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Abstract—In the first part of the paper, we study the impact
of scheduling, in a setting of parallel queues with a mix of
heavy-tailed and light-tailed traffic. We analyze queue-length
unaware scheduling policies, such as round-robin, randomized,
and priority, and characterize their performance. We prove
the queue-length instability of Max-Weight scheduling, in the
presence of heavy-tailed traffic. Motivated by this, we analyze
the performance of Max-Weight-α scheduling, and establish
conditions on the α-parameters, under which the system is
queue-length stable. We also introduce the Max-Weight-log
policy, which provides performance guarantees, without any
knowledge of the arriving traffic. In the second part of the
paper, we extend the results on Max-Weight and Max-Weight-
α scheduling to a single-hop network, with arbitrary topology
and scheduling constraints.

I. INTRODUCTION

The area of control of communication networks is one of
the most active and fruitful fields of research in recent years,
including several elaborate and interconnected forms of con-
trol, such as congestion control, routing, scheduling and
power control. Much of the theoretical foundation regarding
network stability was laid out in [13], where a communication
network was abstracted by using a constrained queueing
system. In that study, Tassiulas and Ephremides presented the
Max-Weight scheduling and Back-Pressure routing policies,
that are guaranteed to stabilize a queueing network, whenever
possible. Subsequently, numerous studies have addressed
variations or extensions of this policy in different settings.

In this paper we analyze the performance of various
scheduling policies, in a single-server system serving two
parallel queues, with a mix of heavy-tailed and light-tailed
arrivals. We then extend our results, to single-hop networks,
with arbitrary topology and scheduling constraints, and some
heavy-tailed traffic.

Heavy-tailedness has been studied extensively in related
fields, such as queueing theory [15] and task assignment in
server farms [6]. In the context of scheduling in queueing
networks, related work has been done by [1], [3], [4] and
[11]. A not surprising, common conclusion of these studies
is that scheduling policies that discriminate against the heavy-
tailed arrivals tend to achieve better performance. The present
study not only confirms this conclusion, but also determines
the extent to which a scheduling policy needs to discriminate
against the heavy-tailed arrivals, what performance guaran-
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tees can be achieved by doing so, and, most importantly, what
can happen otherwise.

The remainder of the paper is organized as follows: Section
II contains the model that we use in the first part of this
study, namely a single-server system with 2 parallel queues,
with a mix of heavy-tailed and light-tailed traffic, and also
a performance analysis for some popular scheduling policies
in this setting. We begin by analyzing some queue-length
unaware scheduling policies, such as round-robin, random-
ized, and priority, and characterize their performance. We
present the Max-Weight scheduling policy, and show that
the existence of a heavy-tailed arrival process causes the
queue-length instability of both queues. Then, considering the
Max-Weight-α scheduling policy, we associate the values of
the α-parameters with the tails of the arrival processes, and
provide sufficient conditions for the α-moments of the queue-
lengths to be finite. Finally, we introduce and analyze the
Max-Weight-log scheduling policy, which provides stabiity
guarantees, even when the tails of the arrival processes
are completely unknown. In Section III, we extend our
analysis of the Max-Weight and Max-Weight-α policies to
a single-hop network with arbitrary topology and scheduling
constraints, a model general enough to capture a class of
real-world communication networks. We conclude with a
discussion of the contributions and limitations of this study,
and possible future directions of research, in Section IV.

II. SCHEDULING IN PARALLEL QUEUES

A. Model and Definitions

We begin with the model of the queueing network that
we consider in the first part of this study, a single-server
system of 2 parallel queues. Time is slotted, and arrivals
occur at the end of each time-slot. We call the two queues
in the system H and L, and assume that they receive heavy-
tailed and light-tailed traffic, respectively. We denote their
queue-length stochastic processes as {QH(t); t ≥ 0} and
{QL(t); t ≥ 0}, and their arrival processes as {AH(t); t ≥ 0}
and {AL(t); t ≥ 0}, respectively, where AH(t) is the number
of packets that queue H receives at time-slot t, and similarly
for queue L. The arrival processes to each queue are assumed
to be independent and identically distributed over time, and
independent of each other. The size of the packets is fixed.
The server is assumed to be constantly connected to the two
queues, and has deterministic service rate of 1 packet per
time-slot.

