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Abstract—We consider a system consisting of N parallel
queues, served by one server. Time is slotted, and the server serves
one of the queues in each time slot, according to some scheduling
policy. In the first part of the paper, we characterize the
buffer overflow exponents and the likeliest overflow trajectories
under the Longest Queue First (LQF) scheduling policy. Under
statistically identical arrivals to each queue, we show that the
buffer overflow exponent can be simply expressed in terms of
the total system occupancy exponent of m parallel queues, for
some m ≤ N . We next turn our attention to the rate of queue
length information needed to operate a scheduling policy, and its
relationship to the buffer overflow exponents. It is known that
LQF scheduling has superior overflow exponents compared to
queue blind policies such as processor sharing (PS) and random
scheduling. However, we show that the overflow exponent of the
LQF policy can be preserved under arbitrarily infrequent queue
length information.

I. INTRODUCTION

Scheduling is an essential component of any queueing

system where the server resources need to be shared be-

tween many queues. Perhaps the most basic requirement of

a scheduling algorithm is to ensure the stability of all queues

in the system, whenever feasible. Much research work has

been reported on “throughput optimal” scheduling algorithms

that achieve stability over the entire capacity region of a

network [1], [2]. While stability is an important and necessary

first-order metric, most practical queueing systems have more

stringent Quality of Service (QoS) requirements. For example,

streaming voice and video streams are delay sensitive. Further,

due to the finiteness of the buffers in practical systems,

maintaining a low buffer overflow probability is an important

objective.

In this paper, we consider a system consisting of N parallel

queues and a single server. A scheduling policy decides which

of the queues gets service in each time slot. Our goal is

to better understand the relation between the buffer overflow

probability and the amount of queue length information re-

quired to operate a scheduling policy. The scheduling decisions

may take into account the current queue lengths in the system,

in which case we will call the policy ‘queue aware.’ If the

scheduling decisions do not depend on the current queue

lengths, except to the extent of knowing whether or not a

queue is empty, we will call it a ‘queue blind’ policy.

In the first part of this paper, we analyze the large deviation

behavior of the widely studied Longest Queue First (LQF)

policy. We assume that the queues are fed by statistically

This work was supported by NSF grants CNS-0626781 and CNS-0915988,
and by ARO Muri grant number W911NF-08-1-0238.

The authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. krishnaj@mit.edu, modiano@mit.edu

identical arrival processes. However, the input statistics could

otherwise be very general. Under such a symmetric traffic

pattern, we show that the buffer overflow exponent under LQF

scheduling is expressible purely in terms of the total system
occupancy exponent of an m queue system, where m ≤ N
is determined by the input statistics. We also show that the

likeliest overflow trajectories are straight lines.

In the second part of the paper, we turn our attention to the

rate of queue length information needed to operate a schedul-

ing policy, and its relationship to the buffer overflow exponent.

Although any work conserving policy (such as LQF, processor

sharing (PS) or random scheduling) will achieve the same

throughput region and total system occupancy distribution, the

LQF policy outperforms the queue blind policies in terms of

the buffer overflow probability. Equivalently, this implies that

the buffer requirements are lower under LQF scheduling than

under queue blind scheduling, if we want to achieve a given

overflow probability. For example, our study indicates that

under Bernoulli and Poisson traffic, the buffer size required

under LQF scheduling is only about 55% of that required

under random scheduling, when the traffic is relatively heavy.

On the other hand, with LQF scheduling, the scheduler needs

queue length information in every time slot, which leads

to a significant amount of control signalling. Hence, we

identify a “hybrid” scheduling policy, which achieves the same

buffer overflow exponent as the LQF policy, with arbitrarily

infrequent queue length information.

A. Related Work

To our knowledge, Bertsimas et. al. [4] were among the

first to analyze the large deviations behavior of parallel queues.

They consider the case of two parallel queues, and characterize

the buffer overflow exponents under two important service

disciplines, namely Generalized Processor Sharing (GPS) and

Generalized Longest Queue First (GLQF). We also refer to the

related papers [5]–[7] where the authors analyze a system of

parallel queues, with deterministic arrivals and time-varying

connectivity. In [8], the authors study large deviations for the

largest weighted delay first policy, and [9] deals with large

deviations of max-weight scheduling for general convex rate

regions. In each case, the optimal exponent and the likeliest

overflow trajectory are obtainable by solving a variational

control problem. Often times, the optimal solution to the vari-

ational problem can be found by solving a finite dimensional

optimal control problem [4], [8].

