
policy is employed. Our present work is aimed at addressing 
this basic question. 

In a recent paper [15], a special case of the problem 
considered here is studied. Specifically, it was shown that 
when the heavy-tailed traffic has an infinite variance, the 
light-tailed traffic experiences an infinite expected delay under 
max-weight scheduling. Further, it was shown that the max­
weight policy can be tweaked to favor the light-tailed traffic, 
so as to make the expected delay of the light-tailed traffic 
finite. In the present paper, we considerably generalize these 
results by providing a precise asymptotic characterization of 
the occupancy distributions under the max-weight scheduling 
family, for a large class of heavy-tailed traffic distributions. 

We study a system consisting of two parallel queues, served 
by a single server. One of the queues is fed by a heavy-tailed 
arrival process, while the other is fed by light-tailed traffic. 
We refer to these queues as the 'heavy' and 'light' queues, 
respectively. In this setting, we analyze the asymptotic per­
formance of max-weight-o: scheduling, which is a generalized 
version of max-weight scheduling. Specifically, while max­
weight scheduling makes scheduling decisions by comparing 
the queue lengths in the system, the max-weight-o: policy uses 
different powers of the queue lengths to make scheduling 
decisions. Under this policy, we derive an asymptotic char­

acterization of the light queue occupancy distribution, and 
specifY all the bounded moments of the queue lengths. 

An interesting conclusion from our asymptotic characteriza­
tion is that the 'plain' max-weight scheduling policy induces 
the worst possible asymptotic behavior on the light queue 
tail. We also show that by a choice of parameters in the 
max-weight-o: policy that increases the preference afforded 
to the light queue, the tail behavior of the light queue can 
be improved. Ultimately however, the tail of the light queue 
distribution is lower bounded by a power-law-like curve, for 
any scheduling parameters used in the max-weight-o: schedul­
ing policy. Intuitively, the reason max-weight-o: scheduling 
induces a power-law-like decay on the light queue distribution 
is that the light queue has to compete with a typically large 
heavy queue for service. 

The simplest way to guarantee a good asymptotic behavior 
for the light queue distribution is to give the light queue 
complete priority over the heavy queue, so that it does not 
have to compete with the heavy queue for service. We show 
that under priority for the light queue, the tail distributions of 
both queues are asymptotically as good as they can possibly 
be under any policy. Be that as it may, giving priority to the 
light queue has an important shortcoming - it is not throughput 
optimal for a general constrained queueing system. 

We therefore find ourselves in a situation where on the one 
hand, the throughput optimal max-weight-o: scheduling leads 
to poor asymptotic performance for the light queue. On the 
other hand, giving priority to the light queue leads to good 
asymptotic behavior for both queues, but is not throughput 
optimal in general. To remedy this situation, we propose a 
throughput optimal log-max-weight (LMW) scheduling pol-

Heavy-Tailed 

____ 
--,: � 

Light-Tailed ____ ----'� 
Fig. I. A system of two parallel queues, with one of them receiving heavy­
tailed traffic. 

icy, which gives significantly more importance to the light 
queue compared to max-weight-o: scheduling. We analyze the 
asymptotic behavior of the LMW policy and show that the 
light queue occupancy distribution decays exponentially. We 
also obtain the exact large deviation exponent of the light 
queue tail under a regularity assumption on the heavy-tailed 
input. Thus, the LMW policy has both desirable attributes - it 
is throughput optimal, and ensures an exponentially decaying 
tail for the light queue distribution. 

The remainder of this paper is organized as follows. In 
Section II, we describe the system model. In Section III, we 
present the relevant definitions and mathematical preliminar­
ies. Section IV deals with the queue length behavior under 
priority scheduling. Sections V and VI respectively contain 
our asymptotic results for max-weight-o: scheduling, and the 
LMW policy. We conclude the paper in Section VII. 

We omit several proofs due to space constraints. We refer 
the reader to [13] for detailed proofs of the results in the paper. 

II. SYSTEM MODEL 

Our system consists of two parallel queues, Hand L, served 
by a single server, as depicted in Fig. 1. Time is slotted, and 
stochastic arrivals of packet bursts occur to each queue in each 
slot. The server is capable of serving one packet per time slot, 
from only one of the queues according to a scheduling policy. 
Let H(t) and L(t) denote the number of packets that arrive 
during slot t to H and L respectively. Although we postpone 
the precise assumptions on the traffic to Section III-B, let us 
loosely say that the input L(t) is light-tailed, and H(t) is 
heavy-tailed. We will refer to the queues H and L as the 
heavy and light queues, respectively. 

