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Abstract—We consider a dynamic vehicle routing problem
in wireless networks where messages arriving randomly in
time and space are collected by a mobile receiver (vehicle
or a collector). The collector is responsible for receiving these
messages via wireless communication by dynamically adjusting
its position in the network. Our goal is to utilize a combination
of wireless transmission and controlled mobility to improve
the delay performance in such networks. We show that the
necessary and sufficient condition for the stability of such a
system is given by ρ < 1 where ρ is the average system load. We
derive a fundamental lower bound for the delay in the system.
We develop algorithms that are stable for all loads ρ < 1 and
that have asymptotically optimal delay scaling. We show that
the combination of mobility and wireless transmission results in
a delay scaling of Θ( 1

1−ρ
) with the system load ρ in contrast to

the Θ( 1
(1−ρ)2

) delay scaling in the corresponding system where

the collector visits each message location.
Index Terms—Controlled Mobility, Dynamic Vehicle Rout-

ing, TSPN, Data Gathering, Stability, Delay.

I. INTRODUCTION

There has been a significant amount of interest in perfor-

mance analysis of mobility assisted wireless networks in the

last decade (e.g., [15], [24]–[28]). Typically, throughput and

delay performance of networks were analyzed where nodes

moving according to a random mobility model were utilized

for relaying data (e.g., [14], [15], [22]). More recently,

networks deploying nodes with controlled mobility have been

considered focusing primarily on route design and ignoring

the communication aspect of the problem (e.g., [9], [27],

[28]). In this paper we explore the use of controlled mobility

and wireless transmission in order to improve the delay

performance of wireless networks.

Our model consists of a collector that is responsible for

gathering messages that arrive randomly in time at uniformly

distributed geographical locations as shown in Fig. 1. The

messages are transmitted when the collector is within their

communication distance and depart the system upon success-

ful transmission. The collector adjusts its position in order to

receive these messages in the least amount of time. This setup

is applicable to networks deployed in a large area so that a

mobile element is necessary to provide connectivity between

spatially separated entities in the network. For instance, this

setup models a sensor network where a mobile base station

collects data from a large number of sensors deployed at

random locations inside the network [9], [26], [28]. Another

application is utilizing Unmanned Aerial Vehicles (UAVs)

as data harvesting devices or as communication relays on
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Fig. 1. The collector adjusts its position in order to receive randomly
arriving messages via wireless communication. The circles with radius
r∗ represent the communication range and the dashed lines represent the
collector’s path.

a battlefield environment [24]. This model also applies to

networks in which data rate is relatively low so that data

transmission time is comparable to the collector’s travel time,

for instance in underwater sensor networks [1].

Vehicle Routing Problems (VRPs) have been extensively

studied in the past (e.g., [4], [6], [7], [12], [20], [27]).

The common example of a VRP is the Euclidean Traveling

Salesman Problem (TSP) in which a single server is to visit

each member of a fixed set of locations on the plane such that

the total travel cost is minimized. Several extensions of TSP

have been considered in the past such as stochastic demand

arrivals and the use of multiple servers [6], [7], [12]. In

particular, in the TSP with neighborhoods (TSPN) problem

the vehicle is to visit a neighborhood of each demand loca-

tion [4], [20], which can model a mobile collector receiving

messages from a communication distance. A more detailed

review of the literature in this field can be found in [7], [20].

Of particular relevance to us among the VRPs is the

Dynamic Traveling Repairman Problem (DTRP) due to

Bertsimas and van Ryzin [6], [7], [8]. DTRP is a stochastic

and dynamic VRP in which a vehicle is to serve demands

that arrive randomly in time and space. Fundamental lower

bounds on delay were established and several vehicle routing

policies were analyzed for DTRP for a single server in

[6], for multiple servers in [7] and for general arrival and

service distributions in [8]. This model was generalized to

the Dynamic Pickup and Delivery Problem (DPDP) in [27]

where fundamental bounds on delay were established. We

apply this model to wireless networks where the demands

are data messages to be transmitted to a collector which is
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capable of wireless communication1. In our system the prob-

lem has considerably different characteristics since in this

case the collector does not have to visit message locations

but rather can receive the messages from a distance using

wireless communication. The objective in our system is to

effectively utilize this combination of wireless transmission

and controlled mobility in order to minimize the time average

message waiting time.

