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ABSTRACT
We investigate the performance of longest-queue-first (LQF)
scheduling (i.e., greedy maximal scheduling) for wireless net-
works under the SINR interference model. This interference
model takes network geometry and the cumulative inter-
ference effect into account, which, therefore, capture the
wireless interference more precisely than binary interference
models. By employing the ρ-local pooling technique, we
show that LQF scheduling achieves zero throughput in the
worst case. We then propose a novel technique to localize in-
terference which enables us to decentralize the LQF schedul-
ing while preventing it from having vanishing throughput
in all network topologies. We characterize the maximum
throughput region under interference localization and present
a distributed LQF scheduling algorithm. Finally, we present
numerical results to illustrate the usefulness and to validate
the theory developed in the paper.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Wireless scheduling, greedy maximal scheduling, longest-
queue-first scheduling, throughput region, binary interfer-
ence model, SINR interference model

1. INTRODUCTION
Scheduling has been recognized to be an important prob-

lem in designing cross-layer protocols for multihop wireless
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networks. Developing an efficient scheduling algorithm is
challenging due to complex interference coupling among si-
multaneous transmissions in the network. As a consequence,
most existing works on wireless scheduling assume simplis-
tic graph-based or binary interference models where trans-
missions on two different links are predetermined to con-
flict with each other independently of the transmissions of
other neighboring links [2, 3, 5, 7–10, 12–14, 16, 17, 19]. In
fact, graph-based interference models over-simplify interfer-
ence coupling because interference experienced at a partic-
ular link is indeed equal to the total cumulative interference
from all concurrent transmissions in the network.

In general, an efficient scheduling algorithm for multihop
wireless networks aims to exploit spatial reuse to maximize
the number of simultaneous transmissions in the network.
This would result in high overall network throughput. When
wireless nodes transmit at a fixed rate, there is a mini-
mum required signal-to-interference-plus-noise ratio (SINR)
for successfully decoding received signals [1, 6]. Although
power control could improve network throughput, the opti-
mal joint scheduling and power control problem can only be
solved in some special cases, and it is usually difficult for
decentralized implementation [4,15].

Wireless scheduling is a difficult problem even with fixed
power and binary interference models for which it has been
shown to be NP-hard [16]. Existing works in the litera-
ture on wireless scheduling consider different optimization
measures and assume different interference models. Some
common optimization measures include finding a minimum-
length schedule for a given traffic demand [1, 18], achieving
optimal scaling laws for network capacity [6], and achieving
full [2,5,7,10–17,19] or a fraction of the maximum stability
(throughput) region [3,8,9]. Moreover, most existing works
on wireless scheduling under the stability framework of [17]
assume the graph-based or binary interference models. In
this paper, we consider the scheduling problem under the
practical SINR interference model.

In the seminal paper [17], Tassiulas and Ephremides show
that the celebrated maximum weight scheduling (MWS) achieves
100% throughput. However, MWS is difficult to implement
in a distributed manner, which is, however, required in most
wireless networks. In [3], a simpler maximal scheduling is
investigated where it is shown to achieve at least 1/dG of the
throughput region under certain binary interference models
where dG is the maximum interference degree for network



graph G. In particular, maximal scheduling achieves at least
1/2 and 1/8 of the throughput region for geometric network
graphs under 1-hop and 2-hop interference models, respec-
tively.

Another important scheduling policy which has been ob-
served to achieve 100% throughput in most practical wireless
networks is longest-queue-first scheduling (i.e., greedy max-
imal scheduling). There are several recent works that inves-
tigate the performance of LQF scheduling under different
binary interference models [5,7,12]. Design of practical dis-
tributed algorithms for LQF scheduling under the k-hop in-
terference model is done in [2,10]. Specifically, Dimakis and
Walrand show that LQF scheduling achieves 100% through-
put if the network satisfies the so-called “local pooling” con-
dition [5]. In [7], a deeper investigation of LQF scheduling
is performed where the authors show that LQF scheduling
achieves at least 1/6 of the throughput region for geometric
network graphs under the k-hop interference model. In [10],
it is shown that LQF scheduling indeed achieves at least
1/4 of the throughput region under the 2-hop interference
model for wireless networks with at most 20 nodes. Unfor-
tunately, these results strongly depend on the binary inter-
ference structure, which could not be applied to the more
realistic SINR interference model.

In this paper, we investigate the performance and design
practical decentralized algorithms for LQF scheduling un-
der the SINR interference model. Specifically, we make the
following contributions.

• We use the σ-local pooling notion developed in [7, 12]
to show that LQF scheduling achieves zero throughput
in the worst case. In addition, we present a sufficient
condition for a network to achieve 100% throughput
under LQF scheduling.

• We show that there is a finite coordination neighbor-
hood around the receiver of each link such that the
total interference from other links outside this neigh-
borhood is negligible. Based on this result, we propose
a novel interference localization technique that enables
us to decentralize the LQF scheduling.

• We characterize the throughput region under interfer-
ence localization. We show that a non-vanishing frac-
tion of the throughput region with interference local-
ization can be achieved by LQF scheduling.

• We propose a distributed LQF scheduling algorithm
with linear complexity under interference localization.
The proposed distributed LQF algorithm returns the
same maximal schedule as the centralized LQF algo-
rithm.

• We present numerical results to illustrate the differ-
ent performance bounds derived in the paper and the
usefulness of the interference localization technique.

There is one key difference between the SINR interference
model with interference localization and other binary inter-
ference models such as the protocol model [6], the k-hop
interference model [16], and the 802.11-based interference
model [18]. Specifically, cumulative interference from a lo-
cal neighborhood is considered under the SINR interference
model with interference localization while it is not in any of
the binary interference models.

The remainder of this paper is organized as follows. In
Section 2, we describe the system model. In Section 3, we
investigate the performance of LQF scheduling under the
SINR interference model. We discuss the interference lo-
calization for the SINR interference model in Section 4 and
study the performance of LQF scheduling under interfer-
ence localization in Section 5. Practical scheduling designs
are considered in Section 6. Some numerical results are pre-
sented in Section 7 followed by conclusions in Section 8.