Let qH(t) and qL(t) , respectively, denote the number of 
packets in H and L during slot t, and let qH and qL denote 
the steady-state queue lengths, when they exist. Our aim is to 
characterize the behavior of lP' {qL > b} and lP' {qH > b} as b 
becomes large, under various scheduling policies. 

III. DEFINITIONS AND MATHEMATICAL PRELIMINARIES 

A. Heavy-tailed distributions 

We define some properties regarding the tail distributions 
of non-negative random variables. 

Definition 1: A random variable X is said to be light-tailed 

if there exists B > 0 for which IE [exp(BX) ] < 00. A random 
variable is heavy-tailed if it is not light-tailed. 
In other words, a light-tailed random variable is one that has 
a well defined moment generating function in a neighborhood 
of the origin. The complementary distribution function of a 
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light-tailed random variable decays at least exponentially fast. 
Heavy-tailed random variables are those which have com­
plementary distribution functions that decay slower than any 
exponential. This class is often too general to study, so sub­
classes of heavy-tailed distributions, such as sub-exponentials 
have been defined and studied in the past [21]. We now define 
the tail-coefficient of a random variable. 

Dtifinition 2: The tail coefficient of a random variable X is 
defined by 

Cx = sup{c l IE  [XC] < oo}. 

In words, the tail coefficient is the threshold where the power 
moment of a random variable starts to blow up. Note that the 
tail coefficient of a light-tailed random variable is infinite. On 
the other hand, the tail coefficient of a heavy-tailed random 
variable may be infinite (e.g., log-normal) or finite (e.g., 
Pareto). 

We restrict our attention to a fairly general class of heavy­
tailed distributions, known in the literature as order-regular 

varying distributions; see [2], [7]. We repeat the relevant 
definitions for ease of reference. Let X denote a non-negative 
random variable, with complementary distribution function 
F(x) = lP'{X > x} .  

Notation: If f(x) and g(x) are positive functions defined 
on [0,00], we write f(x) '" g(x) to mean limX--HXJ �t:? = 1. 

Similarly, f(x) � g(x) means liminfx __ H){) �i:? � 1. 

Definition 3: F(x) is said to have a regularly varying tail 
of index v, notation F E R(v), if F(x) = U(x)x--V, where 
U(x) is a slowly varying function, i.e., a function that satisfies 
U(kx) '" U(x) , Vk > O. 

Definition 4: F(x) is said to be order-regularly varying, 

notation F E OR, if for some A > 1, 

F(AX) F(AX) 
0 <  liminf -=---- < limsup -=---- < 00, VA E [1, A]. x--foo F(x) - X--fOO F(x) 

It can be shown that R c OR and that the inclusion is strict. 
In what follows, a statement such as X E OR should be 
construed to mean lP' {X > x} E OR. 

It turns out that the any order-regularly varying distribution 
is asymptotically heavier than some power-law curve (see 
[20]). Further, any heavy-tailed random variable with an order­
regularly varying tail has a finite tail coefficient [13]. We now 
state the precise assumptions on the arrival processes. 

B. Assumptions on the arrival processes 

1) The arrival processes H(t) and L(t) are independent of 
each other, and independent of the current state of the 
system. 

2) H(t) is independent and identically distributed (i.i.d.) 
from slot-to-slot. 

3) L( t) is i.i.d. from slot-to-slot. 
4) L (·) is light-tailed with IE [L(t) ] = AL. 
5) H(·) E OR with tail coefficient CH > 1, and 

IE [H(t) ] = AH. 
We also assume that AL + AH < 1, so that the input rate does 
not overwhelm the service rate. Then, it can be shown that 

the system is stable! under any non-idling policy, and that the 
steady-state queue lengths qH and qL exist. 

C. Residual and Age distributions 

Here, we define the residual and age distributions for 
the heavy-tailed input process, which will be useful later. 
First, we note that H (.) necessarily has a non zero prob­
ability mass at zero, since AH < 1. Define H+ as the 
strictly positive part of H (. ). Specifically, lP' {H + = m} = 
lP'{H(·) = mIH(·) > O} , m = 1, 2, . . . .  Note that H+ has 
tail coefficient equal to CH. 

Now consider a discrete-time renewal process with inter­
renewal times distributed as H+. Let HR E {I, 2, ... } denote 
the residual random variable, and HA E {O, 1, ... } the age of 
the renewal process [9].2 The joint distribution of the residual 
and the age can be derived using basic renewal theory: 

lP'{H+ = k + l} 
lP' {HR = k, HA = l} = 

IE [H+] 
, (1) 

where k E {1, 2 ... }, l E {O, 1, ... }. The marginal of HR 
can be derived from (1): 

lP'{H+ � k} 
lP'{HR = k} = 

[]
' k E {1, 2, ... }. (2) 

IE H+ 

We now state without proof, the important result that the 
residual and age distributions are one order heavier than the 
original distribution. 