In a closely related problem where multiple mobile nodes

with controlled mobility and communication capability relay

the messages of static nodes with saturated arrivals, [25]

derived a lower bound on node travel times. In an indepen-

dent work, [18] considered utilizing mobile wireless servers

as data relays on periodic routes and applied various delay

relations from Polling models to this setup. A mobile server

harvesting data from spatial queues in a wireless network was

considered in [24] where the stability region of the system

was characterized using a fluid model approximation. A

similar model where the messages are transmitted according

to a random access scheme creating interference among

neighboring transmissions is analyzed in [10]. In this paper

the message transmissions are scheduled, i.e., there is only

one transmission in the system at a given time.

Another related body of literature lies in the area of

utilizing mobile elements that can control their mobility to

collect sensor data in Delay Tolerant Networks (DTN) (e.g.,

[9], [26], [28]). Route selection (e.g., [26]), scheduling or

dynamic mobility control (e.g., [9], [28]) algorithms were

proposed to maximize network lifetime, to provide connec-

tivity or to minimize delay. These works focus primarily

on mobility and usually consider particular policies for the

mobile element. To the best of our knowledge, this is the

first attempt to develop fundamental bounds on delay in a

system where a collector is to gather data messages randomly

arriving in time and space using wireless communication and

controlled mobility.

The main contributions of this work are the following.

We show that ρ < 1 is the necessary and sufficient condition

for the stability of the system where ρ is the system load.

We derive fundamental lower bounds on delay and develop

algorithms that have asymptotically optimal delay scaling.

We show that the combination of mobility and wireless

transmission results in a delay scaling of Θ(1/(1 − ρ)) in

contrast to the Θ(1/(1− ρ)2) delay scaling in the system in

[6] where the collector visits each message location.

This paper is organized as follows. In Section II we

describe the system model and in Section III we characterize

the necessary and sufficient conditions for the stability of the

system. We derive a lower bound on delay in Section IV and

in Section V we provide upper bounds on delay together with

numerical results.

1In [6], [7], or [8] the collector needs to be at the message location in
order to be able to serve it, therefore, we will refer to the DTRP model as
the system without wireless transmission.

II. MODEL

Consider a square region R of area A and messages

arriving into R according to a Poisson process (in time)

of intensity λ. Upon arrival the messages are distributed

independently and uniformly in R and they are to be gathered

by a collector via wireless reception. An arriving message is

transmitted to the collector when the collector comes within

the reception distance of the message location and grants

access for the message’s transmission. Therefore, there is

no interference power from the neighboring nodes during

message receptions. We assume that the transmit power

PT is constant and that the transmissions are subject to

distance attenuation. In such a system, the received power

of a transmission from node i, located at distance ri from

the collector, is given by PR,i = PT Kr−α
i [15], [16], where

α is the power loss exponent (typically between 2 and 6),

and K is the attenuation constant normalized to 1.

Next we argue that the Signal to Noise Ratio (SNR) packet

reception model [15], [16] is equivalent to a disk model [10],

[16] under the above assumptions. In the SNR model, a

transmission is successfully decoded at the collector if its

SNR is above a threshold β, i.e., if SNRi = PR,i/PN ≥ β,
where PN is the background noise power. We let r be

the reception distance of the collector. If the location of

the next message to be received is within r, the collector

stops and attempts to receive the message. Otherwise, the

collector travels towards the message location until it is

within a distance r away from the message. A transmission at

distance r to the collector is successful if r ≤ (SNRc/β)1/α

where SNRc = PT /PN denotes the SNR of a transmission

from unit distance. Therefore, the optimal reception distance

is the maximum reliable communication distance r∗ =
(SNRc/β)1/α. Hence, essentially we have a disk model of

radius r∗, where a transmission can be received only if it is

within a disk of radius r∗ around the collector. Under this

model, transmissions are assumed to be at a constant rate

taking a fixed amount of time denoted by s.