2. SYSTEM MODEL
Consider a wireless network which is modeled as a graph

G = (V, E) where V is the set of nodes and E is the set of
links. Let |E| denote the number of links in the network.
We assume that all transmissions use the same power level
P . Also, let the ambient noise power measured in the signal
bandwidth at the receiver of link l be Nl and let Glk be the
channel gain from the transmitter of link k to the receiver
of link l. Now, suppose that the channel gain Glk depends
on the corresponding distance dlk between the transmitter
of link k and the receiver of link l as Glk = d−α

lk where α
is the path loss exponent. From a communication perspec-
tive, if a receiver treats interference as noise, the SINR at
the receiver should be large enough for successfully decod-
ing of the signal. As a result of this, we define the SINR
interference model as follows.

Definition 1. A feasible schedule under the SINR inter-
ference model is a set of activated links such that minimum
SINR requirements of all activated links are satisfied. Specif-
ically, let S denote a set of activated links that forms a fea-
sible schedule. Then, we have

SINRl ,
PGll

∑

k∈S,k 6=l GlkP +Nl
≥ β, ∀l ∈ S (1)

where β is a predetermined threshold required to achieve a
certain desired bit error rate.

In the following, we will use the term activation set to
refer to a particular schedule, which may or may not be
feasible. In addition, a schedule will be denoted either as
a set S of activated links or a vector ~S of dimension |E|
(i.e., the number of network links) where its k-th element
~S(k) = 1 if link k is activated or ~S(k) = 0, otherwise.
We assume that a wireless link l exists if its correspond-
ing transmitting and receiving nodes want to communicate
with each other and they have relative distance satisfying
dmin ≤ dl ≤ dmax. Here, dmax must be smaller than the max-
imum distance such that the minimum SINR is satisfied.
Suppose that the power of ambient noise measured in the sig-
nal bandwidth is N0 for all links, then dmax is upper-bounded

by dmax ≤ (P/(βN0))
1/α. Also, dmin is the minimum distance

between any two nodes that want to communicate with each
other (i.e., dmin = minl∈E dl).

We assume time-slotted wireless systems where time slots
are of unit length. It is assumed that when a link is sched-
uled, one packet can be transmitted in each time slot. We
consider single-hop flows where each flow carries traffic on
one wireless link. We assume that packets arrive at the
transmitting end of each link l according to a stationary
stochastic process with average arrival rate λl. Wireless
links are scheduled in each time slot according to the SINR
interference model described above.



In this paper, we are interested in investigating the per-
formance of LQF scheduling under the SINR interference
model. The performance measure that we consider is the
guaranteed fraction of the maximum throughput region (or
throughput region for brevity) that a particular scheduling
policy can achieve [17]. The definitions of throughput region,
and scheduling efficiency ratios are given in the following.

Definition 2 ( [17]). The throughput region contains all
possible arrival rate vectors such that there exists some schedul-
ing policy that can stabilize the network (average queue lengths
of all queues in the network are finite).

In [17], the throughput region is well characterized. Specif-
ically, the throughput region can be described as,

Λ ,

{

~λ : ~λ � ~φ, for some ~φ ∈ Co(Ω)
}

(2)

where ~λ denotes the traffic arrival rate vector whose l-th el-
ement λl is the traffic arrival rate of link l, Ω denotes the set
of all feasible maximal schedules, Co(Ω) denotes the convex
hull of Ω, and � denotes element-wise inequality. In [17],
it has been shown that MWS can stabilize the network for
all arrival rate vectors strictly inside the throughput region
where MWS activates a maximal schedule with the largest
total queue length in each time slot. However, MWS is diffi-
cult to implement even under the binary interference model.
It is, therefore, desirable to look for a simple and easy-to-
implement scheduling policy that achieves a guaranteed frac-
tion of the throughput region. One such strategy is to find
a maximal schedule whose definition is as follows:

Definition 3. A maximal schedule S is a feasible schedule
such that if we add any link l /∈ S to the schedule S (i.e.,
link l is not currently activated by the schedule S) then the
SINR constraint of at least one activated link in schedule S
is violated (i.e., its SINR becomes smaller than β).

In this paper, we consider the well-known policy that finds
a maximal schedule in a greedy manner, called the longest-
queue-first (LQF) scheduling policy. LQF scheduling makes
scheduling decisions based on queue length information as
follows: it starts with an empty schedule. Then, it adds the
link with the largest queue length to the schedule. Then,
it looks for the link with the largest queue length among
the remaining links. This chosen link will be added to the
schedule if this addition creates a feasible schedule (i.e., the
set of added links that satisfy the SINR constraints) or it is
discarded otherwise. This process continues until no link is
left. Note that given the queue length vector, the schedule
obtained by LQF scheduling is maximal and unique if the
queue lengths of all links are different.

In general, LQF scheduling does not maintain network
stability for all traffic arrival rates inside the throughput
region. However, simulation results often show that LQF
scheduling achieves maximum throughput in many wireless
networks [8]. In the following, we give a definition of the
efficiency ratio of a scheduling policy [7].

Definition 4. The efficiency ratio γ(G) of a scheduling
policy for a network graph G is the supremum of all γ such
that the scheduling policy stabilizes all traffic arrival rates
that lie inside γ fraction of the throughput region, i.e.,

γ(G) , sup
{

γ|the network is stable for all ~λ ∈ γΛ
}

. (3)

In practice, network graphs may have different structure
and topology. Therefore, it is also useful to quantify the
worst-case efficiency ratio of a scheduling policy.

Definition 5. The worst-case efficiency ratio γ∗ of a schedul-
ing policy is the infimum of all efficiency ratios γ(G) for all
possible network graphs G, i.e.,

γ∗
, inf

G
γ(G). (4)

In the following, we investigate the efficiency ratio (both
worst-case and for some specific network G) of LQF schedul-
ing under the SINR interference model.

3. PERFORMANCE OF LQF SCHEDULING
UNDER SINR INTERFERENCE MODEL

We investigate the performance of LQF scheduling under
the SINR interference model using the σ-local pooling tech-
nique [7,12]. In particular, there are three different notions
of local pooling factors, namely local pooling factors for a
link, a set of links or the whole network. In the following,
we will also refer to these factors as link, set, and network
local pooling factors, respectively. The local pooling factor
for network G, which is equal to the minimum of local pool-
ing factors of all links, is equal to the efficiency ratio of LQF
scheduling. A set local pooling factor can be calculated by
a primal or dual formulation of a special optimization prob-
lem [12]. More detailed description of the σ-local pooling
technique is given in Appendix A. In the following, we will
present the worst-case performance and a sufficient condi-
tion for LQF scheduling to achieve 100% throughput using
these σ-local pooling notions.