The scheduling decision that has to be made at each time-
slot, is to determine which one of the two queues will be
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served. The scheduler has knowledge only of the current
length of the queues and of the time-slot index; hence we
restrict our analysis to Markovian scheduling policies. We
consider a number of members of this class, ranging from
queue-length unaware to queue-length aware, and from de-
terministic to randomized policies. However, all the policies
analyzed here are work-conserving, in the sense that they
allow the server to idle only when the system is empty.

Fig. 1. A system of 2 parallel queues with a mix of heavy and light tailed
traffic.

We will focus on the impact of scheduling in queueing
networks, in the presence of heavy-tailed traffic. Before we
proceed though, we should make this more specific.

Definition 1: The Tail Coefficient C of a nonnegative
random variable X is a positive constant, defined as

C = inf{c ∈ R+ | E[Xc] =∞}.

The Tail Coefficient is a generalization of the Tail Index
[10], and provides a rough measure of ‘how heavy-tailed’ the
distribution of a random variable is. As Definition 1 indicates,
the Tail Coefficient is determined only through the moments
of a random variable, and therefore, can be defined for any
probability distribution. In contrast, the Tail Index is defined
only for distributions whose tail decays polynomially.

Definition 2: An IID arrival process {A(t)} is called
heavy-tailed if A(t) has Tail Coefficient less than or equal
to 2. Otherwise, the arrival process is called light-tailed.

Note that an IID arrival process is heavy-tailed if the
variance of its underlying distribution is infinite. We assume
that the arrival process {AH(t)} is heavy-tailed, whereas
{AL(t)} is light-tailed. Let us now turn to the issues of
stability of a queueing network and admissibility of arriving
traffic.

Definition 3: A discrete-time queueing system is stable,
if it is modeled by a Markov Chain which is positive/Harris
recurrent.

In our setting, where arrivals and departures of packets are
integer quantities, stability is defined as positive recurrence.
The stability region of the system we study is determined by
the first moments of its arrival processes. So, define λH =
E[AH(1)] and λL = E[AL(1)], and assume, for the problem
to be meaningful, that both arrival rates are positive. We call
the pair of arrival processes to the two queues admissible if:
λH + λL < 1. Finally, we define throughput optimality as
follows: a scheduling policy is called throughput optimal, if
it stabilizes the queueing system for every admissible set of
arrival processes.

Clearly, for the system of parallel queues described above,
every work-conserving scheduling policy is throughput opti-
mal. Since work-conserving scheduling policies are our focus
in this paper, all the queueing systems to be analyzed are pos-
itive recurrent and converge to a steady-state distribution. So,
we turn our attention to secondary measures of performance,
such as the expected queue-length in steady-state. Our basic
criterion is whether this expected queue-length, or moments
of possibly different order, are finite or not.

Our analysis begins with a negative result: if a queue has
heavy-tailed arrivals, then its stationary expected length is
infinite, no matter what scheduling policy we apply.

Proposition 1: Consider the system of parallel queues de-
scribed above, with any admissible, IID traffic. The expected
length of queue H in steady-state is infinite, under any work-
conserving, scheduling policy.

Proof: Consider a fictitious queue H̃ , which has exactly
the same arrivals as queue H, but is served at every time-
slot with rate 1 packet per time-slot. We assume that both
systems have reached steady-state, and we observe them at a
typical time-slot τ . Being in steady-state, implies that there
was a time-slot before τ , when both systems were empty.
An easy, inductive argument can show that no matter which
scheduling policy we apply to the system of parallel queues,
the stationary queue-length of H dominates the queue-length
of H̃ at time-slot τ , for every sample path. Moreover, H̃ is
a discrete-time, stable Geo[B]/D/1 queue, a special case of
the Geo[B]/G/1 queue, discussed in Appendix A, where the
service time of each packet is deterministic and equal to 1. It
is known that the expected queueing delay of a typical packet
arriving to this queue in steady-state, is proportional to the
second moment of its arrivals, which in the heavy-tailed case
is infinite. Little’s Law (see [14] for a precise statement of
the result invoked here), and the deterministic domination
between the queue-lengths imply that the expected queue-
length of H in steady-state is infinite.