The collector travels from the current message reception

point to the next message reception point at a constant speed

v. We assume that at a given time the collector knows the

locations and the arrival times of the messages that arrived

before this time. The knowledge of the service locations

is a standard assumption in vehicle routing literature [4],

[6], [12], [20], [27]. Let N(t) denote the total number of

messages in the system at time t. We say that the system is

stable under a policy if [3], [21],

lim sup
t→∞

E[N(t)] < ∞, (1)

namely, the long term expected number of messages in the

system is finite. Let ρ = λs denote the load arriving into

the system per unit time. For stable systems, ρ denotes the

fraction of time the collector spends receiving messages.

III. STABILITY

In this section we characterize a necessary and sufficient

condition for the stability of the system. Let W denote the

total time average waiting time per message.
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A. Necessary Condition for Stability

Theorem 1: A necessary condition for the stability of any

policy is ρ < 1. Furthermore, we have

W ≥ λs2

2(1 − ρ)
. (2)

Proof: We use the following lemma to bound the delay.

Lemma 1: The steady state time average delay in the

system under any policy φ is at least as big as the delay

of any work-conserving2 policy in the equivalent system in

which travel times are zero (i.e., v = ∞).

The proof is omitted due to brevity3 but it is based on an

induction argument that the total number of messages in the

system is always greater than that in the infinite velocity

system. This is because the service time per message is

greater than that in the infinite velocity system. Since the

latter system behaves as an M/D/1 queue (a queue with

Poisson arrivals, constant service times and 1 server), its

average waiting time is given by the Pollaczek-Khinchin

(P-K) formula for M/G/1 queues [5, p. 189], given in (2).

A direct consequence of this lemma is that a necessary

condition for stability in the infinite velocity system is

also necessary for our system. The necessary and sufficient

condition for stability in an M/G/1 queue is given by ρ < 1
(see e.g., [5] or [13]).

B. Sufficient Condition for Stability

Here we prove that ρ < 1 is a sufficient condition for

stability of the system under a policy based on Euclidean

TSP with neighborhoods (TSPN). TSPN is a generalization

of TSP in which the server is to visit a neighborhood of

each demand location via the shortest path [4], [20]. In our

case the neighborhoods are disks of radius r∗ around each

message location. TSPN is an NP-Hard problem such as TSP.

Recently, [20] proved that a Polynomial Time Approximation

Scheme (PTAS) exists for TSPN among fat regions in the

plane. A region is said to be fat if it contains a disk whose

size is within a constant factor of the diameter of the region,

e.g., a disk, and a PTAS belongs to a family of (1 + ǫ)-
approximation algorithms parameterized by ǫ > 0.

1) TSPN Policy: Assume the system is initially empty

(at time t0 = 0). The receiver waits at the center of R
until the first message arrival, moves to serve this message

and returns to the center. Let time t1 be the time at which

the receiver returns to the center. At t1, if the system is

empty, the receiver repeats the above process and we define

t2 similarly. If there are messages waiting for service at

time t1, the receiver computes the TSPN tour (e.g., using

the PTAS in [20]) through all the messages that are present

in the system at time t1, receives these messages in that tour

and returns to the center. We let t2 > t1 be the first time

when the receiver returns to the center after receiving all the

messages that were present in the system at t1 and repeat

the above process. We define the epochs ti as the time the

2A work-conserving policy is such that the server does not idle when the
queue is not empty.