In general, it would be useful to know properties of net-
work topologies where LQF scheduling achieves 100% through-
put. In addition, if a particular network has the network
local pooling factor strictly smaller than one, then it is use-
ful to calculate or estimate its network local pooling factor,
which is also the efficiency ratio of LQF scheduling. In the-
ory, this can be done by calculating local pooling factors of
all possible subsets of links. Unfortunately, in order to calcu-
late a set local pooling factor one must generate all possible
maximal schedules of that set, which is a very complex task
for a large set.

It can be observed that the set local pooling factor rep-
resents the scaling factor between the most compact time-
sharing and the least compact time-sharing of maximal sched-
ules [12]. Intuitively, the most compact time-sharing is achieved
by a convex combination of maximal schedules with large
number of activated links while the least compact time-
sharing is achieved by a convex combination of maximal
schedules with small number of activated links. Therefore,
the worst-case performance of LQF scheduling may be quite
poor for certain network topologies. We formally state this
worst-case performance in the following theorem.

Theorem 1. The efficiency ratio of LQF scheduling under
the SINR interference model is zero in the worst case.

We will prove Theorem 1 by using results in the follow-
ing lemma. Let Ωg be a set of maximal schedules that

covers the whole network, i.e., let ~Sg
tot =

∑

i∈Ωg

~Si then

~Sg
tot(k) ≥ 1, ∀k ∈ E (i.e., every link is included in some



schedule ~Si). And let Ωb be a another set of maximal sched-

ules also covering the whole network and let ~Sb
tot =

∑

i∈Ωb

~Si.

In addition, let K1 = |Ωg |, K2 = |Ωb| (i.e., the number of
maximal schedules in the corresponding sets of schedules),

and k∗ = min
{

h ≥ 1, h ∈ Z|h~Sg
tot � ~Sb

tot

}

. Then, we have

the following result.

Lemma 1. Given a network G and parameters K1, K2,
and k∗ defined above, the network local pooling factor of G
satisfies σ∗(G) = γ(G) ≤ k∗K1/K2 , σ∗

ub(G).

Proof. The proof is given in Appendix B.

Lemma 1 implies that given a networkG, we have σ∗(G) ≤
min{K1,K2,k∗} k

∗K1/K2 where K1, K2, and k∗ correspond to
any two sets of maximal schedules as described above. This
will allow us to obtain an upper bound for the efficiency ratio
of LQF scheduling. We are now ready to prove Theorem 1.

Proof. We prove Theorem 1 by showing that there exists
a class of network topologies whose network local pooling
factors can be made arbitrarily small. Specifically, consider
a network graph GK with |E| = 2K links such that it can
be decomposed into either 2 large maximal schedules (each
with K links) or K small maximal schedules (each with 2
links) and schedules of these two schedule sets do not share
any common links within each set. The structure of this
particular network is illustrated in Fig. 1. By applying the
result of Lemma 1 to this network with K1 = 2, K2 = K,
and k∗ = 1, the network local pooling factor (equal to the
efficiency ratio of LQF scheduling) can be upper bounded
as σ∗(GK) = γ(GK) ≤ σ∗

ub(GK) = 2/K. Therefore, the
efficiency ratio of this network under LQF scheduling tends
to zero as K → ∞.

Physical construction of such a wireless network can be
outlined as follows. For each maximal schedule with two
links we place these links so that their SINRs are exactly
equal to β when they are activated simultaneously. In ad-
dition, each large maximal schedule of K links is carefully
constructed such that each receiver of the links has an SINR
no smaller than β.
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Figure 1: Network example for which the efficiency
ratio of LQF scheduling can be vanishingly small
under the SINR interference model.

It can be observed from the proof of Theorem 1 that the
key reason for LQF scheduling to have small efficiency ra-
tios in certain network topologies is the scheduling starva-
tion. Specifically, consider network topologies where there

are many maximal schedules of small sizes. Then, if traf-
fic arrival patterns are such that LQF scheduling activates
only maximal schedules of small sizes although good large
maximal schedules are available then LQF scheduling may
achieve very poor throughput performance. Although we
cannot guarantee a non-vanishing performance lower bound
for LQF scheduling in general, it is very unlikely that both
“bad” network topology and traffic arrival pattern occur si-
multaneously in practice. In other words, LQF scheduling
may still work well in most practical network topologies and
traffic arrival patterns.

Now we provide a sufficient condition for LQF scheduling
to achieve 100% throughput.

Lemma 2. A particular network G has a network local
pooling factor σ∗

G = 1 if for any subset of links L ⊆ E, the
number of activated links in L for any maximal schedules is
the same.

Proof. This lemma can be proved by showing that local
pooling factors of any sets of links L ⊆ E are equal to one.
For brevity, the detailed proof is omitted.

In the following, we will propose a novel technique to lo-
calize interference for the SINR interference model. This
interference localization enables us to prevent LQF schedul-
ing from having a vanishing small efficiency ratio and to
decentralize the LQF scheduling.

4. INTERFERENCE LOCALIZATION
In the SINR interference model, any activated link will

create interference to all other activated links in the network.
However, the average channel gain between any two links at-
tenuates rapidly over distance. Therefore, only simultaneous
transmissions in an immediate neighborhood around the re-
ceiver of a particular link may create significant cumulative
interference. In addition, the number of concurrent feasi-
ble transmissions in a pre-determined neighborhood is lim-
ited because each transmission needs to“reserve”some space
around it to limit interference from neighboring transmis-
sions. In the following, we exploit these facts to determine
a neighborhood for each link such that interference beyond
this neighborhood only has negligible impacts on its received
signal. In particular, we propose a technique to localize in-
terference while still maintaining the scheduling feasibility.