Note that the statement of Proposition 1 is true, not only
for the class of policies analyzed in this study, but for possi-
bly non-Markovian and/or non-work-conserving scheduling
policies, as well as much more general queueing systems.

B. Round-Robin Scheduling

Let us begin by considering scheduling policies that do
not take into account the lengths of the queues in their
decision, i.e., ‘queue-length unaware’ policies. We analyze
the performance of three well-known policies: round-robin,
randomized, and priority.

Consider the following version of the Round-Robin
scheduling policy: service alternates every time-slot between
the two queues, as long as packets are available for service
in both of them. Assume, without loss of generality, that the
scheduler attempts to serve queue L at even time-slots and
queue H at odd time-slots. If a queue is chosen for scheduling
and is empty, it loses its turn and the other queue is served
instead. We call this scheduling policy ‘work-conserving
Round-Robin’; Proposition 2 summarizes its performance.
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Proposition 2: Under the ‘work-conserving Round-Robin’
scheduling policy, the expected length of queue L in steady-
state is

1) finite, if λL < 1
2 ;

2) infinite, if λL > 1
2 .

Proof: see Appendix B.

C. Randomized Scheduling

We continue with the analysis of a ‘work-conserving
Randomized’ scheduling policy: at every time-slot a biased
coin is tossed and if heads come up, an event of probability q,
queue L is served; otherwise queue H is served. Coin tosses
are IID Bernoulli trials, independent of any other random
variable in our probabilistic model. If a queue is chosen for
service but is empty, it loses its turn and the other queue is
served.

Proposition 3: Under the ‘work-conserving Randomized’
scheduling policy, the expected length of queue L in steady-
state is

1) finite, if λL < q;
2) infinite, if λL > q.

Proof: The proof is very similar to the proof of Propo-
sition 2, and is omitted for brevity.

D. Priority Scheduling

The policies presented above, achieve finite expected
length of queue L, only for some admissible pairs of arrival
processes. Consider now the priority scheduling policy: serve
queue L whenever it is nonempty.

Proposition 4: Under the Priority scheduling policy, the
expected length of queue L in steady-state is finite.

Proof: Under the Priority scheduling policy, queue L is a
discrete-time, stable Geo[B]/D/1 queue, a special case of the
Geo[B]/G/1 queue, where the size of each burst of packets
has finite first and second moment, and the service time of
each packet is deterministic and equal to 1. The expected
queueing delay of a typical packet arriving to queue L in
steady-state is given by the formula presented in Appendix
A, and is finite. Thus, the expected queue-length of L is finite
as well.

E. Max-Weight Scheduling

So far, we have shown that we can guarantee finite
expected queue-length for L, by giving priority to it. Why
would we want to consider other scheduling policies? One
reason is that we are ultimately interested in more complex
models, involving time-varying connectivity (e.g., ON/OFF
channels), as well as queueing networks. In such models,
priority policies may not be throughput optimal. A second
reason are the fairness issues that arise when priority policies
are adopted.

It is well-known that for several more complex models,
‘queue-length aware’ policies are throughput optimal. So, let
us consider the Max-Weight policy, which in our setting is

equivalent to ‘serve the longest queue’. Ties are broken in fa-
vor of queue L. The following proposition presents a surpris-
ing negative result for this policy, which can be interpreted
as ‘queue-length instability of Max-Weight scheduling, in the
presence of heavy-tailed traffic’.

Proposition 5: Consider the system of parallel queues
described above, with any admissible, IID traffic. Under the
Max-Weight scheduling policy, the expected length of queue
L in steady-state is infinite.

Proof: see Appendix C.

