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Abstract—We investigate the tail behavior of the steady-state
queue occupancies under throughput optimal scheduling in the
presence of heavy-tailed traffic. We consider a system consisting
of two parallel queues, served by a single server. One of the
queues receives traffic that is heavy-tailed (the “heavy queue”),
and the other receives light-tailed traffic (the “light queue”).
The queues are connected to the server through time-varying
ON/OFF links. We study a generalized version of max-weight
scheduling, called the max-weight-α policy, and show that the
light queue occupancy distribution is heavy-tailed for arrival
rates above a threshold value. We also obtain the exact ‘tail
coefficient’ of the light queue occupancy distribution under max-
weight-alpha scheduling. Next, we show that the policy that gives
complete priority to the light queue guarantees the best possible
tail behavior of both queue occupancy distributions. However,
the priority policy is not throughput optimal, and can cause
undesirable instability effects in the heavy queue.

Finally, we propose a log-max-weight (LMW) scheduling
policy. We show that in addition to being throughput optimal, the
LMW policy guarantees that the light queue occupancy distri-
bution is light-tailed, for all arrival rates that the priority policy
can stabilize. Thus, the LMW scheduling policy has desirable
performance on both fronts, namely throughput optimality, and
the tail behavior of the light queue occupancy distribution.

I. INTRODUCTION

Traditionally, traffic in telecommunication networks has
been modeled using Poisson and Markov-modulated pro-
cesses. These simple traffic models exhibit ‘local randomness’,
in the sense that much of the variability occurs in short time
scales, and only an average behavior is perceived at longer
time scales. With the spectacular growth of packet-switched
networks such as the internet during the last couple of decades,
these traditional traffic models have been shown to be inade-
quate. This is because the traffic in packetized data networks
is intrinsically more ‘bursty’, and exhibits correlations over
longer time scales than can be modeled by any Markovian
point process. Empirical evidence, such as the famous Bellcore
study on self-similarity and long-range dependence in ethernet
traffic [15] lead to increased interest in traffic models with high
variability.

Heavy-tailed distributions, which have long been used to
model high variability and risk in finance and insurance, were
considered as viable candidates to model traffic in data net-
works. Further, theoretical work such as [13], linking heavy-
tails to long-range dependence (LRD) lent weight to the belief
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that extreme variability in the internet file sizes is ultimately
responsible for the LRD traffic patterns reported in [15] and
elsewhere.

Many of the early queueing theoretic results for heavy-tailed
traffic were obtained for the single server queue; see [3], [5],
[20] for surveys of these results. In [6], the authors study the
tail behavior of the waiting time in an M/G/2 system, when
one of the service time distributions is heavy-tailed, and the
other is exponential.

It turns out that the service discipline plays an important
role in the delay experienced in a queue, when the traffic
is heavy-tailed. For example, it was shown in [1] that any
non-preemptive service discipline leads to infinite expected
delay, when the traffic is sufficiently heavy-tailed. Further, the
asymptotic behavior of delay under various service disciplines
such as first-come-first-served (FCFS) and processor sharing
(PS), is markedly different under light-tailed and heavy-tailed
scenarios [3], [23]. This is important, for example, in the
context of scheduling jobs in server farms [12].

In the context of communication networks, a subset of
the traffic flows may be well modeled using heavy-tailed
processes, and the rest better modeled as light-tailed processes.
In such a scenario, there are relatively few studies on the
problem of scheduling between the different flows, and the
ensuing nature of interaction between the heavy-tailed and
light-tailed traffic. An important paper in this category is [4],
where the interaction between light and heavy-tailed traffic
flows under generalized processor sharing (GPS) is studied.
In that paper, the authors derive the asymptotic workload
behavior of the light-tailed flow, when its GPS weight is
greater than its traffic intensity. In a related paper [2], the
authors obtain the asymptotic work-load behavior under a
general coupled-queues framework, which includes GPS as
a special case.

One of the key considerations in the design of a scheduling
policy for a queueing network is throughput optimality, which
is the ability to support the largest set of traffic rates that is
supportable by a given queueing network. Queue length based
scheduling policies, such as max-weight scheduling [21], [22]
and its many variants, are known to be throughput optimal in
a general queueing network. For this reason, the max-weight
family of scheduling policies has received much attention in
various networking contexts, including switches [17], satellites
[18], wireless [19], and optical networks [7], [8].