The rest of this paper is organized as follows. In Section

II, we present the system description, and some preliminaries

on large deviations. Our main result on the large deviation
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Fig. 1. N parallel queues served by one server

behavior of LQF scheduling is presented in Section III. Section

IV compares LQF scheduling to queue blind scheduling in

terms of the overflow probability. In Section V, we study

scheduling policies with infrequent queue length information.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Fig. 1 depicts a system consisting of N parallel queues,

served by one server. We assume that time is slotted, and the

server is capable of serving one packet per slot. Arrivals occur

according to a random process Ai(t), i = 1, . . . , N, which

denotes the number of packets that arrive at queue i during

slot t. The arrivals to the different queues are independent. We

assume a symmetric traffic pattern, i.e., the arrival processes

to each queue are statistically identical to each other. For ease

of exposition, let us assume that the arrivals are independent

across time slots, although our results hold under more general

assumptions1. The average arrival rate to a queue is E [Ai[t]] =
λ packets/slot for each i. For stability, we assume that the

condition λ < 1
N is satisfied. Let us also define

Si[t1, t2] =

t2∑
τ=t1

Ai[τ ], t1 ≤ t2

as the number of arrivals to queue i between time slots t1 to

t2.
The log-moment generating function of the input process2

to each queue is assumed to exist, and is given by

Λ(θ) = logE [exp(θAi[t])] .

The convex dual of Λ(θ) is defined by

Λ∗(x) = sup
θ
[θx− Λ(θ)].

Λ∗(x) is referred to as the rate function of the large deviation

principle (LDP) satisfied by each input process.

We are interested in the probability of a buffer overflow, i.e.,

P{maxi=1,...,N Qi[0] ≥ M}, under a given scheduling policy

Π, where, Qi[0] is the queue length at time slot 03. More

1We only need the input processes to satisfy a sample path large deviation
principle (LDP), as detailed in [4].

2This definition applies when the inputs are independent across time.
If the inputs are correlated across time slots, we define Λ(θ) =
limn→∞ 1

n
logE

[
exp(θ

∑n
t=1 Ai[t])

]
.

3The queues are assumed to be initialized such that Qi[−MT ] = 0, 1 ≤
i ≤ N for some T > 0. As M → ∞ with T fixed, Qi[0] will approach the
steady-state.

specifically, we are interested in the exponent of the above

probability under the large-buffer scaling, which is defined as

EΠ
N = lim

M→∞
− 1

M
lnP{ max

i=1,...,N
Qi[0] ≥ M}. (1)

We emphasize that this exponent depends on the scheduling

policy Π, as well as the system size N and the input statistics.

We also define the exponent corresponding to the total system
occupancy exceeding a certain limit:

ΘN = lim
q→∞−1

q
lnP{

N∑
i=1

Qi[0] ≥ q}. (2)

As we shall see, the system occupancy exponent in (2) plays an

important role in our analysis of the buffer overflow exponent

(1). The following well-known lemma asserts that ΘN is the

same for all work-conserving scheduling policies.

Lemma 1: All work conserving policies achieve the same

steady-state system occupancy distribution (and hence the

same system exponent ΘN ).

In fact, the above result holds at a sample-path level, since one

packet would leave the system every time slot if the system

is not empty, under any work conserving policy.

We mainly analyze the Longest Queue First (LQF) schedul-

ing policy, which, as the name states, serves the longest

queue in each slot, with an arbitrary tie-breaking rule. We

also consider two other work-conserving policies: random
scheduling (RS), which serves a random occupied queue in

each slot (each with equal probability), and processor sharing
(PS), which divides the server capacity equally between all

occupied queues. Note that LQF scheduling is queue-aware,

while RS and PS are queue-blind.

III. LARGE DEVIATION ANALYSIS OF LQF SCHEDULING

In this section, we present our main results regarding

the buffer overflow exponents and trajectories under LQF

scheduling. We begin by characterizing the system occupancy

exponent ΘN for a work conserving policy.

Proposition 1: Under any work conserving policy, the sys-

tem occupancy exponent is given by

ΘN = inf
a>0

1

a
Λ∗(a+

1

N
) (3)

Proof: (Outline) The result is a consequence of the fact

that the total system occupancy distribution is the same as

the queue length distribution of a single queue, served by

the same server, but fed by the sum process
∑

i Ai(t). Since

the input processes to the different queues are independent

and identically distributed (i.i.d), the log-moment generating

function of the sum process is NΛ(θ). From the definition of

the convex dual, the rate function of the sum process can be

expressed as NΛ∗(x/N). Once the rate function of the input

process is known, the overflow exponent of a single server

queue can be easily computed; see [10]. �

Let us denote by a∗N the optimizing value of a in (3).