F. Max-Weight-α Scheduling

As Proposition 5 suggests, Max-Weight scheduling per-
forms poorly in the presence of heavy-tailed traffic. Driven
by the idea of discriminating against heavy queues, we turn to
a slightly more general member of the same class, the Max-
Weight-α scheduling policy. The analysis of Max-Weight-α
scheduling, in the context of an input-queued switch, was
done in [7]. The scheduling decision of Max-Weight-α is
given by

arg max
n∈{H,L}

{Qαn
n (t)},

with ties broken arbitrarily. In contrast to most of the studies
that have analyzed this scheduling policy, we use different
values of α for each queue, smaller for the heavy queue and
larger for the light queue. An appropriate relation between
the values of the α-parameters and the Tail Coefficients of
the corresponding arrival processes, is given in Proposition
6.

Proposition 6: Consider the system of parallel queues
described above, with any admissible, IID traffic. Let CH and
CL be the Tail Coefficients of the arrival processes to queue
H and L, respectively. Under the Max-Weight-α scheduling
policy, if αH + 1 < CH and αL + 1 < CL, then the system
of parallel queues is stable, and for n ∈ {H,L}:

E[Qαn
n ] <∞,

where the random variables QH and QL are distributed
according to the stationary distributions of the queue-length
processes {QH(t)} and {QL(t)}, respectively.

Proof: It can be shown, that both the arrival processes
and the Max-Weight-α scheduling policy, satisfy the condi-
tions of Theorem 1 of [4], and hence the result follows. An
alternative, more direct proof, is presented in Appendix D.

It is evident from the proof of Proposition 6 that the closer
each of the α-parameters is to the value C−1 (or equivalently,
the stronger the performance guarantee we wish to provide),
the looser the upper bound becomes.

Example 1: Let the heavy-tailed arrival process have Tail
Coefficient CH = 2, and the light-tailed process have Tail
Coefficient CL = 12. The arriving traffic is assumed to be
admissible.

1) If Max-Weight-α scheduling is applied, with αL = 10
and αH = 1− ε, for some ε ∈ (0, 1], then Proposition
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6 implies that:
E[Q10

L ] <∞;

2) If Max-Weight scheduling is applied, then Proposition
5 implies that:

E[QL] =∞.

In fact, regarding the Max-Weight scheduling policy, we
can derive an even stronger result. Note that in the given
setting, the Max-Weight policy is equivalent to Max-Weight-
α scheduling, if we choose αH = αL. Combining the results
of Propositions 5 and 6, we have that every moment of the
stationary queue-length QL with order less than 1 is finite.
In contrast, all the moments of order 1 or higher are infinite.
Hence, for this particular example, under the Max-Weight
scheduling policy, we have a complete characterization of
all polynomial moments of the stationary length of queue L.
This, in turn, allows us to characterize the decay rate of the
tail of the corresponding distribution: as B becomes large,
P (QL > B) must decay roughly as 1/B2.

G. Max-Weight-log Scheduling

Even though Proposition 6 gives a complete description
of what can be guaranteed, in terms of the moments of
the queue-lengths, it has a possible drawback: the proper
values for the α-parameters have to be used, and for this
to happen, some knowledge of the Tail Coefficients of both
arrival processes is required. What if this requirement cannot
be met in some cases? Consider the scheduling policy, termed
Max-Weight-log, based on:

arg max
n∈{H,L}

{log(1 +Qn(t))}.

Proposition 7: Consider the system of parallel queues
described above, with any admissible, IID traffic. Under the
Max-Weight-log scheduling policy, the system is stable, and,
in steady-state,

E[log(1 +Qn)] <∞, ∀n ∈ {H,L}.

Proof: Similar to Proposition 6, it can be shown that
both the arrival processes and the Max-Weight-log scheduling
policy, satisfy the conditions of Theorem 1 of [4], and hence
the result follows.

Combinations of the two, into hybrid scheduling policies,
are possible too: give polynomial weight to the queues whose
Tail Coefficients of the arrivals are known — give logarithmic
weight to the queues whose Tail Coefficients are unknown.

Example 2: Consider the system of parallel queues de-
scribed above, where the stochastic process {AL(t)} is
exponentially light, i.e., the tail of the underlying distribution
decays exponentially. In contrast, the only fact that is known
about the process {AH(t)} is that it is heavy-tailed. Consider
a scheduling policy that relies on the maximization:

max{log(1 +QH(t)), QαL

L (t)}.