3Note that all the proofs can be found in our technical report [11].

receiver returns to the center after serving all the messages

that were present in the system at time ti−1
4.

Let the total number of messages waiting for service at

time ti, Ni , N(ti), be the system state at time ti. Note

that Ni forms an irreducible Markov chain on countable state

space N. We show the stability of the TSPN policy through

the ergodicity of this Markov chain.

Theorem 2: The system is stable under the TSPN policy

for all loads ρ < 1.

Proof: Given the system state Ni at time ti, we apply

the algorithm in [20] to find a TSPN tour of length Li that

is at most (1 + ǫ) away from the optimal TSPN tour length

L∗
i . Note that L∗

i can be upper bounded by a constant L for

all Ni. This is because the collector does not have to move

for messages within its communication range and a finite

number of such disks of radius r∗ can cover the network

region for any r∗ > 0. The collector then can serve the

messages in each disk from its center (an example of such

a tour is shown in Fig. 2). We will use the Lyapunov-Foster

criterion to show that the Markov chain described by the

states Ni is positive recurrent [3]. We use V (Ni) = sNi, the

total load served during ith cycle, as the Lyapunov function

(note that V (0) = 0, Sk = {x : V (x) ≤ K} is a bounded

set for all finite K and V (.) is a non-decreasing function).

Since the arrival process is Poisson, the expected number of

arrivals during a cycle can be upper-bounded as follows:

E[Ni+1|Ni] ≤ λ(L/v + sNi). (3)

Hence we obtain the following drift expression for the load

during a cycle.

E[sNi+1 − sNi|Ni] ≤ ρL/v − (1 − ρ)sNi.

Since ρ < 1, there exist a δ > 0 such that ρ + δ < 1:

E[sNi+1 − sNi|Ni] ≤ ρL/v − δsNi

≤ −δs +
ρL

v
.1{Ni∈S}, (4)

where 1{N∈S} is equal to 1 if N ∈ S and zero otherwise

and S = {N ∈ N : N ≤ K} is a bounded set with K =
⌈ ρL

vδs +1⌉. Hence the drift is negative as long as Ni is outside

a bounded set. Therefore, by the standard Lyapunov-Foster

criterion [2], [3], the Markov chain (Ni) is positive recurrent,

it has a unique stationary distribution and we can bound the

steady state time average of Ni as [21]

lim sup
ti→∞

E[N(ti)] ≤
λL

v(1 − ρ)
. (5)

Furthermore, given some t ∈ [ti, ti+1], we have

lim sup
t→∞

E[N(t)] ≤ lim sup
ti→∞

E[N(ti) + N(ti+1)]

≤ 2
λL

v(1 − ρ)
< ∞. (6)

4A similar policy based on TSP was discussed in [23] for a system without
communication capability, where the average delay was characterized for the
heavy load regime.
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The delay scaling of the TSPN policy with load ρ is 1
1−ρ

as shown in (6), the same delay scaling as in a G/G/1

queue. This is a fundamental improvement in delay due to

the communication capability as the system without wireless

transmission in [6] has Θ( 1
(1−ρ)2 ) delay scaling.

Note that ρ < 1 is a sufficient stability condition also

for the system without communication capability. This case

corresponds to r∗ = 0, where we utilize a (1 + ǫ) PTAS for

the optimal TSP tour through the message locations instead

of the TSPN tour. An upper bound on the TSP tour for any

Ni points arbitrarily distributed in a square of area A is given

by
√

2ANi+1.75
√

A [19]. Similar arguments as above leads

to the drift condition

E[sNi+1 − sNi|Ni] ≤ ρ(κ1

√

ANi + κ2) − (1 − ρ)sNi,

for some constants κ1 and κ2, where the drift is again

negative as long as Ni is outside a bounded set S. The

difference in this case is that the travel time per cycle scales

with the number of messages Ni as
√

Ni which can be shown

to result in O( 1
(1−ρ)2 ) delay scaling with the load ρ.