Proposition 1: If H(·) E OR has tail coefficient equal to 
CH, then HR and HA have tail coefficient equal to CH - 1. 

IV. THE PRIORITY POLICIES 

In this section, we study the two 'extreme' scheduling 
policies, namely priority for L and priority for H. Our analysis 
helps us arrive at the important conclusion that the tail of the 
heavy queue is asymptotically insensitive to the scheduling 
policy. In other words, there is not much we can do to improve 
or hurt the tail distribution of H by the choice of a scheduling 
policy. 

A. Priority for H 

Under priority for H, the heavy queue receives service 
whenever it is non-empty, and L receives service only when H 
is empty. It should be intuitively clear at the outset that this 
policy is bound to have an undesirable impact on the light 
queue. The reason we analyze this policy is that it gives us 
a best case scenario for the heavy queue. In particular, the 
following result shows that the heavy queue occupancy is one 
order heavier than its input distribution. 

Proposition 2: Under priority for H, the steady-state queue 
occupancy distribution of the heavy queue satisfies the follow­
ing bounds. 

I The notion of stability used here is the positive recurrence of the system 
occupancy Markov chain. 

2We have defined the residual time and age such that if a renewal occurs 
at a particular time slot, the age at that time slot is zero, and the residual time 
is equal to the length of the upcoming renewal interval. 
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1) For every f > 0, there exists a constant /'i,H(f ) > 0 such 
that 

2) 

Further, qH is a heavy-tailed random variable with tail coeffi­
cient equal to CH -1. That is, for each f > 0, we have 

and 

(5) 

lE [q�H-1+€] = 00. (6) 

Proof Equation (5) can be shown using a straightforward 
Lyapunov argument, along the lines of [15, Proposition 6]. 
Equation (3) follows from (5) and the Markov inequality. 

Next, to show (4), we consider a time instant t at steady­
state, and write 

lP' {qH(t) > b} lP' {qH(t) > blqH(t) > O} lP' {qH(t) > O} 
AHlP' {qH(t) > blqH(t) > O} . 

We have used Little's law at steady-state to write 
lP' {qH(t) > O} = AH. Let us now lower bound the term 
lP' {qH(t) > blqH(t) > O} . Conditioned on H being non­
empty, denote by B(t) the number of packets that be­
long to the burst in service that still remain in the queue 
at time t. Then, clearly, qH(t) � B(t), from which 
lP' {qH(t) > blqH(t) > O} � lP' {B(t) > b} . Now, since the 
H queue receives service whenever it is non-empty, it is clear 

that the time spent at the head-of-line by a burst is equal to 
its size. It can therefore be shown that in steady-state, B(t) 
is distributed according to the residual variable HR. Thus, 
lP' {qH(t) > blqH(t) > O} � lP' {HR > b} , and (4) is proved. 
Finally, (6) follows from (4) and Proposition 1. 0 

Furthermore, when the distribution of H (. ) is regularly 
varying, the lower bound (4) takes on a power-law form that 
agrees with the upper bound (3). 

Corollary 1: If H(·) E R(CH), then 

lP' {qH > b} > U(b)b-(CH-l), 't/ b, 
where U(·) is some slowly varying function. 
Since priority for H affords the most favorable treatment to 
the heavy queue, it follows that the asymptotic behavior of H 
can be no better than the above under any policy. 

Proposition 3: Under any scheduling policy, qH is heavy­
tailed with tail coefficient at most CH -1. That is, Equation 
(6) holds for all scheduling policies. 
Interestingly, under priority for H, the steady-state light queue 
occupancy qL is also heavy-tailed with the same tail coefficient 
as qH. This should not be surprising, since the light queue has 
to wait for the entire heavy queue to clear, before it receives 
any service. 

Proposition 4: Under priority for H, qL is heavy-tailed 
with tail coefficient CH -1. 

B. Priority for L 

We now study the policy that serves L whenever it is non­
empty, and serves H only if L is empty. This policy affords the 
best possible treatment to L and the worst possible treatment 
to H, among all non-idling policies. Under this policy, L 
is completely oblivious to the presence of H, in the sense 
that it receives service whenever it has a packet to be served. 
Therefore, L behaves like a discrete time G/Dil queue, with 
light-tailed inputs. Classical large deviation bounds can be 
derived for such a queue; see [10] for example. 