We now define scaled processes for the arrivals and queue

lengths, which are often used to study sample path large
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deviations in the large buffer regime. For every sample path

that leads to a buffer overflow at time slot 0, there exists a

time −n ≤ 0 for which both queues are empty. Since we

are interested in large M asymptotics, we let T = − n
M , and

define the sequence of scaled processes4

qi(t) =
Qi[�Mt�]

M
, i = 1, . . . , N, t ∈ [−T, 0],

and

Si(t) =
Si[−MT, �Mt�]

M
,

where �·� denotes the floor function. The initial condition

implies that qi(−T ) = 0, i ≤ N, and qi(0) = 1 implies the

overflow of queue i at time 0. We say that the input process

on queue i has empirical rate xi(t) ≥ 0 in the interval [−T, 0]
if the following is satisfied for any ε > 0 and large enough

M : ∣∣∣∣Si(t)−
∫ 0

−T

xi(t)dt

∣∣∣∣ < ε, ∀t ∈ [−T, 0]

Loosely speaking, the exponent corresponding to the input pro-

cess on queue i exhibiting an empirical rate xi(t), t ∈ [−T, 0]
is given by Mogulskii’s theorem [11]:∫ 0

−T

Λ∗(xi(t))dt. (4)

We remark that Mogulskii’s theorem applies only to arrivals

processes which are independent across time. If the arrivals

are correlated in time, the results in this paper will still apply,

if we take equation (4) as a starting point. That is, we need

to assume that the arrival process to each queue satisfies a

sample path LDP with rate function given by (4).

We now specify the evolution of the scaled queue lengths

qi(t) under LQF scheduling. Let I be any non-empty subset

of {1, 2, . . . , N}. We define RI as the subset of [0, 1]N , such

that (q1(t), . . . , qN (t)) ∈ RI iff qi(t) = qj(t) ∀i, j ∈ I, and

for any k /∈ I, j ∈ I, qk(t) < qj(t). Intuitively, in region RI ,

the queues in the index set I ‘grow together’, and all other

queues are smaller. It is clear that the regions RI are convex,

and constitute a partition of the set [0, 1]N as I ranges over all

non-empty index sets. The queue evolution equation in region

RI is given by

∑
i∈I

q̇i =
∑
i∈I

xi(t)− 1;

q̇k = xk(t), ∀k /∈ I (5)

We now state the main result regarding the large deviations

behavior of LQF scheduling.

Theorem 1: Under statistically independent and identical

arrival processes to each queue, the LD behavior of LQF

scheduling is given as follows

(i) The exponent is given by

ELQF
N = min

k=1,...,N
kΘk, (6)

4We suppress the dependence on M for simplicity of notation.

where Θk is the system occupancy exponent for k parallel

queues, given by (3).

(ii) For a given λ, suppose that a unique j ≤ N minimizes

(6), i.e.,

j = arg min
k=1,...,N

kΘk.

Then, for that λ, the likeliest overflow trajectory consists

of j queues reaching overflow. More specifically, the

likeliest overflow trajectory5 (in the (q1(t), . . . , qN (t))
space) is the line segment joining the origin to the point

(q1(0) = 1, . . . , qj(0) = 1, qj+1(0) = λ
a∗
j
, . . . , qN (0) =

λ
a∗
j
), where λ

a∗
j
< 1

The proof of the theorem follows a rather elaborate sample

path large deviations argument that involves solving a vari-

ational problem. We relegate the proof to the appendix, and

discuss the theorem intuitively.

The first part of the theorem states that the buffer overflow

exponent under LQF scheduling is only a function of the

system occupancy exponents Θk for k ≤ N. The second

part of the theorem assets that if ELQF
N equals jΘj for a

unique j ≤ N, then the likeliest overflow scenario consists

of j queues overflowing, and the other N − j queues grow

approximately to M λ
a∗
j
, which is less than M . In particular, the

queues that do not overflow are never the longest, and hence

get no service at all. The service is shared equally among the

j queues that overflow, and a∗j denotes the likeliest rate at

which the j queues overflow in spite of getting all the service.

On the other hand, the queues that do not overflow get to

keep all their arrivals, which occur at the average rate λ. The

exponent for this case is given by jΘj , which corresponds to

all the queues in a j-queue system overflowing together. This

is because the other N − j queues which do not get service,

get arrivals at the average rate, and hence do not contribute to

the exponent.

A. Illustrative Examples with Bernoulli Traffic

In this section, we obtain the LQF exponents explicitly for

a system with symmetric Bernoulli inputs to each queue. We

deal with N = 2 and N = 3, since these cases are easily

visualized, and elucidate the nature of the solution particularly

well. We begin by making the following elementary observa-

tion regarding LQF scheduling and Bernoulli arrivals

Proposition 2: Under Bernoulli arrivals and LQF schedul-

ing, the system evolves such that the two longest queues never

differ by more than two packets.