IV. LOWER BOUND ON DELAY

For wireless networks with a small area and/or very good

channel quality such that r∗ ≥
√

A/2, the collector does

not need to move as every message will be in its reception

range if it just stays at the center of the network region. In

that case the system can be modeled as an M/D/1 queue

with service time s and the associated queuing delay is

given by the P-K formula for M/G/1 queues, i.e., W =
λs2/(2(1 − ρ)). However, when r∗ <

√

A/2, the collector

has to move in order to receive some of the messages. In

this case the reception time s is still a constant, however,

the travel time per message is now a random variable which

is not independent over messages (for example, observing

small travel times for the previous messages implies a dense

network, and hence the future travel times per message are

also expected to be small). Next we provide a lower bound

similar to a lower bound in [6] with the added complexity

of communication capability in our system.

Theorem 3: The optimal steady state time average delay

T ∗ is lower bounded by5

T ∗ ≥ E[(||U || − r∗)+]

v(1 − ρ)
+

λs2

2(1 − ρ)
+ s. (7)

The proof is omitted due to brevity but below we give its

outline. Let Ti , Ti,r − Ti,a be the time between the arrival

of message i at Ti,a and its reception at Ti,r. Ti has three

components: Message i’s service time s and Wd,i and Ws,i,

the waiting times due to the collector’s travel and collector’s

packet receptions from the time Ti,a until the time Ti,r − s.

The total waiting time of message i is denoted by Wi =
Wd,i + Ws,i, hence Wi = Ti − s. The time average waiting

time of message i is defined by an expectation in the steady

state given by W = limi→∞ E[Wi]. The time average delays

T , Wd and Ws are defined similarly to have T = Wd+Ws+s

5Note that (||U || − r∗)+ represents max(0, ||U || − r∗) and U is a
uniformly distributed random variable over the network region R.

where all the limits are assumed to exist. T ∗ is the optimal

system time which is given by the policy that minimizes T .

The proof relies on the fact that in a stable system in steady

state the average number of messages received in a waiting

time is equal to the average number of arrivals in a waiting

time given by λW = λ(Wd+Ws). This fact is used to derive

W =
Wd

1 − ρ
+

λs2

2(1 − ρ)
. (8)

Furthermore, Wd can be lower bounded by E[(||U ||− r∗)+],
the expected distance of a uniform arrival to the center of

the network less r∗. This is because the center of the square

region R is the best a priori location in the network that

minimizes the expected distance to a uniform arrival. Note

that the E[(||U || − r∗)+] term can be further lower bounded

by E[||U ||]− r∗, where E[||U ||] = 0.383
√

A [6]. Theorem 3

argues that in addition to the average waiting time of a

classical M/G/1 queue given in (2), the queueing delay also

increases due to the collector’s travel.

V. COLLECTOR POLICIES

We derive upper bounds on delay via analyzing policies for

the collector. The TSPN policy analyzed in Section III-B.1

is stable for all loads ρ < 1 and has O( 1
1−ρ ) delay scaling.

Since the lower bound in Section IV also scales with the

load as 1
1−ρ , the TSPN policy has optimal delay scaling.

A. First Come First Serve (FCFS) Policy

A straightforward policy is to serve the messages in the

order of their arrival times. Specifically, a version of the

FCFS policy where the collector returns to the center of the

network region (the median of the region for general network

regions) after each message reception is shown to be optimal

at light loads for the DTRP problem [6]. This is because the

center of the network region is the location that minimizes

the expected distance to a uniformly distributed arrival. Since

in our system we can do at least as good as the DTRP,

FCFS policy is optimal also for our system at light loads.