Recall that since L(·) is light-tailed, the log moment gen­
erating function 

AL(O) = 10g lE [eOL(.)] 
exists for some 0 > O. Define 

EL = sup{OIAL(O) -0 < O} . (7) 

Proposition 5: Under priority for L, qL satisfies the large 
deviation principle (LDP) 

. 1 hm - -loglP' {qL > b} = EL. (8) b--+<Xl b 
In words, the above proposition asserts that the tail of qL is 
asymptotically exponential, with rate function EL. We will 
refer to EL as the intrinsic exponent of the light queue. An 
equivalent expression for the intrinsic exponent that is often 
used in the literature is 

EL = inf �A'L(l + a) , (9) 
a>O a 

where A'LO is the Fenchel-Legendre transform [10] of AL(O). 
It is clear that priority for L gives the best possible asymp­

totic behavior for the light queue, and the worst possible treat­
ment for the heavy queue. Surprisingly however, it turns out 
that the heavy queue tail under priority for L is asymptotically 
as good as it is under priority for H. 

Proposition 6: Under priority for L, qH is heavy-tailed with 
tail coefficient CH -1. 
Proof This is a special case of Theorem 2, given in the next 
��oo. 0 

The above result also implies that the tail coefficient of 
H cannot be worse than C H -1 under any other scheduling 

policy. 
Proposition 7: Under any non-idling scheduling policy, qH 

has a tail coefficient of at least CH -1. That is, Equation (5) 
holds for all non-idling scheduling policies. 

Propositions 3 and 7 together imply the insensitivity of the 
heavy queue's tail distribution to the scheduling policy. We 
state this important result in the following theorem. 

Theorem 1: Under any non-idling scheduling policy, qH is 
heavy-tailed with tail coefficient equal to CH -1. Further, 
lP' {qH > b} satisfies bounds of the form (3) and (4) under all 
non-idling policies. 
Therefore, it is not possible to either improve or hurt the heavy 
queue's asymptotic behavior, by the choice of a scheduling 
policy. 
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It is evident that the light queue has the best possible 
asymptotic behavior under priority for L. Although priority 
for L is non-idling, and therefore throughput-optimal in this 
simple setting, we are ultimately interested in studying more 
sophisticated network models, where priority for L may not 
be throughput optimal. We therefore analyze the asymptotic 
behavior of general throughput optimal policies belonging to 
the max-weight family. 

v. QUEUE LENGTH ASYMPTOTICS FOR MAX-WEIGHT-a: 
SCHEDULING 

In this section, we analyze the asymptotic tail behavior of 
the light queue distribution under max-weight-a: scheduling. 
For fixed parameters a:H > ° and a:L > 0, the max-weight-a: 
policy operates as follows: During each time slot t, perform 
the comparison 

qL(W'L � qH(t)aH , 

and serve one packet from the queue that wins the comparison. 
Ties can be broken arbitrarily, but we break them in favor of 
the light queue for the sake of definiteness. Note that a:L = 
a:H corresponds to the usual max-weight policy, which serves 
the longest queue in each slot. a: L / a: H > 1 corresponds to 
emphasizing the light queue over the heavy queue, and vice­
versa. 

We provide an asymptotic characterization of the light queue 
occupancy distribution under max-weight-a: scheduling by de­
riving matching upper and lower bounds. Our characterization 
shows that the light queue occupancy is heavy-tailed under 
max-weight-a: scheduling for all values of the parameters a:H 
and a:L. Since we obtain distributional bounds on the light 
queue occupancy, our results also shed further light on the 
moment results derived in [15] for max-weight-a: scheduling. 

A. Upper Bound 

In this section, we derive two different upper bounds on the 
tail probability JPl {qL > b} , that both hold under max-weight­
a: scheduling. However, depending on the values of a:H and 
a:L, one of them would be tighter. The first upper bound holds 
for all non-idling policies, including max weight-a: scheduling. 

Theorem 2: Under any non-idling policy, and for every € > 
0, there exists a constant I\: 1 ( €) > 0, such that 

(10) 

and 

Proof (Sketch) The main idea is to combine the two queues 
into one composite queue which is fed by the sum input 
process L (·) + H(·). This sum input process can be shown 
to have a tail coefficient equal to CH. Now, under any non­
idling policy in the original system, the composite queue 
behaves like a GIDIl queue, with heavy-tailed input of tail 
coefficient CH. The occupancy of the composite queue is 
given by q = qL + qH. Therefore, lE [ (qH + qL)(CH-l-€)] = 
lE [q(CH-l-€)] < 00 for any € > 0, by applying Equation (5) 

to the composite queue. This implies (10), and (11) follows 
from (10) using the Markov inequality. 0 

The above result asserts that the tail coefficient of qL is at 
least CH -1 under any non-idling policy, and that JPl {qL > b} 
is uniformly upper bounded by a power-law curve. Our sec­
ond upper bound is specific to max-weight-a: scheduling. It 
hinges on a simple observation regarding the scaling of the a: 
parameters, in addition to a theorem in [15]. We first state the 
following elementary observation due to its usefulness. 
Observation: (Scaling of a: parameters) Let a:H and a:L be 
given parameters of a max-weight-a: policy, and let f3 > ° 
be arbitrary. Then, the max-weight-a: policy that uses the 
parameters f3a:H and f3a:L for the queues Hand L respectively, 
is identical to the original policy. That is, in each time slot, 
the two policies make the same scheduling decision. 