Next, we state a well known result regarding the rate function

Λ∗(·) for a Bernoulli process.

Proposition 3: For a Bernoulli process of rate λ, the rate

function is given by

Λ∗(x) = D(x||λ) := x log
x

λ
+ (1− x) log

1− x

1− λ
,

where D(x||λ) is the Kullback-Liebler (KL) divergence (or

the relative entropy) between x and λ.

5The symmetry allows us to only present the case where the first j queues
overflow.
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The result is a consequence of Sanov’s theorem for finite

alphabet [10].

Let us now consider a two queue system with Bernoulli

arrivals. For this simple system, it turns out that the exponent

can be computed from first principles, without resorting to

sample path large deviations. First, the system exponent Θ2

under Bernoulli arrivals can be computed directly from the

system occupancy Markov chain, yielding

Θ2 = 2 ln
1− λ

λ
.

Proposition 4: Under LQF scheduling and Bernoulli ar-

rivals, the following statements hold for the case N = 2 :

(i) The likeliest overflow trajectory is along the diagonal,
(q1 = q2)

(ii) ELQF
2 = 2Θ2 = 4 ln 1−λ

λ .

Proof: Part (i) of the result is a simple consequence of

proposition 2. Specifically, suppose that one of the queues

(say Q1) overflows, so that Q1 ≥ M. From proposition 2, it

follows that Q2 ≥ M − 2. Thus, when an overflow occurs in

one queue, the other queue is also about to overflow, so that

the only possible (and thus the likeliest) overflow trajectory is

along the diagonal.

In order to show part (ii), we first argue that ELQF
2 ≥ 2Θ2.

Indeed, when a buffer overflow occurs, the total system

occupancy is at least 2M − 2. Thus, the buffer overflow

probability is upper-bounded by the probability of the total

system occupancy being at least 2M − 2 :

P{Q1 ≥ M} ≤ P{Q1 +Q2 ≥ 2M − 2}.
We thus have,

ELQF
2 = lim

M→∞
− 1

M
lnP{Q1 ≥ M}

≥ lim
M→∞

− 1

M
lnP{Q1 +Q2 ≥ 2M − 2} = 2Θ2,

where the last equality follows from the definition of Θ2. To

show a matching upper bound, note that when the system

occupancy is 2M or greater, at least one of the queues

will necessarily overflow. We can then argue as above that

ELQF
2 ≤ 2Θ2. �

Let us now analyze a system with three queues, fed by

symmetric Bernoulli traffic. In this case, although the longest

two queues grow together, it is not immediately clear how

the third queue behaves during overflow. Once the system

exponent Θ3 is computed from (3), we can invoke the theorem

1, and conclude that the exponent is given by min(2Θ2, 3Θ3).
Note that Θ1 is infinite in this case, since a single queue

fed by Bernoulli input cannot overflow. Fig. 2 shows a plot

of 2Θ2 and 3Θ3 as functions of the input rate λ on each

queue. It is clear from the figure that for small values of

λ, the exponent 2Θ2 dominates the overflow behavior. In

this regime, the likeliest manner of overflow involves two

queues reaching overflow, while the third queue grows to

approximately M λ
1/2−λ . For larger values of λ (> 0.07), the

exponent is 3Θ3, and all three queues overflow together.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

20

25

λ

Ex
po

ne
nt

2Θ2 (Two queues overflow)

3Θ3 (Three queues overflow)

Fig. 2. Exponent behavior for N = 3 under Bernoulli traffic.

IV. LQF VS. QUEUE BLIND POLICIES

In this section, we compare the performance of LQF

scheduling with that of queue-blind policies. We only consider

a two queue system, since the large deviation behavior of PS

and RS is difficult to characterize for N > 2. The following

result for processor sharing follows from [4].

Proposition 5: The buffer overflow exponent for a two

queue system under PS is given by

EPS
2 = inf

a>0

1

a

[
Λ∗(a+

1

2
) + Λ∗(

1

2
)

]
. (7)

The likeliest manner of overflow under processor sharing is

as follows. Suppose it is the first queue that overflows. The

second queue receives traffic at rate 1/2, which is also its

service rate. Thus, the second queue grows to at most o(M).
The first queue receives service at rate 1/2 and input traffic

at rate a∗ps + 1/2, where a∗ps optimizes (7). Thus, a∗ps is the

rate of overflow of the first queue.

Next, we present the exponent for random scheduling.