978-1-4244-8216-0/10/$26.00 ©2010 IEEE 953

Forty-Eighth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 29 - October 1, 2010



In spite of a large and varied body of literature related
to max-weight scheduling, it is somewhat surprising that the
policy has not been adequately studied in the context of heavy-
tailed traffic. Specifically, a question arises as to what behavior
we can expect due to the interaction of heavy and light-tailed
flows, when a throughput optimal max-weight-like scheduling
policy is employed. Our present work is aimed at addressing
this basic question.

We study a system consisting of two parallel queues, served
by a single server. One of the queues is fed by a heavy-tailed
arrival process, while the other is fed by light-tailed traffic.
We refer to these queues as the ‘heavy’ and ‘light’ queues,
respectively. The queues are connected to the server through
time-varying ON/OFF links. In this setting, we analyze the
tail behavior of the queue occupancy distributions under max-
weight-α scheduling, which is a generalized version of max-
weight scheduling. Specifically, while max-weight scheduling
makes scheduling decisions by comparing the queue lengths
in the system, the max-weight-α policy uses different powers
of the queue lengths to make scheduling decisions.

In a recent paper [16], a special case of the problem
considered here is studied. Specifically, it was shown that
when the heavy-tailed traffic has an infinite variance, the
light-tailed traffic experiences an infinite expected delay under
max-weight scheduling. It was also shown that by a choice
of parameters in the max-weight-α policy that increases the
preference afforded to the light queue, it is possible to make
the expected delay of the light-tailed traffic finite. In the
present paper, we considerably extend these results by char-
acterizing the tail distribution of the queue occupancies under
very general heavy-tailed arrival processes, while also allowing
for randomly time-varying channels.

Under max-weight-α scheduling, we show that the light
queue occupancy distribution is light-tailed if the arrival rate
to the light queue is below a certain threshold value, and
heavy-tailed if the arrival rate is above the threshold value.
Further, when the arrival rate is above the threshold value,
we obtain the exact ‘tail coefficient’ of the queue occupancy
distributions, which helps us identify all the bounded moments
of the queue lengths.

Intuitively, the reason max-weight-α scheduling induces
heavy-tailed asymptotics on the light queue distribution is that
the light queue has to compete for service with the heavy
queue, which is occasionally very large. The simplest way to
guarantee a good tail behavior for the light queue distribution
is to give the light queue complete priority over the heavy
queue, so that it does not have to compete with the heavy
queue for service. However, giving priority to the light queue
has an important shortcoming – it is not a throughput optimal
scheduling policy for the system, and can cause undesirable
instability effects in the heavy queue.

We therefore find ourselves in a situation where on the one
hand, the throughput optimal max-weight-α scheduling policy
can lead to heavy-tailed asymptotics for the light queue. On
the other hand, giving priority to the light queue leads to
good tail behavior for the light queue, but is not throughput
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Fig. 1. A system of two parallel queues, with one of them fed with heavy-
tailed traffic. The channels connecting the queues to the server are unreliable
ON/OFF links.

optimal. To remedy this situation, we propose a log-max-
weight (LMW) scheduling policy, which gives significantly
more importance to the light queue compared to max-weight-
α scheduling. We show that under LMW scheduling, the light
queue occupancy distribution is light-tailed for all arrival rates
that are stably supportable under priority scheduling for the
light queue. Additionally, we show that the LMW policy is
throughput optimal, and can therefore stabilize traffic rates
that are not supportable under priority scheduling. Thus, the
LMW policy has both desirable attributes – it is throughput
optimal, and ensures good tail behavior for the light queue
distribution.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and specify the
necessary definitions and assumptions. In Section III, we study
priority scheduling. Section IV deals with queue occupancy
behavior under max-weight-α scheduling. In Section V, we
analyze the queue occupancy behavior under log-max-weight
scheduling. Section VI concludes the paper. Due to space
constraints, we omit several proofs, and refer the reader to
[14, Chapter 5].

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this section, we describe the system model, and specify
our assumptions about the traffic statistics. Our system consists
of two parallel queues, H and L, served by a single server, as
depicted in Fig. 1. Time is slotted, and stochastic arrivals of
packet bursts occur to each queue in each slot. The server is
capable of serving one packet per time slot, from only one of
the queues according to a scheduling policy. Let H(t) and L(t)
denote the number of packets that arrive during slot t to H and
L respectively. Although we postpone the precise assumptions
on the traffic statistics to Section II-B, let us loosely say that
the input L(t) is light-tailed, and H(t) is heavy-tailed. We will
refer to the queues H and L as the heavy and light queues,
respectively.