Next, let us invoke an important result from [15]. 
Theorem 3: If max-weight-a: scheduling is performed with 

0 <  a:H < CH -1, then, for any a:L > 0, we have lE [qfL 1 < 
00. 

Thus, by choosing a large enough a:L, any moment of the light 
queue length can be made finite, as long as a:H < CH -1. Our 
second upper bound, which we state next, holds regardless of 
how the a: parameters are chosen. 

Theorem 4: Define 

'Y = a:L 
(CH -1). (12) 

a:H 

Under max weight a: scheduling, for every € > 0, there exists 
a constant 1\:2(€) > 0, such that 

(13) 

and 
(14) 

Proof Given € > 0, let us choose f3 = (CH - l)/a:H -
€/a:L, and perform max-weight-a: scheduling with parameters 
f3a:H and f3a:L. According to the above observation, this policy 
is identical to the original max-weight-a: policy. Next, since 
f3a:H < CH -1, Theorem 3 applies, and we have lE [qfaL] = 
lE [qr€] < 00, which proves (13). Finally, (14) can be proved 
using (13) and the Markov inequality. 0 

The above theorem asserts that the tail coefficient of qL 
is at least 'Y under the max weight-a: policy. We remark 
that Theorem 2 and Theorem 4 both hold for max-weight-a: 
scheduling with any parameters. However, one of them yields a 
stronger bound than the other, depending on the a: parameters. 
Specifically, we have the following two cases: 

(i) � � 1 : This is the regime where the light queue is 
given lesser priority compared to the heavy queue. In 
this case, Theorem 2 yields a stronger bound. 

(ii) � > 1 : This is the regime where the light queue is aH given more priority compared to the heavy queue. In this 
case, Theorem 4 gives the stronger bound. 

Remark 1: The upper bounds in this section hold whenever 
H (.) is heavy-tailed with tail coefficient C H. We need the 
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assumption H (. ) E OR only to derive the lower bounds in 
the next subsection. 

B. Lower Bound 

In this section, we state our main lower bound result, 
which asymptotically lower bounds the tail of the light queue 
distribution in terms of the tail of the residual variable HR . 

Theorem 5: Under max-weight-a scheduling with parame­
ters aH and aL, the distribution of the light queue occupancy 
satisfies the following asymptotic lower bounds: 

1) If (};L < 1 Of! ' 

2) If (};L = 1 ON ' 

lP'{qL � b} � AHIP' {HR � b (1 + 
AIL ) } 

3) If (};L > 1 
(};H ' 

(15) 

(16) 

lP'{qL � b} � AHIP' {HR � b(};L/(};H } . (17) 

The above theorem holds when the heavy-tailed input distribu­
tion is order-regular. As a special case of the above theorem, 
when He) is regularly varying with index CH, the lower 
bounds take on a more pleasing power-law form that matches 
the upper bounds (11) and (14). 

Corollary 2: If He) E R(CH ), then, under max-weight-a 
scheduling with parameters aH and aL, the distribution of the 
light queue satisfies the following asymptotic lower bounds: 

1) If (};L < 1 QH - , 

2) If � > 1 
(};H ' 

where Ue) is some slowly varying function. 

(19) 

The proof of Theorem 5 is quite involved, and is omitted due to 
space constraints. We refer the reader to [13] for the complete 
proof. 

C. Tail Coefficient of qL 

In this section, we characterize the exact tail coefficient of 
the light queue distribution under max-weight-a scheduling. 

Theorem 6: The tail coefficient of the steady-state queue 
length qL of the light queue is given by 

(i) CH - 1 for �:� :::; 1, and 
(ii) I = � (CH -1) for (};L > l. Ql-I QH 

Proof Equations (10) and (13) give lower bounds on the tail 
coefficient of qL. Matching upper bounds on the tail coefficient 
follow from Theorem 5 and Proposition 1. We omit the details 
in the interest of brevity. 0 

In Fig. 2, we show the tail coefficient of qL as a function of 
the ratio aLlaH. We see that the tail coefficient is constant 
at the value CH -1 as aLlaH varies from 0 to 1. Recall that 
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Fig. 2. The tail coefficient of qL under max-weight-a scheduling, as a 
function of aL laH, for CR = 2.5. 

aLlaH = 1 corresponds to max-weight scheduling, while 
aLlaH ..I- 0 corresponds to priority for H. Thus, the tail 
coefficient of qL under max-weight scheduling is the same as 
the tail coefficient under priority for H, implying that the max­
weight policy leads to the worst possible asymptotic behavior 
for the light queue among all non-idling policies. However, 
the tail coefficient of qL begins to improve in proportion to 
the ratio aLlaH in the regime where the light queue is given 
more importance. 