Proposition 6: The buffer overflow exponent for a two

queue system under RS is given by

ERS
2 = inf

a>0

1

a
inf

φ∈(0,1)

[
Λ∗(a+ 1− φ) + Λ∗(φ) +D(φ||1

2
)

]
.

(8)

The proof is outlined in the appendix. We now describe

the most likely overflow event. Suppose queue 1 overflows.

The parameter φ that appears in the inner infimization in (8)

denotes the empirical fraction of service received by queue

2. In other words, the ‘fair’ coin tosses that decide which

queue to serve when both queues are nonempty, ‘misbehave’

statistically. The exponent corresponding to this event is given

by D(φ|| 12 ). If φ∗ is the optimal value of φ in (8), the second

queue receives traffic at rate φ∗, and therefore grows to an

o(M) level. The first queue receives traffic at rate a∗rs+1−φ∗,
where a∗rs is the optimizing value of a in (8).

Proposition 7: It holds that ERS
2 ≤ EPS

2 ≤ ELQF
2 .

Proof: To see the first inequality ERS
2 ≤ EPS

2 , note that

substituting φ = 1/2 in the RS exponent (8) yields the PS
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Fig. 3. Comparison of LQF, PS and RS exponents for a two queue system,
under (a) Bernoulli arrivals (b) Poisson arrivals

exponent. To prove the second inequality, it suffices to show

that EPS
2 ≤ Θ1 and EPS

2 ≤ 2Θ2. First note that for all a ≥ 0,
we have Λ∗(a+1/2) ≥ Λ∗(1/2) since the input rate λ is less

than 1/2. Thus, for all a ≥ 0,

2

a
Λ∗(a+ 1/2) ≥ 1

a
[Λ∗(a+ 1/2) + Λ∗(1/2)].

Taking inf on both sides, we have EPS
2 ≤ 2Θ2. Similarly,

for all a > 0, it can be shown that Λ∗(a + 1) ≥ Λ∗(a +
1/2) + Λ∗(1/2), using the fact that Λ∗()̇ is an increasing

convex function, for arguments greater than λ. Dividing the

preceding inequality by a and taking infimum, it follows that

EPS
2 ≤ Θ1. �

In Fig. 3, we plot the exponents corresponding to LQF, PS

and random scheduling for a two queue system, as a function

of the arrivals rate λ. Fig. 3(a) corresponds to having Bernoulli

arrivals in each time slot, while in Fig. 3(b), the number of

arrivals in each slot is a Poisson random variable. The first

observation we make from Fig. 3 is that, for a given arrival

rate, the exponent values for a given policy are generally larger

under Bernoulli traffic. This is because Poisson arrivals have a

larger potential for being more bursty, and hence the overflow
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Fig. 4. Ratio of LQF exponent to PS and RS exponents for (a) Bernoulli
arrivals (b) Poisson arrivals.

probability is larger (and the exponent smaller) for a given

average rate. Next, notice that the LQF exponent under Poisson

traffic (Fig. 3(b)) exhibits a cusp at λ ≈ 0.27. This is because

under Poisson traffic, we have two competing exponents Θ1

and 2Θ2, corresponding respectively to one queue and both

the queues overflowing. For λ below the cusp, Θ1 dominates,

and vice-versa. On the other hand, under Bernoulli traffic, Θ1

is infinite. Thus, the LQF exponent is given by 2Θ2, which is

a smooth curve as shown in Fig. 3(a).

In Fig. 4, we plot the ratio of the LQF exponent to the PS

and RS exponents. This ratio is directly related to the savings

in the buffer size that results from using LQF scheduling, as

opposed to using one of the queue blind policies. For example,

consider the ratio of the LQF exponent to the RS exponent,

when the traffic is relatively heavy (say λ > 0.3). This is the

regime where overflows are most likely to occur. We see that

under both Bernoulli and Poisson traffic, the LQF exponent

is roughly 1.8 times the RS exponent. This implies that in

order to achieve a certain overflow probability, the LQF policy

requires only 55% of the buffer size required under random

scheduling in heavy traffic. A similar comparison can also be

made between the LQF and PS exponents.
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V. SCHEDULING WITH INFREQUENT QUEUE LENGTH

INFORMATION

We have seen that the LQF policy has a superior queue

overflow performance compared to queue blind policies. This

is because it can discern and mitigate large queue build-up

on one of the queues. On the other hand, the scheduler needs

to know queue length information in every slot in order to

perform LQF scheduling. In this section, we will show that

the buffer overflow performance of LQF scheduling can be

maintained even if we allow for arbitrarily infrequent queue

length information to be conveyed to the scheduler.