In fact, we will show that there exists a neighborhood
around the receiver of each link such that it can “truncate”
(i.e., ignore) interference beyond this neighborhood. For
simplicity, we assume an interference-limited network so the
effect of ambient noise can be ignored. Consider a particular
link l with length dl. Then, the maximum interference that
can be tolerated at the receiver of link l is

Imax
l ,

Pd−α
l

β
. (5)

Suppose that link l only performs scheduling coordination
inside a circle with radius Kldl centered around the receiver
of link l. We will refer to this circular area as the inter-
ference neighborhood of link l. Let the set of links whose
transmitting ends lie on the boundary or inside this circle
be Φl(Kl). Now, given an activation set S (can be feasible
or not), we will denote the total interference created to link l
by other activated links k in the set Φl(Kl)∩S as I inl (Kl, S),



i.e.,

I inl (Kl, S) ,
∑

k∈Φl(Kl)∩S

PGlk. (6)

Also, the total interference created to link l by other acti-
vated links k in the set Φl(Kl)

c∩S is denoted as Ioutl (Kl, S),
i.e.,

Ioutl (Kl, S) ,
∑

k∈Φl(Kl)
c∩S

PGlk (7)

where Φl(Kl)
c denotes the complement of the set Φl(Kl).

Let ~K be a vector whose l-th element is Kl. In the follow-
ing, we will consider a class of scheduling algorithms denoted
by Ψ( ~K, ǫ) which is parameterized by ~K and ǫ. A particu-
lar scheduling algorithm will belong to the scheduling class
Ψ( ~K, ǫ) if its constructed activation sets S satisfy the follow-
ing interference localization constraints: for any link l ∈ S
we have I inl (Kl, S) ≤ (1−ǫ)Imax

l . For notational convenience,
we will say an activation set S ∈ Ψ(Kl, ǫ) if S is constructed

by any scheduling algorithm in the scheduling class Ψ( ~K, ǫ)
(i.e., S satisfies the property I inl (Kl, S) ≤ (1−ǫ)Imax

l , ∀l ∈ S).
Clearly, an activation set S constructed by a scheduling al-
gorithm in the scheduling class Ψ( ~K, ǫ) is not guaranteed
to be feasible in general. However, we will show that there
exists ~K(ǫ) whose elements are finite such that any acti-
vation set constructed by any scheduling algorithm in the
class Ψ( ~K, ǫ) is always feasible. This result is stated in the
following theorem.

Theorem 2. Given any 0 < ǫ < 1, α > 2, and any wire-
less network topology G, there exists a finite vector ~K(ǫ)

such that any activation set S ∈ Ψ( ~K, ǫ) is feasible under
the original SINR interference model given in Definition 1.

Proof. The proof is given in Appendix C.

In fact, in order to prove this theorem we show that if we
maintain the total interference inside some predetermined
neighborhood of every link k ∈ E, k 6= l to be at most
(1 − ǫ)Imax

k then there exists a finite neighborhood around
the receiver of link l which is determined by Kl such that
Ioutl (Kl, S) ≤ ǫImax

l for any activation set S. Therefore, the
SINR of this particular link l is satisfied. The result of this
theorem implies that it is possible for network links to coor-
dinate their scheduling operations with other links in a local
neighborhood, which are specified by ~K(ǫ).

Let ~Kmin(ǫ) be the minimum vector ~K (in the component-
wise sense) such that any activation sets S which satisfy the
interference localization constraints are also feasible under
the original SINR interference model given in Definition 1.
Then, an activation set S that satisfies the interference local-
ization constraints for any given ~K � ~Kmin(ǫ) will be feasible
under the original SINR interference model. However, the
reverse is not true in general. Now, let Λt( ~K, ǫ) denote the
maximum throughput region with interference localization,
which is parameterized by ǫ and ~K. We have the following
results.

Theorem 3. Given 0 < ǫ < 1 and ~K � ~Kmin(ǫ), we have

1. Λt( ~K, ǫ) ⊆ Λ where Λ is the throughput region under
the original SINR interference model.

2. Λt( ~K
(2), ǫ) ⊆ Λt( ~K

(1), ǫ) for ~Kmin(ǫ) � ~K(1) � ~K(2).

3. Λt( ~K, ǫ) → Λ as ǫ → 0 if each feasible schedule S ∈ Ω
have SINRk > β for all links k ∈ S. In general, we
have 1/2Λ ⊆ Λt( ~K, ǫ) as ǫ → 0 for any network graph.

4. Given any network G and 0 < ǫ < 1, there exists a
finite X such that 1

X
Λ ⊆ Λt( ~K, ǫ).

Proof. Let Ωt( ~K, ǫ) be the set of feasible schedules that
satisfy the interference localization constraints parameter-
ized by ǫ and ~K. As discussed above, we have Ωt( ~K, ǫ) ⊆ Ω
where recall that Ω is the set of all feasible schedules under
the original SINR interference model. Since the throughput
region is the convex hull of all feasible schedules, claim 1 is
obviously correct.

Note that we have Ωt( ~K
(2), ǫ) ⊆ Ωt( ~K

(1), ǫ). This is be-

cause any activation set S ∈ Ωt( ~K
(2), ǫ) also belongs to

Ωt( ~K
(1), ǫ). Therefore, claim 2 holds. It can be observed

that as ǫ → 0, we have Ωt → Ω if each feasible schedule
S ∈ Ω have SINRk > β for all links k ∈ S. This is because
when ǫ is sufficiently small all feasible schedules S ∈ Ω has
I inl (KG, S) ≤ (1 − ǫ)Imax

l ∀l ∈ S. Therefore, claim 3 holds.

For brevity, the proof of 1/2Λ ⊆ Λt( ~K, ǫ) as ǫ → 0 and the
proof of claim 4 are given in Appendices D and E, respec-
tively.

In general, the smaller the ǫ, the larger the interference
neighborhoods and the larger the throughput region with in-
terference localization Λt( ~K, ǫ). Therefore, ǫ can be used to
control the tradeoff between achievable throughput and po-
tential overhead of scheduling operations (i.e., larger inter-
ference neighborhood would typically result in higher schedul-
ing overhead).

5. LQF SCHEDULING UNDER INTERFER-
ENCE LOCALIZATION

We investigate the performance of LQF scheduling un-
der interference localization in this section. To proceed,
let Bl(Kl, L) denote the set of all links k ∈ L such that
k ∈ Φl(Kl) or l ∈ Φk(Kk) where L ⊆ E. Let ωl,L be the
maximum number of links in Bl(Kl, L) that can be activated
simultaneously by any maximal schedules under the interfer-
ence localization constraints. Also, let ωmin

L = minl∈L ωl,L.
In addition, let ωmax

E = maxl∈E ωl,E where note that ωl,E is
the maximum number of links that can be activated in the
set Bl(Kl, E). We have the following result.

Theorem 4. The efficiency ratio of LFQ scheduling with
interference localization constraints is bounded away from
zero for any network graph (i.e., there exists γlb > 0 such
that γ∗ ≥ γlb).