Remark 2: If the heavy-tailed input has infinite variance 
(CH < 2), then it follows from Theorem 6 that the expected 
delay in the light queue is infinite under max-weight schedul­
ing. Thus, [15, Proposition 5] is a special case of the above 
theorem. 

VI. LOG-MAX-WEIGHT SCHEDULING 

We showed in Theorem 6 that the light queue occupancy 
distribution is necessarily heavy-tailed with a finite tail coef­
ficient, under max-weight-a scheduling. On the other hand, 
priority for L ensures the best possible asymptotic behavior 
for both queues, but suffers from possible instability effects in 
more general queueing networks. 

In this section, we analyze the log-max-weight (LMW) 
policy. We show that the light queue distribution is light­

tailed under LMW scheduling, i.e., that IP' {qL > b} decays 
exponentially in b. However, unlike priority for L, the LMW 
policy can be shown to be throughput optimal even in more 
general settings, as a consequence of [8, Theorem 1]. For our 
simple system model, we define the LMW policy as follows. 

In each time slot t, the log-max-weight policy compares 

and serves one packet from the queue that wins the compari­
son. Ties are broken in favor of the light queue. 

The main idea in the LMW policy is to give preference to 
the light queue to a far greater extent than any max-weight-a 
policy. Specifically, for aLlaH> 1, the max-weight-a policy 
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compares qL to a power of qH that is smaller than 1. On the 
other hand, LMW scheduling compares qL to a logarithmic 
function of qH, leading to a significant preference for the 
light queue. It turns out that this significant de-emphasis of 
the heavy queue with respect to the light queue is sufficient to 
ensure an exponential decay for the distribution of qL in our 
setting. 

Furthermore, the LMW policy has another useful property 
when the heavy queue gets overwhelmingly large. Although 
the LMW policy significantly de-emphasizes the heavy queue, 
it does not ignore it, unlike priority for L. That is, if the H 
queue occupancy gets overwhelmingly large compared to L, 
the LMW policy will serve the H queue. In contrast, priority 
for L will ignore any build-up in H, as long as L is non­
empty. This property turns out to be crucial in more complex 
queueing models, where throughput optimality is non-trivial 
to obtain. For example, when the queues have time-varying 
connectivity to the server, the LMW policy will stabilize both 
queues for all rates within the rate region, whereas priority for 
L can lead to instability effects in H [23]. 

Our main result in this section shows that under the LMW 
policy, JID {qL > b} decays exponentially in b, unlike under 
max-weight-o: scheduling. 

Theorem 7: Under log-max-weight scheduling, qL is light­
tailed. Specifically, it holds that 

1 liminf - -b logJID{qL � b} � min(EL' CH -1), (20) b-4OO 
where EL is the intrinsic exponent, given by (7), (9). 

Proof See Appendix A. 0 
Thus, the light queue tail is upper bounded by an expo­

nential term, whose rate of decay is given by the smaller 
of the intrinsic exponent EL, and CH - 1. We remark that 
Theorem 7 utilizes only the light-tailed nature of L (·), and 
the tail coefficient of H(·). Specifically, we do not need to 
assume any regularity property such as He) E OR for the 
result to hold. However, if we assume that the tail of H(·) is 
regularly varying, we can obtain a matching lower bound to 
the upper bound in Theorem 7. 

Theorem 8: Suppose that H (. ) E R( C H)' Then, under 
LMW scheduling, the tail distribution of qL satisfies an LOP 
with rate function given by 

1 lim - -b logJID{qL � b} = min(EL' CH -1). b-4OO 
Fig. 3 shows the large deviation exponent given by Theorem 

8 as a function of AL, for CH = 2.5, and Poisson bursts 
feeding the light queue. There are two distinct regimes in the 
plot, corresponding to two fundamentally different modes of 
overflow. For relatively large values of AL, the exponent for the 
LMW policy equals EL, the intrinsic exponent. In this regime, 
the light queue overflows entirely due to atypical behavior in 
the input process Le). In other words, qL would have grown 
close to the level b even if the heavy queue was absent. This 
mode of overflow is more likely for larger values of AL, which 
explains the diminishing exponent in this regime. 