The basic idea is that it is sufficient to serve the longest

queue only when the queues are large. When the queue lengths

are all small, we can save on the queue length information

by adopting a work conserving, but queue-blind scheduling

strategy. To achieve this, we suggest the following scheduling

policy which is a ‘hybridized’ version of the queue-blind RS,

and the LQF policy.

Hybrid Scheduling: Let K < M be a given queue length

threshold. In each slot, if all queues are smaller than K,

then serve any random occupied queue. If at least one queue

exceeds K, serve the longest queue in that slot.

The following theorem asserts that the hybrid policy asymp-

totically achieves the same buffer overflow exponent as LQF

scheduling, while requiring queue length information in a

vanishingly small fraction of slots.

Theorem 2: Suppose K increases sub-linearly in the buffer

size M (i.e., K(M) = o(M)). Then,

(i) The buffer overflow exponent of hybrid scheduling is

equal to ELQF
N , and

(ii) The fraction of slots in which queue length information

is required approaches zero if K(M) → ∞ as M → ∞.

We provide a heuristic explanation of the result due to space

constraints. Observe that queue length information is required

only in time slots when the longest queue in the system is

longer than K. Since RS is a stabilizing policy, the steady

state probability that the longest queue exceeds K approaches

zero as K becomes large. (In fact, this probability goes to zero

exponentially in K.) Therefore, the fraction of slots in which

queue length information is required can be made arbitrarily

small. On the other hand, the overflow exponent remains the

same as in the LQF case. This is because when we consider

the scaled queue lengths as M becomes large, the hybrid

policy differs from LQF scheduling only in an infinitesimal

neighborhood around the origin.
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APPENDIX

A. Proof of Theorem 1

The proof can be divided into two parts. The first part

involves showing that the queue length process under LQF

scheduling satisfies an LDP, whose rate function is given by

the solution to a variational problem. The second step involves

solving the variational problem in the case of symmetric

arrivals, and proving that the optimal solution to the variational

problem takes a simple form, as given by the theorem.

The existence of an LDP for the queue length was shown

in [8] for longest weighted waiting time as well as longest

weighted queue length scheduling. Assuming without loss of

generality that the first queue overflows, the exponent is given

by the following variational problem

min

∫ 0

−T

[
N∑
i=1

Λ∗(xi(t))

]
dt (9)

subject to

qi(−T ) = 0, ∀i
q1(0) = 1,

T : free,

qj(0) : free for j > 1,

and the queue length trajectories qi(t) evolve according to (5).

Our emphasis is on solving the above variational problem

under the symmetric traffic scenario. In (9), the empirical rates

xi(t) are the control variables, and the cost function is the

exponent corresponding to the control variables, as given by

Mogulskii’s theorem. In words, the variational problem is to

find the set of empirical rates which leads to the smallest

exponent, and results in the overflow of at least one queue.

Note that the above is a free time problem, i.e., the time T over

which overflow occurs is not constrained. Also, it is possible

for queues other than the first queue to reach overflow.

An important property which helps us solve (9) is given by

the following lemma, which states that when the scaled queue

lengths are within one of the regions RI , the empirical rates

xi(t) can be taken as constants, without loss of optimality.

Lemma 2: Fix a time interval [−T1,−T2] and consider a

control trajectory xi(t), i = 1, . . . , N, t ∈ [−T1,−T2],
such that the scaled queue lengths qi(t), i = 1, . . . , N, t ∈
[−T1,−T2] stay within a particular region RI . Define the

average control trajectory x̄i in the interval [−T1,−T2] as

x̄i(τ) =
1

T1 − T2

∫ −T2

−T1

xi(t)dt

for i = 1, . . . , N and τ ∈ [−T1,−T2]. Then, the queue lengths

under the average control trajectory x̄i(t) lie entirely within

RI , and satisfy the same initial and final conditions at t =
−T1 and t = −T2 respectively. Furthermore, the cost achieved

under the (constant) control trajectory x̄i(t) is not larger than

the cost achieved under xi(t).
The above result follows from the convexity of Λ∗(·) and of

the sets RI , and the proof is akin to the two dimensional case

treated in [4, Lemma 5.1]. Using Lemma 2, we next compute

the exponents corresponding to overflow trajectories that stay

entirely within a particular region RI . Later, we will show

that overflow trajectories that traverse more than one region

cannot have a strictly smaller exponent than trajectories that
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stay within exactly one of the regions. This will give us the

result we want.