The queues are connected to the server through time-varying
links. Let SH(t) ∈ {0, 1} and SL(t) ∈ {0, 1} respectively
denote the states of the channels connecting the H and L
queues to the server. When a channel is in state 0, it is OFF,
and no packets can be served from the corresponding queue
in that slot. When a channel is in state 1, it is ON, and a
packet can be served from the corresponding queue if the
server is assigned to that queue. This channel model can be
used to represent fading wireless links in a two-user up-link or
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down-link system. We assume that the scheduler can observe
the current channel states as well as the queue lengths before
making a scheduling decision in a slot.

The processes SH(t) and SL(t) are independent of each
other, and independent of the arrival processes. We assume
that SH(t) and SL(t) are i.i.d. from slot to slot, distributed
according to Bernoulli processes with positive means pH and
pL respectively. That is, P {Si(·) = 1} = pi, i ∈ {H,L}. We
say that a particular time slot t is exclusive to H , if SH(t) = 1
and SL(t) = 0, and similarly for L.

Before we specify the precise assumptions on the arrival
processes, we pause to make some relevant definitions.

A. Heavy-tailed and light-tailed random variables

Definition 1: A non-negative random variable X is said to
be light-tailed if there exists θ > 0 for which E [exp(θX)] <
∞. A random variable is heavy-tailed if it is not light-tailed.
In other words, a light-tailed random variable is one that has
a well defined moment generating function in a neighborhood
of the origin. The complementary distribution function of a
light-tailed random variable decays at least exponentially fast.
Heavy-tailed random variables are those which have com-
plementary distribution functions that decay slower than any
exponential. We now define the tail-coefficient of a random
variable.

Definition 2: The tail coefficient of a random variable X is
defined by

CX = sup{c ≥ 0 | E [Xc] < ∞}.

In words, the tail coefficient is the threshold where the power
moment of a random variable starts to blow up. Note that
the tail coefficient of a light-tailed random variable is infinite.
On the other hand, the tail coefficient of a heavy-tailed
random variable may be infinite (e.g., log-normal) or finite
(e.g., Pareto). In this paper, we restrict our attention to the
class of heavy-tailed random variables which have a finite tail
coefficient.

We now state the precise assumptions on the arrival pro-
cesses.

B. Assumptions on the arrival processes

1) The arrival processes H(t) and L(t) are independent of
each other.

2) H(t) is independent and identically distributed (i.i.d.)
from slot-to-slot.

3) L(t) is i.i.d. from slot-to-slot.
4) L(·) is light-tailed with E [L(t)] = λL.
5) H(·) is heavy-tailed with tail coefficient CH (1 < CH <

∞), and E [H(t)] = λH .

The conditions for a rate pair (λH , λL) to be stably1

supportable in this system are well known. Specifically, it
follows from the results in [22] that the rate region of the
system is given by

{(λH , λL) | 0 ≤ λL < pL, 0 ≤ λH < pH ,

1The notion of stability we use is the positive recurrence of the system
occupancy Markov chain.

λH + λL < pH + pL − pHpL} . (1)

Thus, the rate region is pentagonal, as illustrated by the solid
line in Fig. 2.

Let qH(t) and qL(t), respectively, denote the number of
packets in H and L during slot t under a particular scheduling
policy, and let qH and qL denote the corresponding steady-
state queue occupancies when they exist. Our aim is to
characterize the distributions of qH and qL under various
scheduling policies. We now proceed to analyze the behavior
of the steady-state queue occupancies in this system under
three scheduling policies, namely, priority scheduling, max-
weight-α, and LMW.

III. THE PRIORITY POLICIES

In this section, we study the two ‘extreme’ scheduling
policies, namely priority for L and priority for H . Our analysis
helps us arrive at the important conclusion that the tail of the
heavy queue is inevitably heavy-tailed under any scheduling
policy.

A. Priority for the heavy-tailed traffic

Under priority for H , the heavy queue receives service
whenever it is non-empty and connected to the server. L
receives service during its exclusive slots, and when both
queues are connected, but H is empty. It should be intuitively
clear at the outset that this policy is bound to have an
undesirable impact on the light queue. The reason we analyze
this policy is that it gives us a best case scenario for the
heavy queue. The following result shows that the heavy queue
occupancy distribution is one order heavier than its input
distribution under this policy.

Proposition 1: Under priority for H , the steady-state queue
occupancy distribution of the heavy queue is a heavy-tailed
random variable with tail coefficient equal to CH −1. That is,
for each ǫ > 0, we have

E

[

qCH−1−ǫ
H

]

< ∞, (2)

and
E

[

qCH−1+ǫ
H

]

= ∞. (3)

Since priority for H affords the most favorable treatment to
the heavy queue, it follows that the tail behavior of H can be
no better than the above under any policy.