2.-----�----�----�----�--__, 

1.8 

1.6 f------------____ 
1.4 

;;;:� 1.2 

II 1 U 
c ·E 0.8 

0.6 

0.4 

0.2 

o�----�----�----�----�--� 
o 0.2 0.4 0.6 0.8 

Fig. 3. The large deviation exponent for qL under LMW scheduling, as a 
function of AL. The light queue is fed by Poisson bursts, and CH = 2.5. 

The flat portion of the curve in Fig. 3 corresponds to a 
second overflow mode. In this regime, the overflow of the 
light queue occurs due to extreme misbehavior on the part of 
the heavy-tailed input. Specifically, the heavy queue becomes 
larger than eb after receiving a very large burst. After this 
instant, the heavy queue hogs all the service, and the light 
queue gets starved until it gradually builds up to the level b. 
In this regime, the light queue input behaves typically, and 
plays no role in the overflow of L. That is, the exponent is 
independent of AL, being equal to a constant CH - 1. The 
exponent is decided entirely by the 'burstiness' of the heavy­
tailed traffic, which is reflected in the tail coefficient. 

VII. CONCLUDING REMARKS 

We considered a system of parallel queues fed by a 
mix of heavy-tailed and light-tailed traffic, and served by 
a single server. We studied the asymptotic behavior of the 
queue size distributions under various scheduling policies. We 
showed that the occupancy distribution of the heavy queue is 
asymptotically insensitive to the scheduling policy used, and 
inevitably heavy-tailed. In contrast, the light queue occupancy 
distribution can be heavy-tailed or light-tailed depending on 
the scheduling policy. 

The major contribution of the paper is in the derivation of 
an asymptotic characterization of the light queue occupancy 
distribution, under max-weight-o: scheduling. We showed that 
the light queue distribution is heavy-tailed with a finite tail 
coefficient under max-weight-o: scheduling, for any values of 
the scheduling parameters. However, the tail coefficient can 
be improved by choosing the scheduling parameters to favor 
the light queue. We also observed that 'plain' max-weight 
scheduling leads to the worst possible asymptotic behavior 
of the light queue distribution, among all non-idling policies. 

Another important contribution of the paper is the log­
max-weight policy, and the corresponding asymptotic analysis. 
We showed that the light queue occupancy distribution is 
light-tailed under LMW scheduling, and explicitly derived an 
exponentially decaying upper bound on the tail of the light 
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queue distribution. Additionally, the LMW policy also has the 
desirable property of being throughput optimal in a general 
queueing network. 

Although we study a very simple queueing network in this 
paper, we believe that the insights obtained from this study 
are valuable in much more general settings. For instance, in a 
general queueing network with a mix of light-tailed and heavy­
tailed traffic flows, we expect that the celebrated max-weight 
policy has the tendency to 'infect' competing light-tailed flows 
with heavy-tailed asymptotics. A similar effect was also noted 
in [15], in the context of expected delay. 

We also believe that the LMW policy occupies a unique 
'sweet spot' in the context of scheduling light-tailed traffic 
in the presence of heavy-tailed traffic. This is because the 
LMW policy de-emphasizes the heavy-tailed flow sufficiently 
to maintain good light queue asymptotics, while also ensuring 
network-wide stability. 

For future work, we propose the extension of the results in 
this paper to more general single-hop and multi-hop networks, 
with time-varying channel models. 

ApPENDIX A 
PROOF OF THEOREM 7 

Fix a small 8 > O. We first write the equality 

JPl {qL 2": b} = JPl {qL 2": b; log(1 + qH) < 8b} , .I v 
(i) 

+ JPl{qL2":b; (1 -8)b2":log(1 + qH)2":8b} , .I v 
(ii) 

+ JPl{qL2":b; log(1 + qH»(1 -8)b} (21) , .I v 
(iii) 

We will next upper bound each of the above three terms on 
the right. 

(i) Intuitively, this event corresponds to an overflow of the 
light queue, when the light queue is not 'exponentially 
large' in b, i.e., qH < exp(8b) -1. Suppose without loss 
of generality that this event happens at time o. Denote by 
-T < 0 the last instant when the heavy queue received 
service. Since H has not received service since -T, it is 
clear that log(1 + qH( -T ) )  < 8b. Thus, qL( -T ) < 8b. 
In the time interval [ -T + 1, OJ the light queue receives 
service in each slot. In spite of receiving all the service, 
it grows from less than 8b to overflow at time O. This 
implies that every time the event in (i) occurs, there 
necessarily exists a -u � 0 satisfying 