Consider an overflow trajectory that lies entirely within

RIj , where |Ij | = j for some 1 ≤ j < N. In this case,

the j queues in the index set Ij reach overflow, while the

other N − j queues are strictly smaller, and hence receive

no service. Due to the symmetry of arrivals, we can compute

the exponent assuming that Ij = {1, . . . , j}, i.e., the first j
queues overflow. Lemma 2 implies that the optimal empirical

rates can be restricted to constant values6 xi, i = 1, . . . , N
for this particular overflow event. Let a = 1/T denote the

rate at which the first j queues overflow. Since each queue

k ∈ {1, . . . , j} overflows at rate a, the empirical input rate

xk must be of the form xk = a + φk, where φk ≥ 0 can

be thought of as the rate at which queue k receives service

in the overflow interval. Since the first j queues receive all

the service, we have
∑j

k=1 φk = 1. Next, for l > j, we need

xl ≤ a, since these queues are never the longest, and hence

get no service.

The optimization in (9) takes the following form when the

first j queues reach overflow.

inf
a>0

1

a
inf

φk≥0;
∑j

k=1
φk=1

xl≤a, ∀ l>j

j∑
k=1

Λ∗(a+ φk) +
N∑

l=j+1

Λ∗(xk) (10)

Let us now perform the inner minimization in (10). It is

obvious that the minimization over φk, k ≤ j and xl, l > j
can be performed independently. Due to convexity of the rate

function, we have

1

j

j∑
k=1

Λ∗(a+ φk) ≥ Λ∗(
1

j

j∑
k=1

(a+ φk)) = Λ∗(a+
1

j
).

Therefore, the optimal value of the φks is given by φk =
1/j, k ≤ j. Next, consider optimizing over xl for l > j. We

distinguish two cases:

(i) a > λ: In this case, it is optimal to choose xl = λ for

each l > j, since Λ∗(λ) = 0.
(ii) a ≤ λ: In this case, the constraint xl ≤ a has to be active,

since for x < λ, Λ∗(x) is decreasing in x. Thus, we have

xl = a.

Putting the two cases together, we get from (10) the exponent

Ej corresponding to exactly j queues overflowing, while the

trajectory stays inside RIj .

Ej = min(χj , ξj) (11)

with

χj = inf
0<a≤λ

1

a

[
jΛ∗(a+

1

j
) + (N − j)Λ∗(a)

]
, and

ξj = inf
a>λ

j

a
Λ∗(a+

1

j
). (12)

6For simplicity of notation, we henceforth use xi in place of x̄i.

The above expression holds for 1 ≤ j < N. The exponent for

all the N queues overflowing is simpler to obtain; it is given

by

EN = inf
a>0

N

a
Λ∗(a+

1

N
) = NΘN , (13)

where the last equality follows by recalling (3). The optimal

exponent considering the set of all overflow trajectories that

stay inside any one of the regions RI , I ⊂ {1, . . . , N} is

obtained by minimizing Ej over j = 1, . . . , N.
At this point, we are two steps away from obtaining the

result. The first step involves showing that there is nothing

further to be gained by considering paths that traverse more

than one of the partitioning regions. This would imply that

the optimal exponent is given by min1≤j≤N Ej . The second

step involves showing that min1≤j≤N Ej = min1≤j≤N jΘj ,
where Θj is the system occupancy exponent of j parallel

queues, defined in (3). The following two lemmas establish

what is needed.

Lemma 3: For every queue overflow trajectory that tra-

verses more than one of the regions RI , I ⊂ {1, . . . , N},
there exists an overflow trajectory that lies entirely within one

of the regions, while achieving an exponent that is no larger.

Proof: We only rule out overflow trajectories that traverse

two regions; similar arguments can be used for trajectories

that visit more than two regions. Consider a queue trajectory

that starts out in a region RI but reaches overflow in region

RJ , while staying in one of the two regions at every instant in

between. Note that the region RI is a convex set of dimension

N − |I|+ 1. That is, regions that involve a larger number of

queues growing together, have a smaller dimension and vice-

versa.

We will consider two cases, I ⊃ J and I ⊂ J . Brief

reflection should make it clear that if one of the above two

containments is not satisfied, the trajectory has to necessarily

traverse more than two regions. The arguments that follow are

easier to understand if visualized in two dimensions.

Suppose I ⊂ J . Consider a trajectory that starts out at the

origin at t = −T, and stays inside RI until time t = −T1,
when it enters RJ . The trajectory stays in RJ until overflow

at t = 0. Intuitively, the queues qi, i ∈ I start out growing

together. At time −T1, the queues qi, i ∈ J − I ‘catch

up’, and overflow occurs in all the queues in the index set

J . Since constant empirical input rates are optimal inside

each partition region (Lemma 2), the arbitrary trajectory in

RI can be replaced at no further cost by a straight segment

that has the same initial and final values (qi(−T ) = 0, and

qi(−T1) ∈ RJ for each i). This segment lies entirely in

RI , but is arbitrarily close to the region RJ . (Note that RJ
forms one of the ‘boundaries’ of RI). However, the cost of

this replaced segment is clearly not lower than the optimal

trajectory in RJ with the same initial and final conditions.