Proposition 2: Under any scheduling policy, qH is heavy-
tailed with tail coefficient at most CH − 1. That is, Equation
(3) holds for all scheduling policies.

B. Priority for the light-tailed traffic

Under priority for L, the light queue is served whenever its
channel is ON, and L is non-empty. The heavy queue is served
during the exclusive slots of H , and in the slots when both
channels are ON, but L is empty. This policy ensures that the
light queue does not have to compete with the heavy queue
for service, and hence guarantees the best possible behavior
of the light queue occupancy distribution. However, we show
that this policy is not throughput optimal, and that it fails to
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Fig. 2. The rate region of the system is shown in solid line, and the set of
stabilizable rates under priority for L is the region under the dashed line.

stabilize the heavy queue for some arrival rates within the rate
region in (1). The following theorem characterizes the behavior
of both queues under priority for L.

Theorem 1: The following statements hold under priority
scheduling for L.

(i) If λH > pH(1 − λL), the heavy queue is unstable, and
no steady-state exists.

(ii) If λH < pH(1 − λL), the heavy queue is stable, and
its steady-state occupancy qH is heavy-tailed with tail
coefficient CH − 1.

(iii) qL is light-tailed, and satisfies a large deviation principle
[11].

In Fig. 2, the line λH = pH(1 − λL) is shown using a
dashed segment. The above theorem asserts that H is stable
under priority for L only in the trapezoidal region under the
dashed line, while the rate region of the system is clearly
larger. Therefore, priority for L is not throughput optimal in
this setting. To summarize, priority for L can lead to instability
of the heavy queue, but for all arrival rates that it can stabilize,
the tail behavior of both queues is as good as it can possibly
be.

The special case in which the queues are always connected
to the server, i.e., pH = pL = 1, is interesting. In this case, the
set of arrival rates stabilizable under priority for L coincides
with the stability region of the system, which is given by

{(λH , λL) | λH + λL < 1} .

Therefore, when the queues are reliably connected to the
server, priority scheduling for the light-tailed traffic is through-
put optimal, and also ensures the best possible tail behavior
for both queues.

IV. MAX-WEIGHT-α SCHEDULING

In this section, we analyze the tail behavior of the light
queue distribution under max-weight-α scheduling. For fixed
parameters αH > 0 and αL > 0, the max-weight-α policy
operates as follows. During each slot t, compare

qL(t)
αLSL(t) R qH(t)αHSH(t),

 L

 H

pL

pH

Fig. 3. Under max-weight-α scheduling, qL is light-tailed for arrival rates
in the unshaded region, and heavy-tailed in the shaded region.

and serve one packet from the queue that wins the comparison.
Note that αL = αH corresponds to the usual max-weight
policy, which serves the longest connected queue in each slot.
αL/αH > 1 corresponds to emphasizing the light queue over
the heavy queue, and vice-versa.

It can be shown using standard Lyapunov arguments that
max-weight-α scheduling is throughput optimal for all αH >
0 and αL > 0. That is, it can stably support all arrival rates
within the rate region (1). This throughput optimality result
follows, for example, from [9, Theorem 1].

We show that under max-weight-α scheduling, the tail
behavior of the steady-state light queue occupancy distribution
is strongly dependent on λL, the arrival rate to the light queue.
Specifically, we show that qL is light-tailed when λL is below
a threshold value, and heavy-tailed with a finite tail coefficient
for λL above the threshold value.

The following result shows that the light queue distribution
is light-tailed under any ‘reasonable’ policy, as long as the rate
λL is smaller than a threshold value.

Proposition 3: Suppose that λL < pL(1− pH). Then qL is
light-tailed under any policy that serves L during its exclusive
slots.
Proof: The proof is straightforward once we note that the
exclusive slots of L occur independently during each slot with
probability pL(1−pH). Indeed, consider the L queue under a
policy that serves L only during its exclusive slots. Under this
policy, the L queue behaves like a G/M/1 queue with light-
tailed inputs at rate λL, and service rate pL(1 − pH). It can
be shown using standard large deviation arguments that qL
is light-tailed under the policy that serves L only during its
exclusive slots. Therefore, qL is light-tailed under any policy
that serves L during its exclusive slots. 2

The above proposition implies that for λL < pL(1 − pH),
the light queue distribution is light-tailed under max-weight-α
scheduling. The region λL < pL(1−pH) is shown unshaded in
Fig. 3. Thus, qL is light-tailed under max-weight-α scheduling
for arrival rates in the unshaded region.