Proof. In order to prove Theorem 4, we need to show
that the local pooling factors of all links l are bounded away
from zero under interference localization constraints. Be-
cause the efficiency ratio of LQF, which is equal to the net-
work local pooling factor, is equal to the minimum of all link
local pooling factors, the theorem is proved.

Now, consider a particular link l ∈ E. Let L be the set
of links containing link l such that the local pooling factors
of link l and set L are equal to each other (i.e., σ∗

l = σ∗
L).

Then, we have the following lower bound for a local pooling
factor of set L [12]

σ∗
L ≥ max

L
′
⊆L

min{~Si∈ΩL} |
~Si|L′

max{~Si∈ΩL} |
~Si|L′

(8)



where |~Si|L′ is the number of activated links in schedule
~Si that belongs to the subset of links L

′

⊆ L. Now, let
l∗ = argminl∈L ωl,L. Then, the maximum number of links in

Bl∗(Kl∗ , L) that can be activated is ωmin
L . Note that at least

one link in Bl∗(Kl∗ , L) must be activated in any maximal
schedules under the interference localization constraints. By

applying the result in (8) for this particular choice of L
′

=
Bl∗(Kl∗ , L), we have σ∗

L ≥ 1/ωmin
L . Moreover, note that

ωmax
E ≥ ωmin

L because L ⊆ E. Therefore, we have σ∗
l = σ∗

L ≥
1/ωmin

L ≥ 1/ωmax
E .

Now, we prove the theorem by showing that ωmax
E is finite.

Recall that the interference localization constraints are de-
fined by two set of parameters, namely, ǫ and ~K � ~Kmin(ǫ).
In addition, Theorem 2 shows that we can always find the
vector ~K which is finite element-wise for any network graph
(including networks with infinite number of links). More-
over, we can activate only a finite number of links in any set
Bl(Kl, E) for any link l given a finite Kl. This is because the
set of links in Bl(Kl, E) for any l lie in a finite area around
link l (even for networks with infinite area). Therefore, ωmax

E

is finite (i.e., cannot be made arbitrarily large). Therefore,
the theorem has been proved.

As discussed above, the small efficiency ratio of LQF schedul-
ing in some network topologies results from the scheduling
starvation problem. Using interference localization, we es-
sentially prevent this scheduling starvation from happening.
Specifically, if the SINR of a particular link in a schedule is
equal to β then we cannot activate any other links regard-
less of their relative distances to the receiver of this link.
Interference localization forces all activated links to operate
above the SINR limit β (or at a slightly lower interference
limit), which enables the activation of a significant num-
ber of links in a large network. In other words, interference
localization prevents LQF scheduling from activating a glob-
ally “small” maximal schedule, which in turn guarantees a
non-zero performance lower bound.

The result for the efficiency ratio of LQF scheduling stated
in Theorem 4 corresponds to the throughput region with
interference localization Λt( ~K, ǫ). Let γLQF(G) be the effi-
ciency ratios of LQF scheduling with respect to the original
throughput region Λ. Then, we have following results.

Lemma 3. Given 0 < ǫ < 1 and ~K � ~Kmin(ǫ), then

1. LQF scheduling under interference localization achieves
a fraction of the original throughput region which is
bounded away from zero for any 0 < ǫ < 1.

2. LQF scheduling under interference localization achieves

at least
γLQF(G)

2
fraction of the original throughput re-

gion Λ as ǫ → 0.

Proof. According to Theorem 4, there exists some γlb >
0 such that LQF scheduling under interference localization

can stabilize the network for any arrival rate vector ~λ ∈
γlbΛt( ~K, ǫ). Also, due to claim 4 of Theorem 3, we have
1
X
Λ ⊆ Λt( ~K, ǫ). Therefore, LQF scheduling under interfer-

ence localization can stabilize the network for any arrival

rate vector ~λ ∈ γlb
X
Λ. Because X is finite according to claim

4 of Theorem 3, γlb
X

is bounded away from zero. There-
fore, claim 1 has been proved. In addition, claim 2 follows
immediately from the result in claim 3 of Theorem 3 (i.e.,

1/2Λ ⊆ Λt( ~K, ǫ) as ǫ → 0).

Note that in the case Λt( ~K, ǫ) = Λ as ǫ → 0, the LQF
scheduling under interference localization achieves exactly
γLQF(G) fraction of the original throughput region Λ.

6. PRACTICAL SCHEDULING DESIGNS UN-
DER SINR INTERFERENCE MODEL

We have shown how to localize interference using the two
parameters ǫ and ~K � ~Kmin(ǫ). In this section, we present a

simple technique to determine ~K for a given ǫ. In addition,
we propose a distributed LQF scheduling algorithm.

6.1 Determination of Interference Neighbor-
hood

Given ǫ, we show how to find Kl(ǫ) for a particular link
l in the following. This procedure needs to be applied to
each link in the network to obtain ~K. Note that this is
a centralized procedure but it needs to be performed only
once for a static wireless network. In fact, to determine
interference neighborhood for link l, we only need to consider
concentric circles around the receiver of link l whose radii are
the distances from the receiver of link l to the transmitters
of other links k 6= l. Let the set of these radii sorted in the
increasing order be ~πl (~πl has |E|−1 elements). Specifically,
we should choose the interference neighborhood for each link
l large enough such that for any scheduling policy belonging
to the scheduling class Ψ( ~K, ǫ), the total interference due to
all activated links outside the interference neighborhood is
not larger than ǫImax

l .
In the following, we describe a procedure to calculate an

upper bound of the total interference from outside the inter-
ference neighborhood of link l for a given size of interference
neighborhood of link l determined by Kl (Kl = ~πl(h)/dl for
some h). Let denote this interference upper bound corre-
sponding to a particular value of Kl be Iubl (Kl).

• Divide the network into a number of small areas (e.g.,
small square areas). We only find the radius of the in-
terference neighborhood for any particular link which
is large enough such that this interference neighbor-
hood contains all other links belonging to the same
small area with the underlying link.

• Determine all possible maximal sets of links that be-
long a particular small area and lie outside the inter-
ference neighborhood determined by Kl that can be
activated simultaneously while not exceeding the in-
terference limit (1 − ǫ)Imax

k for any link k in that ac-
tivated set. These activation sets are determined as-
suming that all other links in other small areas are
silent. Then, the interference contribution from this
small area to the receiver of link l is counted from the
maximal activation set that creates the largest total
interference to link l.