Furthermore, the FCFS policy is not stable for all loads ρ <
1, namely, there exists a value ρ̂ such that the system is

unstable under FCFS policy for all ρ > ρ̂. This is because

under the FCFS policy, the average travel component of the

service time is fixed, which makes the average arrival rate

greater than the average service rate as ρ → 1. Therefore,

it is better for a policy to serve more messages in the same

“neighborhood” in order to reduce the amount of time spent

on mobility.

B. Partitioning Policy

Next we propose a policy based on partitioning the net-

work region into subregions and the collector performing a

cyclic service of the subregions. This policy is an adaptation

of the Partitioning policy of [6] to the case of a system

with wireless transmission. We explicitly derive the delay

expression for this policy and show that it scales with the

load as O( 1
1−ρ ) as in the TSPN policy.
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r∗

√
2r∗

Fig. 2. The partitioning of the network region into square subregions of

side
√

2r∗. The circle with radius r∗ represents the communication range
and the dashed lines represent the collector’s path.

We divide the network region into (
√

2r∗ x
√

2r∗) squares

as shown in Fig. 2. This choice ensures us that every

location in the square is within the communication distance

r∗ of the center of the square. The number of subregions

in such a Partitioning is given by6 ns = A/(2(r∗)2). The

partitioning in Fig. 2 represents the case of ns = 16
subregions. The collector services the subregions in a cyclic

order as displayed in Fig. 2 by receiving the messages in

each subregion from its center using an FCFS order. The

messages within each subregion are served exhaustively, i.e.,

all the messages in a subregion are received before moving to

the next subregion. The collector then receives the messages

in the next subregion exhaustively using FCFS order and

repeats this process. The distance traveled by the collector

between each subregion is a constant equal to
√

2r∗. It

is easy to verify that the Partitioning policy behaves as a

multiuser M/G/1 system with reservations (see [5, p. 198])

where the ns subregions correspond to users and the travel

time between the subregions corresponds to the reservation

interval. Using the delay expression for multiuser M/G/1

queue with reservations in [5, p. 200] we obtain,

Tpart =
λs2

2(1 − ρ)
+

ns − ρ

2v(1 − ρ)

√
2r∗ + s, (9)

where ρ = λs is the system load. Combining this result with

(7) and noting that the above expression is finite for all loads

ρ < 1, we have established the following observation.

Observation 1: The time average delay in the system

scales as Θ( 1
1−ρ) with the load ρ and the Partitioning policy

is stable for all ρ < 1.
Despite the travel component of the service time, we can

achieve Θ( 1
1−ρ) delay as in classical queuing systems (e.q.,

G/G/1 queue). This is the fundamental difference between

this system and the corresponding system where wireless

transmission is not used, as in the latter system the delay

scaling with load is Θ( 1
(1−ρ)2 ) [6]. This difference can be

explained intuitively as follows. Denote by N the average

number of departures in a waiting time. It is easy to see from

the P-K formula that in a classical M/G/1 queue, N scales

with the load as Θ( 1
1−ρ). We argue that this scaling for N

6If
√

ns is not even or if the subregions do not fit the network region
for a particular choice of r∗, then one can partition the region using the
largest reception distance r∗ < r∗ such that these conditions are satisfied.

is preserved in our system but not in [6]. The time average

waiting time expression as a function of the waiting time due

to collector’s travel, Wd, in (8) implies that for any given

policy with its corresponding Wd, N can be lower bounded

by λWd

1−ρ . For the system in [6], the minimum per-message

distance the collector moves in the high load regime scales

as Ω(
√

A√
N

) [6] (intuitively, the nearest neighbor distance

among N uniformly distributed points on a square region

of area A scales as
√

A√
N

). Therefore, for this system we have

Wd ≈ NΩ(
√

A√
N

) ≈ Ω(
√

NA) which gives N ≈ Ω( λ2A
(1−ρ)2 ).