In the remainder of this section, we investigate the tail
behavior of the light queue under max-weight-α schedul-
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ing when the arrival rate is above the threshold, i.e., for
λL > pL(1 − pH). In this case, the light queue receives
traffic at a higher rate than can be supported by the exclusive
slots of L alone. Therefore, the light queue has to compete
for service with the heavy queue during the slots that both
channels are ON. Since the heavy queue is very large with
positive probability, it seems intuitively reasonable that the
light queue will suffer from this competition, and also take
on a heavy-tailed behavior. This intuition is indeed correct,
although proving the result is non-trivial.

We prove that the light queue distribution is heavy-tailed
when λL > pL(1−pH) for all values of the scheduling param-
eters αL and αH . We also obtain the exact tail coefficient of
the light queue distribution for ‘plain’ max-weight scheduling
(αL/αH = 1), and for the regime where the light queue is
given more importance (αL/αH > 1).

A. Max-weight scheduling

Let us first characterize the tail coefficient of the steady-state
light queue occupancy under the max-weight policy, which
serves the longest connected queue in each slot. Since qL is
light-tailed for λL < pL(1 − pH) according to Proposition 3,
we will focus on the case λL > pL(1− pH).

Theorem 2: Suppose that λL > pL(1 − pH). Then, under
max-weight scheduling, qL is heavy-tailed with tail coefficient
CH − 1.

In terms of Fig. 3, the theorem asserts that qL is heavy-
tailed with tail coefficient CH − 1 for all arrival rates in the
shaded region. Proving the above result involves showing (i)
an upper bound: E

[

qCH−1−ǫ
H

]

< ∞, and (ii) a lower bound:

E

[

qCH−1+ǫ
H

]

= ∞, for all ǫ > 0. We deal with each of them
below.

1) Upper Bound for max-weight scheduling:
Proposition 4: Under max-weight scheduling, we have

E

[

qCH−1−ǫ
L

]

< ∞, ∀ ǫ > 0.

Proof: This is a special case of Proposition 6, in the next
section. 2

2) Lower Bound for max-weight scheduling:
Proposition 5: Suppose that λL > pL(1−pH). Then, under

max-weight scheduling, we have

E

[

qCH−1+ǫ
L

]

= ∞, ∀ ǫ > 0.

The proof of this result is quite involved, so we informally
describe the idea behind its construction, and refer the reader
to [14, Proposition 5.4] for the formal proof. In our intuitive
argument, we will ‘show’ that

lim
t→∞

E
[

qL(t)
CH−1+ǫ

]

= ∞. (4)

The above is the limit of the expectation of a sequence of ran-
dom variables, whereas what we really want in Proposition 5 is
the expectation of the limiting random variable qL. Although
it is by no means obvious that the limit and the expectation
can be interchanged here, we will ignore this as a technical
point in our informal argument.

The main idea behind the proof is to consider the renewal
intervals that commence at the beginning of each busy period
of the system. Without loss of generality, let us consider a
busy period that commences at time 0, and define the renewal
reward process R(t) = qL(t)

CH−1+ǫ. By the key renewal
theorem [10],

lim
t→∞

E [R(t)] =
E [R]

E [T ]
,

where E [R] denotes the expected reward accumulated over a
renewal interval, and E [T ] < ∞ is the mean renewal interval.

It is therefore enough to show that E
[

∑T
i=0 qL(i)

CH−1+ǫ
]

=
∞.

To see intuitively why the above expectation is infinite, let
us condition on the busy period commencing at time 0 with
a burst of size b to the heavy queue2. After this instant, the
heavy queue drains at rate pH , assuming for the sake of a
lower bound that there are no further bursts arriving at H . In
the mean time, the light queue receives traffic at rate λL, and
gets served only during the exclusive slots of L, which occur
at rate pL(1− pH). With high probability therefore, the light
queue will steadily build up at rate λL − pL(1 − pH), until
it eventually catches up with the draining heavy queue. It can
be shown that the light queue will build up to an O(b) level
before it catches up with the heavy queue. Further, the light
queue occupancy stays at O(b) for a time interval of length
O(b). Therefore, with high probability, the reward is at least
O(bCH−1+ǫ) for O(b) time slots. Thus, for some constant K,

E

[

T
∑

i=0

qL(i)
CH−1+ǫ

]

≥ E
[

Kb · bCH−1+ǫ
]

= E
[

KbCH+ǫ
]

.

The last expectation is infinite because the initial burst size
has tail coefficient equal to CH .

In words, the light queue not only grows to a level propor-
tionate to the initial burst size, but also stays large for a period
of time that is proportional to the burst size. This leads to a
light queue distribution that is one order heavier than the burst
size distribution.