• Sum the maximum interference contributed by all small
areas to Iubl (Kl) to obtain the interference upper bound.

Search the radii from the list ~πl, which is equal to Kldl,
in the increasing order until the interference upper bound
Iubl (Kl) satisfies Iubl (Kl) ≤ ǫImax

l where the interference up-
per bound Iubl (Kl) is calculated as described above. Let
the radius in the list ~πl at the stopping iteration be ~πl(h),
then the corresponding value of Kl is Kl = ~πl(h)/dl. In fact,



there will be an optimal size for the small areas, which results
in the smallest Kl for any particular link l. In particular, if
the size of each area is too small then the interference upper
bound Iubl (Kl) is too loose. In contrast, if the size of each
area is too large then Kl is larger than necessary because we
require that all other links belonging to the same area with
link l lie completely inside its interference neighborhood.

6.2 Distributed LQF Scheduling Algorithm
Assume ǫ and ~K are given, we are interested in designing

an efficient distributed LQF algorithm. Suppose that each
time slot is divided into a scheduling period and a trans-
mission period. A schedule is constructed in the scheduling
period which is used to transmit data in the transmission
period. Assume that each link l broadcasts its queue length
information to other links in Bl(Kl, E) at the beginning of
each time slot. In addition, assume that each link l can
estimate the interference power that each link k ∈ Φl(Kl)
creates for itself in advance. Let ∆l(Kl) be the set of all
links k such that l ∈ Φk(Kk). That means the transmitter
of link l is on the boundary or inside the circle of radius
Kkdk around the receiver of such links k.

Algorithm 1 LQF Scheduling at Link l

1: Link l broadcasts SCH-REQ to all links in ∆l(Kl)
2: Links k ∈ S ∩ ∆l(Kl) temporarily calculate cumulative

interference I temk assuming that link l is added to S.
3: if any link k ∈ S ∩∆l(Kl) has I

tem
k > (1− ǫ)Imax

k then
4: - Link k sends an NACK message to link l.
5: end if
6: if link l receives no NACK messages from other links

in ∆l(Kl) then
7: - Link l is added to the schedule (i.e., S = S + l)
8: - Link l sends SCH-SUCCESS message to other links

in Bl(Kl, E) who will remove l from their local active
set of links.

9: - Link l and other links k ∈ ∆l(Kl) calculate their
new cumulative interference.

10: if any link k ∈ ∆l(Kl) has its new cumulative in-
terference exceeding its interference limit (i.e., Ik >
(1− ǫ)Imax

k ) then
11: - Link k sends REMOVE-REQmessage to its neigh-

boring links in Bk(Kk, E)
12: - Links receiving REMOVE-REQ from link k re-

move k from their sets of local active links.
13: end if
14: else if link l receives at least one NACK message from

other links in ∆l(Kl) then
15: - Link l is not added to the schedule.
16: - Link l sends REMOVE-REQ message to its neigh-

boring links in Bl(Kl, E) who will remove l from their
sets of local active links.

17: end if

LQF scheduling can be implemented in a centralized man-
ner where links are added to the schedule in the decreasing
order of their queue lengths. In particular, a link is added to
the schedule only if its SINR is satisfied and it can maintain
the SINR requirements of other links already in the schedule.
For brevity, we will refer to this centralized LQF algorithm
as LQF algorithm.

We now propose a distributed LQF (DLQF) scheduling
algorithm. Let S be the schedule (i.e., the set of activated

links) under construction by the algorithm. At the high
level, links with locally largest queue length (in their sets of
local active links) can simultaneously attempt to add them-
selves to the schedule in DLQF. Therefore, the DLQF al-
gorithm is more greedy than LQF algorithm because LQF
algorithm adds one link at a time in the decreasing order of
queue lengths. In order to obtain a maximal feasible sched-
ule (under interference localization constraints), each active
link needs to update its local active links in the DLQF al-
gorithm.

The DLQF algorithm works as follows. Initially, each link
l initializes its local active set of links as El = Bl(Kl, E).
Then, any particular link l that has longest queue length
among other links in El (i.e., link l has the heaviest weight
among its current local active neighbors), will run algorithm
1 to add itself to the schedule. This process is continued
until El = ∅, ∀l ∈ E. Here, links need to update their sets
of local active links throughout the course of the algorithm
(lines 12-16).

It can be shown that LQF and DLQF return the same
maximal schedule if all link weights are distinct. If link
weights are not distinct, LQF and DLQF still produce the
same maximal schedule given some specific deterministic tie-
breaking rule (e.g., links with lower indices have higher pri-
ority). For brevity, these proofs are omitted. In addition,
assume that locally heaviest links can add themselves to the
schedule simultaneously in one mini-slot of the scheduling
period. Then, the maximum number of mini-slots needed in
the scheduling period can be bounded by the largest number
of links in any set Bl(Kl, E), l ∈ E. Therefore, the overhead
of DLQF is quite small in practice.

7. NUMERICAL RESULTS
We present numerical results to illustrate the performance

of LQF scheduling under the SINR interference model and
the effect of interference localization. First, consider a sim-
ple network with 12 links whose link lengths are all equal to
d = 80m as shown in Fig. 2. We place the links for this net-
work such that if we activate two links 2k+1 and 2k+2 for
0 ≤ k ≤ 5 then the SINR of each link is equal to β = 5 (i.e.,

this means d0 = dβ1/α where d0 is shown in this figure).
In addition, links are placed such that we have two “large”
maximal schedules: S1 activates 6 odd links (1, 3, 5, 7, 9,
11) and S2 activates 6 even links (2, 4, 6, 8, 10, 12). In fact,
this network is a special case of the one shown in Fig. 1 with
K = 6. Therefore, the efficiency ratio of LQF scheduling in
this network G can be upper bounded as γ(G) ≤ 2/6 = 1/3.

 

Link 3 Link 4 

d0 

Link 7 Link 8 Link 11 Link 12 

Link 1 Link 2 Link 5 Link 6 Link 9 Link 10 

Figure 2: Network of 12 links.