The part of the trajectory from t = −T1 until over flow at

t = 0, can again be replaced by the optimal trajectory in RJ
with the corresponding end points. Thus, overall, the cost of

the original trajectory is greater than or equal to that of the

optimal trajectory in RJ .
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Now consider the case I ⊃ J . Intuitively, this case

corresponds to the queues qi, i ∈ I starting to grow together.

At some time instant, the queues qi, i ∈ I − J start ‘losing

out’, and overflow occurs within RJ . The arbitrary trajectories

in each of the regions can be replaced with an optimal segment

in each of the regions, with the same boundary conditions at

no added cost. The cost of this replaced trajectory, is a convex

combination of the optimal overflow trajectories in regions RJ
and RI , and hence cannot be smaller than the smaller of the

two costs. Thus, a strictly smaller cost cannot be obtained by

a trajectory that traverses two regions. �

Lemma 4: min1≤j≤N Ej = min1≤j≤N jΘj .
Proof: We first prove that χj ≥ EN for all j < N. First, using
convexity, we can write

j

N
Λ∗(a+

1

j
) +

N − j

N
Λ∗(a) ≥ Λ∗

(
j

N
(a+

1

j
) +

N − j

N
a

)

= Λ∗(a+
1

N
). (14)

We now have

χj = inf
0<a≤λ

1

a

[
jΛ∗(a+

1

j
) + (N − j)Λ∗(a)

]

≥ inf
a>0

1

a

[
jΛ∗(a+

1

j
) + (N − j)Λ∗(a)

]
(a)

≥ inf
a>0

N

a
Λ∗(a+

1

N
) = EN .

The inequality (a) follows from (14). It is now clear that the

χjs are irrelevant, as they are always dominated by EN =
NΘN . We next write the following series of equalities that

imply the lemma.

min
1≤j≤N

Ej = min(ξ1, . . . , ξN−1, NΘN )

= min
1≤j<N

min(ξj , NΘN )

(b)
= min

1≤j<N
min(jΘj , NΘN )

= min
1≤j≤N

jΘj

In the above, equality (b) is shown as follows. Consider

min(ξj , NΘN ). The definition of ξj (12) involves the infimum

of a convex function of a over a > λ. If the convex function

attains its global minimum for 0 < a < λ, then the infimum in

(12) will be obtained at a = λ. In this case, it is easy to show

that NΘN ≤ ξj . Thus, if ξj has to be smaller than NΘN ,
the infimum in (12) must be obtained at the global minimum,

which lies at a > λ.7 Thus, whenever min(ξj , NΘN ) = ξj ,
we necessarily have

ξj = inf
a>λ

j

a
Λ∗(a+

1

j
) = inf

a>0

j

a
Λ∗(a+

1

j
) = jΘj ,

so that equality (b) follows, and we are done. �

7It follows that λ/a∗j < 1, which proves the claim made in part (ii) of
theorem 1.

B. Proof Outline of Proposition 6

Let Bi[t] ∈ {0, 1} denote the i.i.d fair ‘coin tosses’ that

decide which queue to serve when both the queues are

occupied. If Bi[t] = 1, then the second queue is served if

occupied in slot t; if Bi[t] = 0, the first queue is served

if occupied. If one of the queues is not occupied in slot t,
the occupied queue is served, and Bi[t] becomes irrelevant.

Let φ(t) be the empirical fraction of coin tosses in favor of

the second queue, defined analogously to the empirical input

rates in Section III. The dynamics of the scaled queue length

processes under RS is given by

q̇1(t) = x1(t)− (1− φ(t))

q̇2(t) = x2(t)− φ(t),

whenever q1(t) and q2(t) are non-zero. If either q1(t) = 0 or

q2(t) = 0, then

q̇1(t) + q̇2(t) = x1(t) + x2(t)− 1.

Here, x1(t) and x2(t) are the empirical rates of the input

processes.

Using a result analogous to Lemma 2, we can prove that

constant empirical rates for the inputs as well as the coin tosses

is optimal, within each of the regions (i) q1(t) > 0, q2(t) > 0
(ii) q1(t) > 0, q2(t) = 0, and (iii) q1(t) = 0, q2(t) > 0. The

problem can now be mapped to an instance of generalized

processor sharing with variable service rate, as treated in

[4]. The result follows by applying the GPS exponent results

to our symmetric case, and noting that the rate function

corresponding to the fair coin tosses is given by D(·||1/2).
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