B. Max-weight-α scheduling with αL > αH

In this subsection, we characterize the exact tail coefficient
of the light queue distribution under max-weight-α scheduling,
with αL > αH . We only treat the case λL > pL(1−pH), since
qL is known to be light-tailed otherwise. Our main result for
this regime is the following.

Theorem 3: Suppose that λL > pL(1 − pH). Then, under
max-weight-α scheduling with αL > αH , qL is heavy-tailed
with tail coefficient

γ =
αL

αH
(CH − 1). (5)

In terms of Fig. 3, the above theorem asserts that qL is heavy-
tailed with tail coefficient γ for all arrival rates in the shaded
region. As before, proving this result involves showing (i) an
upper bound of the form E

[

qγ−ǫ
H

]

< ∞, and (ii) a lower

2It is easy to show that this event has positive probability.
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bound of the form E
[

qγ+ǫ
H

]

= ∞, for all ǫ > 0. We deal with
each of them separately.

1) Upper Bound for max-weight-α scheduling:
Proposition 6: Under max-weight-α scheduling, we have

E
[

qγ−ǫ
L

]

< ∞, ∀ ǫ > 0.

Proof: The result is a consequence of a theorem in [9].
Indeed, max-weight-α scheduling in our context is equivalent
to comparing qL(t)

βαLSL(t) versus qH(t)βαHSH(t), where
β > 0 is arbitrary, and scheduling the winning queue in each
slot. In particular, if we choose β = (CH − 1)/αH − ǫ/αL,
the conditions imposed in [9, Theorem 1] are satisfied for any
ǫ > 0, so that the steady-state queue occupancies satisfy

E
[

qγ−ǫ
L

]

< ∞,

and

E

[

q
CH−1−

αH

αL
ǫ

H

]

< ∞. (6)

2

Remark 1: (i) Proposition 6 is valid for any parameters
αL and αH , and not just for αL > αH .

(ii) Equation (6) and Proposition 2 together imply that the tail
coefficient of qH is equal to CH −1 under max-weight-α
scheduling, for any parameters αL and αH .

2) Lower Bound for max-weight-α scheduling with αL >
αH :

Proposition 7: Suppose that λL > pL(1−pH). Then, under
max-weight-α scheduling with αL > αH , we have

E
[

qγ+ǫ
L

]

= ∞, ∀ ǫ > 0.

The proof is lengthy and intricate, but conceptually similar
to the proof of Proposition 5. We present an informal sketch,
and refer the reader to [14, Proposition 5.6] for the complete
proof. We consider the renewal process that commences at
the beginning of each busy period of the system, and define
the reward process Rγ(t) = qL(t)

γ+ǫ. We will show that
the expected reward accumulated over a renewal interval is
infinite. The key renewal theorem would then imply that
limt→∞ E [qL(t)

γ+ǫ] = ∞. Finally, the result we want can
be obtained by invoking a truncation argument to interchange
the limit and the expectation.

To intuitively see why the expected reward over a renewal
interval is finite, let us condition on the busy period commenc-
ing with a burst of size b at the heavy queue. Starting at this
instant, the light queue will build up at the rate λL−pL(1−pH)
with high probability. However, the light queue only builds up
to an O(bαH/αL) level before it ‘catches up’ with the heavy
queue and wins back the service preference. It can also be
shown that the light queue catches up in a time interval of
length O(bαH/αL). It might therefore be tempting to argue
that the light queue stays above O(bαH/αL) for an interval of
duration O(bαH/αL). Although this argument is not incorrect
as such, it fails to capture what typically happens in the system.
Let us briefly follow through with this argument, and conclude
that it does not give us the lower bound we want.

Indeed, following the above argument, the reward is at least
O(b(γ+ǫ)αH/αL) = O(bCH−1+ǫαH/αL) for O(bαH/αL) time
slots, so that the expected reward over the renewal interval is
lower bounded by Eb

[

O(bCH−1+αH/αL+ǫαH/αL)
]

. However,
the above expectation turns out to be finite for αL/αH > 1.
Therefore, the above simple bound fails to give the result we
are after.

The problem with the above argument is that it looks at
the time scale at which the light queue catches up, whereas
the event that decides the tail coefficient happens after the
light queue catches up. In particular, the light queue catches
up relatively quickly, in a time scale of O(bαH/αL). However,
after the light queue catches up with the heavy queue, the two
queues drain together, with most of the slots being used to
serve the heavy queue. In fact, as we show, before the light
queue occupancy can drain by a constant factor after catch-
up, the heavy queue drains by O(b). As such, the light queue
remains at an O(bαH/αL) level for O(b) time slots. Therefore,
the expected reward can be lower bounded by

Eb

[

O(b)O(bCH−1+ǫαH/αL)
]

= Eb

[

O(bCH+ǫαH/αL)
]

= ∞,

which is what we want. In sum, the light queue builds up
relatively quickly until catch-up, but takes a long time to drain
out after catch-up.