Therefore, 

o 

L (L(i) -1) > (1 -8)b. 
i=-u+1 

(i) � JPl { 3u 2": 0 l
i=
t

+1 
(L(i) -1) > (1 -8)b } 

= JPl { sup (Su - u) > (1 -8)b} , (22) 
u2:0 

(iii) 

where Su = L�=-U+1 L(i) . The right hand side of (22) 
is precisely the probability of a single server queue fed 
by the process L(·) reaching the level (1 -8)b. Standard 
large deviation bounds are known for such an event. 
Specifically, from [10, Lemma 1.5], we get 

lim inf - -b
1 log JPl { sup Su -u > (1 -8)b} 2": b--too u2:0 

1 -8 inf -- A'L(1 + a ) = (1 -8)EL. (23) 
a>O a 

From (22) and (23), we see that for every I': > 0 and for 
large enough b, 

JPl {qL 2": b; log(1 + qH) < 8b} < 1\;1 e-b(1-6)(EL-e). 
(24) 

Let us deal with the term (iii) before (ii). This is the 
regime where the overflow of L occurs, along with H 
becoming exponentially large in b. We have 

(iii) � JPl { qL + qH > e(1-6)b } 
We have shown earlier in the proof of Theorem 2 that 
for any non-idling policy, 

JPl{qL + qH > M} < 1\;2M-(CH-1-e) 

for every I': > 0 and some 1\;2 > O. Therefore, 

JPl {qL 2": b; log(1 + qH) > (1 -8)b} < 
1\;2exp (-(1 -8)b(CH -1 -1':)) , \11':>0. (25) 

(ii) Let us now deal with the second term, 
JPl{qL 2":b; (1 -8)b2":log(1 + qH) 2":8b} . 
Suppose this event occurs at time O. Denote by -T � 
o the last time during the current busy period that H 
received service3, and define 'fJ = log(1 + qH( -T ) ) . We 
can deduce that 'fJ � (1 -8)b, because H receives no 
service in [ -T + 1, OJ. It is also clear that qL( -T ) < 'fJ. 
Therefore, L grows from less than 'fJ to more than b, in 
spite of receiving all the service in [ -T + 1, OJ. Using u 
and � as 'dummy' variables that represent the possible 
values taken by T and 'fJ respectively, we can bound the 
term (ii) as shown in (26) in the next page. The last two 
steps in (26) are by the union bound. Notice now that for 
every u 2": 0, the event Su -u > b-� is independent of the 
value of qH ( -u) + qL ( -u), since these are determined by 
arrivals in disjoint intervals. Therefore, continuing from 
(26), 

(l-�)b 
L L IP' {Su - u > b - 0 IP' { qH ( -u) + qL ( -u) 2: e� } 
�=o u2::O 

(l-�)b 
L LIP'{Su- u>b-Oil:2e-(CH-l-e)�, \11'>0 
�=o u2::O 

(l-�)b < '" -(EL-e)(b-e) -(CH-l-e)� '-' 0 _ L il:le il:2e , v I' > . 
�=o 

(27) 

(28) 

3 If H never received service during the current busy period, we take T to 
be equal to the last instant that the system was empty, and "1 = o. 
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(ii) :-:; IF' f3 � :-:; (1 -8)b, u � ° I Su -u > b -� ; qH( -u) + qL( -u) � e€ } :-:; 
(1-c5)b (1-c5)b 
L IF' {3 u � ° I Su -u > b -� ; qH( -u) + qL( -u) � e€ } :-:; L L IF' {Su -u > b -� ; qH( -u) + qL( -u) � e€ } 
€=o €=o u�o 

Equation (27) follows from (11), and (28) is a classical 
large deviation bound that follows, for example, from [10, 
Lemma 1.5]. Thus, for every E > 0, 

(1-c5)b 
(ii):-:; L K:IK:2e-[(CH-I-e)H(EL-e)(b-€)]. (29) 

€=o 

We now distinguish two cases: 

C H -1 > E L : In this case, we can bound the above 
probability as 

(ii) :-:; K:e-b(EL-e), 'tiE >  0, (30) 

where K: > ° is some constant. 
CH -1 :-:; EL : In this case, 

(ii):-:; K:e-b(CH-I-e)(I-c5), 'tiE > 0. (31) 

Let us now put together the bounds on terms (i), (ii) and 
(iii) into Equation (21). 

1) If CH -1 > EL, we can show using (24), (25), and 
(30) that 

liminf - -b
110glF'{qL � b} � (1 -8)(EL - E) . 

b-too 
Since the above is true for each E and 8, we get 

1 
liminf - -b loglF'{qL � b} � EL. (32) 
b-too 

2) If CH -1 :-:; EL, we can show using (24), (25), and 
(31) that 

1 liminf - -b loglF'{qL � b} � (1 -8)(CH -1 -E) . 
b-too 

Since the above is true for each E and 8, we get 

liminf - -b
110glF'{qL � b} � CH -1. (33) 

b-too 
Theorem 7 now follows from (32) and (33). 0 
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