Assume arrivals to all links in Fig. 2 follow independent
Bernoulli processes with the same average arrival rate. We
plot total average queue length versus the average arrival
rate per link for three scheduling schemes: LQF, randomized
maximal scheduling (MS), and PICK&COMPARE (P&C)
scheduling. Average queue lengths are obtained by running
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Figure 3: Average total queue length versus average
arrival rate under different scheduling policies (a)
For network in Fig. 2 (b) For modified network of
Fig. 2.

the corresponding scheduling scheme over 104 time slots. For
the MS scheme, we randomly choose one maximal schedule
in each time slot. For the P&C scheme, which is known
to achieve 100% throughput [14], we randomly generate a
new maximal schedule in each time slot and choose the one
with larger weight (total queue length) between this newly-
generated schedule and the schedule used in the previous
time slot for data transmission.

Fig. 3(a) shows that LQF scheduling achieves even smaller
throughput than the MS scheme in this setting. However,
by comparing the throughput achieved by LQF and P&C
schemes we can observe that LQF achieves much larger through-
put than the analytical bound of 1/3. This is expected
because the performance bound of 1/3 corresponds to the
worst-case performance under some bad arrival pattern while
we use independent Bernoulli arrivals for different links.

Now, we modify the network topology in Fig. 2 slightly
by changing the distance d0 in this figure to d0 − ǫ for some
small ǫ > 0. With this small change, any two links 2k + 1
and 2k + 2 for 0 ≤ k ≤ 5 do not form a feasible schedule
anymore. Instead all maximal schedules in this modified
network has 6 links. We show the performance of the three
scheduling schemes again under this modified network topol-
ogy in Fig. 3(b). The results show that the three scheduling
schemes achieve the same throughput performance. This
can be interpreted as follows. Since all maximal schedules
include the same number of active links, they both achieve
100% throughput. In fact, this modified network topology
satisfies the condition of Lemma 2. Therefore, LQF schedul-
ing has an efficiency ratio equal one in this case.

We validate the interference localization technique for a
random network of 40 links whose lengths are all equal to
d = 80m in an area 2000mx2000m. We plot sorted elements
of vector ~K, which determines the interference neighbor-
hood of all network links, in Fig. 4(a) for α = 4, β = 5, ǫ =

0.05. The vector ~K is obtained by using the technique de-
scribed in section VI.A and the network area is divided into
49 equal-size square areas. This figure shows that the radius
of interference neighborhoods for all links are smaller than
5 times the link length for these chosen parameters. This
means that each link only needs to coordinate its scheduling
operations with other links in a relatively small neighbor-
hood.

We investigate the performance of different scheduling
schemes under SINR interference model with and without
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Figure 4: (a) Sorted elements of ~K for the random
network of 40 links (b) Average total queue length
versus average arrival rate with and without inter-
ference localization.

interference localization for this random network. We plot
average total queue length versus the average arrival rate
for different scheduling schemes in Fig. 4(b). The interfer-
ence neighborhoods that determine interference localization
constraints correspond to ~K shown in Fig. 4(a). The re-
sults show that the P&C scheme achieves the same through-
put with and without interference localization, which implies
that interference localization does not reduce the through-
put region for this network with ǫ = 0.05. In addition, LQF
scheduling achieves 100% throughput for both the cases with
and without interference localization. In contrast, the ran-
domized MS scheme does not achieve maximum throughput
as expected. The results in this section confirm the benefit
of interference localization, with which we can decentralize
the LQF scheduling while not compromising its throughput
performance in a practical wireless network.

8. CONCLUSIONS
We investigated the performance and designed practical

distributed algorithms for LQF scheduling under the SINR
interference model. Specifically, we showed that LQF schedul-
ing achieves zero throughput in the worst case, and provided
a sufficient condition for LQF scheduling to achieve 100%
throughput. Moreover, we proposed a novel interference lo-
calization technique for which each link only needs to coordi-
nate its scheduling operations within its local neighborhood
while still maintaining the scheduling feasibility. We showed
that LQF scheduling achieves strictly positive throughput
under interference localization constraints. Finally, we pro-
posed a distributed LQF scheduling algorithm that returns
the same maximal schedule as the centralized counterpart
under interference localization constraints.
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APPENDIX

A. REVIEW OF σ-LOCAL POOLING
We review some important definitions related to σ-local

pooling technique [7,12] in this appendix. In general, the σ-
local pooling notion is developed based on properties of the
set of feasible maximal schedules for a given network and
an interference model. The interference relationship under
the SINR interference model is much more complicated than
that under binary interference models such as the k-hop in-
terference model. Therefore, performance analysis for LQF
scheduling under the SINR interference model is more diffi-
cult. First, we provide definitions of set, link, and network
σ-local pooling.

Definition 6. Given a non-empty set of links L ⊆ E, we
say L has a set local pooling factor σ∗

L if

σ∗
L , sup {σ|σ~µL � ~νL for all ~µL, ~νL ∈ Co (ML)}

, inf {σ|σ~µL � ~νL for some ~µL, ~νL ∈ Co (ML)}

where ML denotes the set of maximal schedules limited to
the set of links L. We will also use ML to denote a matrix
whose columns represent maximal schedules limited to the set
of links L where an element of a particular column is equal
1 if the corresponding link belongs to that maximal schedule
and it is equal to 0 otherwise.

Definition 7. The local pooling factor for link l, denoted
as σ∗

l , is the minimum of all σ∗
L for all sets L ⊆ E that

contain link l, i.e.,

σ∗
l , min

{L⊆E|l∈L}
σ∗
L. (9)

And the network local pooling factor σ∗(G) for network G is
minimum of all link local pooling factors, i.e.,

σ∗(G) , min
l∈E

σ∗
l . (10)

In [7], it has been shown that the efficiency ratio of LQF
scheduling for a particular network G is exactly equal to its
network local pooling factor (i.e., γ(G) = σ∗(G)). A set
local pooling factor can be calculated from either primal or
dual formulation of a specific optimization problem [12]. In
particular, given a non-empty set of links L ⊆ E, σ∗

L is the
optimal solution of the following optimization problem

min{σ,~µL,~νL} σ
subject to σ~µL � ~νL

~µL, ~νL ∈ Co (ML) .
(11)

Equivalently, σ∗
L can be found from the dual problem of the

above optimization problem, i.e., it is the optimal solution
w∗ of the following optimization problem

max{w,~x�0} w
subject to w~et � ~xtML � ~et

(12)

where ~e is a column vector of all ones of an appropriate di-
mension, (.)t denotes the vector or matrix transpose. Note



that if σ∗
L = 1, then there must exist a vector ~x � 0 such

that ~xtML = ~et. This is exactly the local pooling condi-
tion originally defined in [5]. It can be noticed from (11)
that σ∗

L = 1 implies no maximal schedule dominates other
maximal schedules.