C. Max-weight-α scheduling with αL < αH

We finally consider the case αL < αH , and study the tail
behavior of qL. Recall that max-weight-α scheduling with
αL < αH corresponds to giving the heavy queue preference
over the light queue. In this regime, we show that qL is heavy-
tailed with a finite tail coefficient, for arrival rates in the shaded
region of Fig. 3. However, we are unable to determine the exact
tail coefficient of qL for some arrival rate pairs in this regime.

Our first result for this case is an upper bound on the tail
coefficient of qL. Intuitively, we would expect that the tail
behavior of qL in this regime cannot be better than it is under
max-weight scheduling. In other words, the tail coefficient of
qL in this regime cannot be larger than CH − 1. This intuition
is indeed correct.

Proposition 8: Suppose that λL > pL(1−pH). Then, under
max-weight-α scheduling with αL < αH , the tail coefficient
of qL is at most CH − 1.
Proof: Follows similarly to the proof of Proposition 5. Specif-
ically, conditioning on an initial burst of size b arriving to the
heavy queue, it can be shown that with high probability, qL
will be O(b) in size for at least O(b) time slots. 2

Next, to obtain a lower bound on the tail coefficient of qL,
recall that Proposition 6 holds for the present regime as well.
Thus, γ (defined in (5)) is a lower bound3 on the tail coefficient
of qL. In sum, we have shown that for λL > pL(1− pH), the
light queue occupancy distribution is heavy-tailed, with a tail
coefficient that lies in the interval [γ, CH − 1].

It turns out that we can obtain the exact tail coefficient of
qL for arrival rates in a subset of the shaded region in Fig. 3.

3Note that γ is smaller than CH − 1 in this regime.
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Fig. 4. Under max-weight-α scheduling with αL < αH , qL is light-tailed
for arrival rates in the unshaded region, and heavy-tailed with tail coefficient
equal to CH − 1 in for arrival rates in the gray region. For arrival rates in
the region colored black, the tail coefficient lies in [γ, CH − 1].

Specifically, consider the region represented by pL(1−pH) <
λL < pL(1−λH). In Fig. 4, this region is shown in gray. It can
be shown that all arrival rates in the region shaded gray can be
stabilized under priority for H. Furthermore, under priority for
H , it can be shown that qL is heavy-tailed with tail coefficient
equal to CH − 1, when pL(1 − pH) < λL < pL(1− λH).

Since the tail of qL under max-weight-α scheduling with
any parameters is no worse than under priority for H, we
can conclude that the tail coefficient of qL is at least CH − 1
when pL(1− pH) < λL < pL(1− λH). Combining this with
Proposition 8, we conclude that the tail coefficient qL is equal
to CH − 1, when the arrival rate pair lies in the gray region
of Fig. 4.

Proposition 9: Suppose that pL(1 − pH) < λL < pL(1 −
λH). Then, under max-weight-α scheduling with αL < αH ,
the tail coefficient of qL is equal to CH − 1.

The region shaded black in Fig. 4 (λL > pL(1 − λH))
corresponds to the arrival rates for which priority for H is not
stabilizing4. Under max-weight-α scheduling with αL < αH ,
we are unable to determine the exact tail coefficient of qL
for arrival rates in the black region of Fig. 4. However, we
have shown earlier that the tail coefficient lies in the interval
[γ, CH−1]. We conjecture that the tail coefficient of qL equals
γ, for arrival rates in the region shaded black.

D. Special case of reliable links

The tail behavior of qL under max-weight-α scheduling, in
the special case of reliably connected links (pH = pL = 1) is
interesting. Specifically, it follows from the results above that
the light queue occupancy distribution is heavy-tailed under
max-weight-α scheduling, for any values of the scheduling
parameters and non-zero arrival rates. The tail coefficient of
qL in this special case is given by the following proposition,
which follows from our earlier analysis.

Proposition 10: Suppose that the queues are always con-
nected to the server. Then, under max-weight-α scheduling,

4This case is symmetric to the case in Theorem 1(i).

qL is heavy-tailed for all non-zero arrival rates. Further, the
tail coefficient of qL is given by

(i) CH − 1 for αL

αH
≤ 1, and

(ii) γ = αL

αH

(CH − 1) for αL

αH

> 1.