Namely, Wd increases with the load and this results in an

extra 1/(1− ρ) scaling in delay in addition to the 1/(1− ρ)
factor of classical M/G/1 queues. However, with the wireless

reception capability, the collector does not need to move for

messages that are inside a disk of radius r∗ around it. Since

a finite (constant) number of such disks cover the network

region, Wd can be upper bounded by a constant independent

of the system load (for the Partitioning policy an easy upper

bound on Wd is the length of one cyclic tour around the

network). Therefore, in our system N scales as 1/(1−ρ) as

in classical queues.

In [10] we analyzed the case where the messages were

transmitted to the collector using a random access scheme

(i.e., with probability p in each time slot) and obtained

Ω( 1
(1−ρ)2 ) delay scaling as in the system without wireless

transmission. The reason for this is that in order to have suc-

cessful transmissions under the random access interference

of neighboring nodes, the reception distance should be of the

same order as the nearest neighbor distances [10], [15].

C. Numerical Results

Here we present numerical results corresponding to the

analysis in the previous sections. We lower bound the delay

expression in (7) using E[(||U || − r∗)+] ≥ E[||U ||] − r∗

(where E[||U ||] = 0.383
√

A is the expected distance of a

uniform arrival to the center of square region of area A
[6]). Fig. 3 shows the delay lower bound as a function of

the network load for different levels of channel quality7. As

the channel quality increases, the message delay decreases

as expected. For heavy loads, the delay in the system

is significantly less than the delay in the corresponding

system without wireless transmission in [6], demonstrating

the difference in the delay scaling between the two systems.

For light loads and more noisy communication channels, the

delay performance of the wireless network tends to the delay

performance of [6].

Fig. 4 compares the delay in the Partitioning Policy to

the delay lower bound for two different cases. When the

travel time dominates the reception time, the delay in the

Partitioning policy is about 10.6 times the delay lower bound.

For a more balanced case, i.e., when the reception time is

comparable to the travel time, the delay ratio drops to 2.4.

7For the delay plot of the no-communication system, the point that is not
smooth arises since the plot is the maximum of two delay lower bounds
proposed in [6].
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VI. CONCLUSION

In this paper we considered the use of dynamic vehicle

routing in order to improve the delay performance of wireless

networks where messages arriving randomly in time and

space are gathered by a mobile collector. We characterized

the stability region of this system to be all system loads

ρ < 1 and derived fundamental lower bounds on time

average expected delay. We derived upper bounds on delay

by analyzing policies and extended our results to the case

of multiple collectors in the system. Our results show that

combining controlled mobility and wireless transmission

results in Θ( 1
1−ρ ) delay scaling with load ρ. This is the

fundamental difference between our system and the system

without wireless transmission (DTRP) analyzed in [6] and

[7] where the delay scaling with the load is Θ( 1
(1−ρ)2 ).

This work is a first attempt towards utilizing a combination

of controlled mobility and wireless transmission for data

collection in stochastic and dynamic wireless networks.

Therefore, there are many related open problems. In this

paper we have utilized a simple wireless communication

model based on a communication range. In the future we

intend to study more advanced wireless communication

models such as modeling the transmission rate as a function

of the transmission distance. Finally, extending our results

for a general message location distribution in the network is

a subject of future research.

REFERENCES

[1] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater Acoustic
Sensor Networks: Research Challenges,” Ad Hoc Networks (Elsevier),
vol. 3, no. 3, pp. 257-279, Mar. 2005.

[2] E. Altman, P. Konstantopoulos, and Z. Liu, “Stability, monotonicity
and invariant quantities in general polling systems,” Queuing Sys.,
vol. 11, pp. 35-57, 1992.

[3] S. Asmussen, “Applied Probability and Queues,” Wiley, 1987.
[4] E. M. Arkin and R. Hassin, “Approximation algorithms for the

geometric covering salesman problem,” Discrete Applied Mathematics,
vol. 55, pp. 197-218, 1994.