In [12], it was shown that the local pooling factor of a
particular link l is limited by a particular set of links called
limiting set instead of the whole network. In particular, let
L be the limiting set of link l then we have σ∗

l = σ∗
L. In

general, let L ⊆ E be a non-empty set of links such that
l ∈ L, then we have σ∗

L ≥ σ∗
l .

B. PROOF OF LEMMA 1
Let us define the following vectors

~ν1 ,
1

K1

~Sg
tot =

1

K1

∑

i∈Ωg

~Si (13)

~ν2 ,
1

K2

~Sb
tot =

1

K2

∑

i∈Ωb

~Si. (14)

Then, ~ν1, ~ν2 ∈ Co (Ω) where Ω is the set of all possible max-

imal schedules. Recall that we have k∗~Sg
tot � ~Sb

tot. Hence,
we have

k∗K1~ν1 � K2~ν2 or
k∗K1

K2
~ν1 � ~ν2. (15)

By using (11), we have σ∗
E ≤ k∗K1/K2 , σ∗

ub(G). Therefore,
using the definitions in (9) and (10), we have σ∗(G) ≤ σ∗

E ≤
k∗K1/K2 = σ∗

ub(G), which proves the lemma.

C. PROOF OF THEOREM 2
Note that for a particular link l and an activation set

S ∈ Ψ(Kl, ǫ), if we have Ioutl (Kl, S) ≤ ǫImax
l , then we have

SINRl ≥ β. This is because the total interference experi-
enced at the receiver of link l is smaller or equal to ǫImax

l +
(1 − ǫ)Imax

l = Imax
l in this case where Imax

l is the maximum
tolerable interference for link l given in (5). Hence, to prove
the theorem we will show that for any particular link l ∈ S
where S ∈ Ψ(Kl, ǫ), there exists a finiteK

∗
l such that for any

Kl ≥ K∗
l , we have Ioutl (Kl, S) ≤ ǫImax

l . Then, the claim of

the theorem holds for any ~K � ~K∗ where the l-th elements
of ~K∗ are K∗

l . Therefore, the theorem is proved. Now, we
show the existence of K∗

l by taking the following steps:

1. We construct a particular link activation set S whose
links in the set S ∩ Φl(Kl)

c for a given Kl create the
total interference to link l as close to the worst-case
scenario as possible. Find Kl such that Ioutl (Kl, S) ≤
ǫImax

l under this activation set.

2. Prove that the total interference created to link l from
links in the set S∩Φl(Kl)

c due to the chosen activation
set in step 1) is always larger than that due to any
worst-case activation sets S ∈ Ψ(Kl, ǫ). Therefore, the
obtained Kl in step 1 is no smaller than the minimum
value of Kl calculated from any worst-case activation
set.

Due to space limitation, the detailed proof is omitted.

D. PROOF OF CLAIM 3 IN THEOREM 3
We prove that 1/2Λ ⊆ Λt( ~K, ǫ) as ǫ → 0 for any network

in this appendix. We consider the following two cases. For

the first case, each feasible schedule Si under the original
SINR interference model (without interference localization
constraints) satisfies SINRk < β for all links k ∈ Si. In this

case, Λt( ~K, ǫ) → Λ as ǫ → 0 following the proof of Theorem
3.

For the second case, we assume that there exist feasible
maximal schedules Si under the original SINR interference
model (without interference localization constraints) such
that SINRk = β for some link k ∈ Si. In this case, we can
easily show that any such schedule Si can be decomposed
into two non-overlapping schedules Si,1 and Si,2 (i.e., Si,1 ∪
Si,2 = Si and Si,1 ∩ Si,2 = ∅) that satisfy the interference
localization constraints with a sufficiently small ǫ.

We are ready to prove the claim. For any vector ~η ∈ Λ we
can represent it as ~η =

∑

i αi
~Si where

∑

i αi ≤ 1 and ~Si is a
feasible schedule. As we have shown above, we can decom-
pose that feasible schedule ~Si into two schedules ~Si,1 and ~Si,2

that satisfy the interference localization constraints. There-
fore, we have ~η

2
= 1/2

∑

i αi
~Si = 1/2

∑

i

∑2
j=1 αi

~Si,j ∈

Λt( ~K, ǫ). This is because 1/2
∑

i

∑2
j=1 αi

~Si,j is a linear

combination of different schedules ~Si,j that satisfy interfer-
ence localization constraints and 1/2

∑

i

∑2
j=1 αi =

∑

i αi ≤
1. Therefore, we have proved the claim.

E. PROOF OF CLAIM 4 IN THEOREM 3
Similar to the proof in Appendix D, if for each maximal

schedule Si ∈ Ω (the set of feasible maximal schedules under
the original SINR interference model) we can find a set of

at most X distinct schedules St
i,1, S

t
i,2, . . . , S

t
i,X ∈ Ωt( ~K, ǫ)

(the set of schedules satisfying interference constraints) such

that Si =
∑γ

j=1 S
t
i,j then we have 1

X
Λ ⊆ Λt( ~K, ǫ).

Now consider a particular maximal schedule Si ∈ Ω and
let Al(Si) , Si ∩ Bl(Kl, E) where recall that Bl(Kl, E) de-
notes the set of all links k ∈ E such that k ∈ Φl(Kl) or
l ∈ Φk(Kk). We choose X as follows:

X , 1 + max
l∈E

|Al(Si)| (16)

where |Al(Si)| denotes the number of links in set Al(Si).
Note that X is finite because the number of activated links
within each set of links Bl(Kl, E) is finite. Then, it can be
shown that each schedule Si ∈ Ω can be decomposed into X
distinct schedules that satisfy the interference localization
constraints. In particular, we can use X different colors to
paint links in schedule Si such that links painted by the
same color form a schedule that satisfies the interference
localization constraints as follows. For each link l in Si we
paint it using a color that is not used by any other links in the
set Si ∩Bl(Kl, E). Continue doing this if it is still possible.
It can be easily shown that all links in Si will be painted by
this procedure if X is chosen according to (16). In addition,
links painted by the same color form a schedule that satisfies
the interference localization constraints. Therefore, we have
completed the proof.