By choosing appropriately the parameter αL, we can guar-
antee the finiteness of any polynomial moment of QL.

III. SCHEDULING IN SINGLE-HOP NETWORKS

A. Model and Definitions

Let us now extend our analysis of Max-Weight and Max-
Weight-α policies to a single-hop queueing network, with
arbitrary topology and scheduling constraints. Again we
assume that time is slotted and that arrivals occur at the end
of each slot. Our network is represented by a directed graph
G = (N ,L), where N is the set of nodes and L is the set of
links of the network. Our model involves single-hop traffic
flows, where packets arrive at the source node of a link, for
transmission to the node at the other end of the link.

In general, not all links can be activated at every time-slot.
A set of links that can be activated concurrently is called a
feasible schedule. We call S the set of all feasible schedules,
which is an arbitrary subset of the powerset of L. We assume
that all attempted transmissions of packets are successful,
and that the transmission/service rates for all queues, and
for all feasible schedules, are deterministic, bounded above
by a finite constant Smax, and bounded below by a positive
constant Smin. A scheduler is to determine, at each time-slot,
which feasible schedule to activate; similar to the first part
of the paper, we assume that the scheduler has knowledge of
all the queue-lengths but only at the current time-slot.

Call F the set of all flows supported by the network. Note
that F can be identified with L, since the network has only
single-hop traffic. Consider the following quantities:
Qf (t) is the number of packets in queue f , buffering the

traffic of flow f , at time-slot t;
Af (t) is the number of arrivals to queue f , at time-slot t;
Sf (t) is the number of packets that are scheduled for

transmission from queue f , at time-slot t (not necessarily
the number of packets that are transmitted because the queue
may be empty).

We assume that the stochastic processes {Af (t)}, f ∈ F
are IID over time and independent of each other, with rates
λf , f ∈ F . The Single-Hop Queue Dynamics for each flow
f are given by the expression:

Qf (t+ 1) = Qf (t) + ∆f (t),

where

∆f (t) = Qf (t) +Af (t)−min{Qf (t), Sf (t)}.

The time-varying scheduling vector S(t) = [Sf (t)] ∈ S is
determined by the scheduling policy that we apply. Let us
now state for completeness some standard definitions, that
will be useful to our analysis.

Definition 4: The Stability Region of the single-hop
queueing network described above, is defined as the closure
of the set of all arrival rate vectors (E[Af (1)]; f ∈ F ),
for which there exists a scheduling policy that stabilizes the
network.

Definition 5: Consider the single-hop queueing network
described above, and a set of IID arrival processes
{Af (t)}, f ∈ F. This set is called admissible if
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1) the Tail Coefficient of every arrival process is strictly
greater than 1;

2) the vector (E[Af (1)]; f ∈ F ) lies in the interior of
the network’s Stability Region.

B. Max-Weight Scheduling

Under the Max-Weight scheduling policy, the scheduling
vector S(t) is a solution to the following optimization prob-
lem:

S(t) ∈ arg max
[sf ]∈S

{
∑
f∈F

Qf (t) · sf}.

Proposition 8: Consider the single-hop queueing network
described above, with any admissible, IID traffic, under the
Max-Weight scheduling policy. Call Q the set of queues
of the network, and consider any partition of Q into two
nonempty sets A and Ac. If

1) A contains at least one queue with infinite expected
length in steady-state;

2) no link that carries traffic of A, can be activated
concurrently with a link that carries traffic of Ac,

then Ac contains at least one queue whose stationary ex-
pected length is infinite.

Proof: The proof is similar to the proof of Proposition
5, and is omitted for brevity.