[5] D. Bertsekas and R. Gallager, “Data Networks,” Prentice Hall, 1992.
[6] D. J. Bertsimas and G. van Ryzin, “A stochastic and dynamic vehicle

routing problem in the Euclidean plane,” Opns. Res., vol. 39, pp. 601-
615, 1990.

[7] D. J. Bertsimas and G. van Ryzin, “Stochastic and dynamic vehicle
routing in the Euclidean plane with multiple capacitated vehicles,”
Opns. Res., vol. 41, pp. 60-76, 1993.

[8] D. J. Bertsimas and G. van Ryzin, “Stochastic and dynamic vehicle
routing with general demand and interarrival time distributions,” Adv.

App. Prob., vol. 20, pp. 947-978, 1993.
[9] B. Burns, O. Brock, and B. N. Levine, “MV routing and capacity build-

ing in disruption tolerant networks,” In Proc. IEEE INFOCOM’05,
Mar. 2005.

[10] G. D. Celik and E. Modiano, “Random access wireless networks with
controlled mobility”, In Proc. IFIP MEDHOCNET’09, Jun. 2009.

[11] G. D. Celik and E. Modiano, ”Dynamic Vehicle Routing for
Data Gathering in Wireless Networks”, ArXiv Technical Report,
arXiv:1008.4629, Aug. 2010.

[12] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” In Proc. IEEE CDC’04,
Dec. 2004.

[13] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks,” Now Publishers, 2006.

[14] A. E. Gammal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-
delay trade-off in wireless networks,” In Proc. IEEE INFOCOM’04,
Mar. 2004.

[15] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad
hoc wireless networks ,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp.
125-137, Feb. 2003.

[16] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388-404, Mar. 2000.

[17] M. Haimovich and T. L. Magnanti, “Extremum properties of of hexag-
onal partitioning and the uniform distribution in euclidian location,”
SIAM J. Disc. Math. 1, 50-64, 1988.

[18] V. Kavitha and E. Altman, “Queueing in Space: design of Message
Ferry Routes in sensor networks,” In Proc. ITC’09, Sep. 2009.

[19] E. L. Lawler, J.Lenstra, A. Kan, D. Shmoys, “ The Traveling salesman
problem :a guided tour of combinatorial optimization,” Wiley, 1985.

[20] J. S. B. Mitchell, “A PTAS for TSP with neighborhoods among fat
regions in the plane,” In Proc. ACM-SIAM SODA’07, Jan. 2007.

[21] E. Modiano, D. Shah and G. Zussman, “Maximizing through-
put in wireless networks via Gossip,” In Proc. ACM SIGMET-

RICS/Performance’06, June 2006.
[22] M. J. Neely and E. Modiano, “ Capacity and delay tradeoffs for ad

hoc mobile networks,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp.
1917-1937, Jun. 2005.

[23] M. Pavone, N. Bisnik, E. Frazzoli and V. Isler, “Decentralized vehicle
routing in a stochastic and dynamic environment with customer
impatience,” In Proc. RoboComm’07, Oct. 2007.

[24] J. Le Ny, M. Dahleh, E. Feron, and E. Frazzoli, “Continuous Path
Planning for a Data Harvesting Mobile Server,” In Proc. IEEE
CDC’08, Dec. 2008.

[25] V. Sharma, E. Frazzoli, and P. G. Voulgaris, “Delay in mobility-
assisted constant-throughput wireless networks,” In Proc. IEEE

CDC’05, Dec. 2005.
[26] Y. Shi and Y. T. Hou, “Theoretical results on base station movement

problem for sensor network,” In Proc. IEEE INFOCOM’08, Apr. 2008.
[27] H. Waisanen, “Control of mobile networks using dynamic vehicle

routing,” Ph.D. Thesis, MIT, 2007.
[28] M. Zhao, M. Ma, and Y. Yang, “Mobile data gathering with space-

division multiple access in wireless sensor networks,” In Proc. IEEE

INFOCOM’08, Apr. 2008.

2377