V. LOG-MAX-WEIGHT SCHEDULING

In this section, we study the performance of log-max-weight
scheduling policy. During each time slot t, the log-max-weight
policy compares

qL(t)SL(t) R log(1 + qH(t))SH(t),

and serves one packet from the queue that wins the compari-
son.

The main idea in the LMW policy is to give preference to
the light queue to a far greater extent than any max-weight-α
policy. Specifically, for αL/αH > 1, the max-weight-α policy
compares qL to a power of qH that is smaller than 1. On the
other hand, LMW scheduling compares qL to a logarithmic
function of qH , leading to a significant preference for the light
queue. We will show that this significant de-emphasis of the
heavy queue with respect to the light queue ensures a better
tail behavior for qL compared to max-weight-α scheduling.

Furthermore, the LMW policy has another useful property
when the heavy queue gets overwhelmingly large. Although
the LMW policy significantly de-emphasizes the heavy queue,
it does not ignore it, unlike priority for L. That is, if the
H queue occupancy gets overwhelmingly large compared to
L, the LMW policy will serve the heavy queue. In contrast,
priority for L will ignore any build-up in H , as long as L
is non-empty. This property ensures that the LMW policy
stabilizes all arrival rates within the rate region in (1).

We show that LMW scheduling has desirable performance
on both fronts, namely throughput optimality, and the tail
behavior of the light queue occupancy. The LMW policy can
be shown to be throughput optimal, using the results in [9].
In terms of the tail, we show that the LMW policy guarantees
that the light queue occupancy distribution is light-tailed, for
all arrival rates that can be stabilized by priority for L. For
arrival rates that are not stabilizable under priority for L, the
LMW policy will still stabilize the system, although we are
not able to guarantee that qL is light-tailed for these arrival
rates.

Let us now state the main result regarding LMW scheduling.
Theorem 4: Under LMW scheduling, qL is light-tailed if at

least one of the following conditions hold:

(i) λL < pL(1− pH), or
(ii) λH < pH(1 − λL).

Note that for λL < pL(1− pH), qL is easily seen to be light-
tailed under LMW scheduling, since the arrival rate is small
enough to be supported by the exclusive slots of L. The second
condition in Theorem 4 states that for all arrival rates that can
be stabilized under priority for L (i.e., the trapezoidal region
in Fig. 2), qL is light-tailed under LMW scheduling.

The union of the two regions in which qL is light-tailed
according to Theorem 4 is shown unshaded in Fig. 5. As can
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Fig. 5. Under LMW scheduling, qL is light-tailed for arrival rates in the
unshaded region. In the shaded triangle, the tail behavior of qL is unknown.

be seen, the unshaded region occupies most of the rate region,
except for the shaded triangle. For arrival rates in the shaded
triangle, the LMW policy still stabilizes the system. However,
we are unable to determine the tail behavior of qL for arrival
rates in the shaded triangle.

VI. CONCLUSIONS

We considered a system of parallel queues fed by a mix
of heavy-tailed and light-tailed traffic, and served by a single
server. We studied the tail behavior of the queue occupancy
distributions under various scheduling policies. We showed
that the occupancy distribution of the heavy queue is inevitably
heavy-tailed. In contrast, the light queue occupancy distri-
bution can be heavy-tailed or light-tailed, depending on the
arrival rates and the scheduling policy. A major contribution
of this paper is in the tail characterization of the queue
occupancy distributions under max-weight-α scheduling. We
showed that the light queue occupancy distribution under max-
weight-α scheduling is light-tailed for arrivals rates below a
certain threshold, and heavy-tailed for arrival rates above the
threshold.

Another important contribution of the paper is the log-max-
weight policy, and the corresponding asymptotic analysis. We
showed that the light queue occupancy is light-tailed under
LMW scheduling, for all arrival rates that are stabilizable
under priority for the light queue. Additionally, the LMW
policy also has the desirable property of being throughput
optimal, unlike priority scheduling.

Although we study a very simple queueing network in this
paper, we believe that the insights obtained from this study
are valuable in much more general settings. For instance, in a
general queueing network with a mix of light-tailed and heavy-
tailed traffic flows, we expect that the celebrated max-weight
policy has the tendency to ‘infect’ competing light-tailed flows
with heavy-tailed asymptotics. A similar effect was also noted
in [16], in the context of expected delay.

We also believe that the LMW policy occupies a unique
‘sweet spot’ in the context of scheduling light-tailed traffic
in the presence of heavy-tailed traffic. This is because the
LMW policy de-emphasizes the heavy-tailed flow sufficiently

to maintain good light queue asymptotics, while also ensuring
network-wide stability.

For future work, we propose the extension of the results in
this paper to more general single-hop and multi-hop network
models.
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