Notice that at each time-slot, only one of the two sets can
be served, so, in a way, the two sets are ‘parallel to each
other’. A subtle but important point, is that now we refer to
queues with infinite expected length, not necessarily queues
with heavy-tailed arrivals. Proposition 8 suggests that there
is more than one way for a queue to become queue-length
unstable: either it has heavy-tailed arrivals, or it competes
with a queue that has heavy-tailed arrivals, or it competes
with a queue that has grown unbounded by competing
with a queue that has heavy-tailed arrivals, etc. Therefore,
in single-hop networks, we can have a very interesting
phenomenon: the propagation of queue-length instability.
Obviously, the extent of this propagation depends on the
scheduling constraints of the network. The following example
and corollaries illustrate the importance of Proposition 8,
with respect to this phenomenon.

Example 3: Consider the wireless ring network of Fig. 2,
under the two-hop interference model. The network consists
of 6 nodes, each of which transmits packets to the node
next to it, in the clockwise direction. The arriving traffic is
admissible and IID, and Max-Weight scheduling is applied.
The feasible schedules in this network are {1, 4}, {2, 5}, and
{3, 6}.

Let the queue of node 1 have heavy-tailed arrivals, and
the rest of the queues have light-tailed arrivals. Consider
the partition of the set of queues {{1, 2, 4, 5}, {3, 6}}. This
partition satisfies the conditions of Proposition 8, so at least
one queue in the set {3, 6} blows up, in expectation. Repeat-
ing this argument for the partition {{1, 3, 4, 6}, {2, 5}}, we
conclude that at least one queue in the set {2, 5} blows up, in

Fig. 2. A wireless ring network, with heavy-tailed traffic.

expectation. Summarizing, even though only one queue of the
network has heavy-tailed arrivals, because of the propagation
of queue-length instability, at least three queues have infinite
expected length in steady-state.

Corollary 1: Consider a single-server system of N parallel
queues, with any admissible, IID traffic, under Max-Weight
scheduling. If there exists a queue with heavy-tailed arrivals,
then all N queues have infinite expected length in steady-
state.

Corollary 2: Consider a N×N input-queued switch, with
any admissible, IID traffic, under Max-Weight scheduling. If
there exists a queue with heavy-tailed arrivals, then at least
N , out of the total N2 virtual queues, have infinite expected
length in steady-state.

C. Max-Weight-α Scheduling

Under the Max-Weight-α scheduling policy, the schedul-
ing vector S(t) is a solution to the following optimization
problem:

S(t) ∈ arg max
[sf ]∈S

{
∑
f∈F

Q
αf

f (t) · sf}.

Similar to the case of parallel queues, the values of the
nonnegative parameters αf , f ∈ F , are crucial. Proposition
9 describes the performance that this scheduling policy
achieves, when the values of the α-parameters are properly
selected.

Proposition 9: Consider the single-hop queueing network
described above, with any admissible, IID traffic. Let Cf be
the Tail Coefficient of the arrival process {Af (t)}. Under
the Max-Weight-α scheduling policy, if αf + 1 < Cf for all
f ∈ F, then the queueing network is stable, and

E[Qαf

f ] <∞, f ∈ F.

Proof: The proof is similar to the proof of the Max-
Weight-α result for parallel queues (Proposition 6), and is
omitted for brevity.

IV. DISCUSSION

The vast majority of past studies dealing with scheduling
in a queueing network have assumed that all arrival processes
are light-tailed, i.e., E[A2] < ∞. In contrast, we dealt with
heavy-tailed traffic explicitly. In order to motivate the subse-
quent work, we analyzed the queue-length stability of some
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queue-length unaware scheduling policies, such as round-
robin, randomized, and preemptive priority, in a simple sys-
tem of parallel queues, under a mix of heavy-tailed and light-
tailed traffic. We then broadened our scope, by considering a
single-hop network, with arbitrary topology and scheduling
constraints, a model general enough to capture important,
real-world communication networks. We analyzed the queue-
length stability of the popular Max-Weight scheduling policy
in such a setting, and showed that the existence of a queue
with heavy-tailed arrivals can have a significant impact on the
performance of the whole network. Finally, we considered
the Max-Weight-α scheduling policy, and proved that if the
α-parameters are chosen appropriately, then the network is
stable, in the positive recurrence sense, and the α-moments
of the queue-lengths are finite.

It is straightforward to further extend the results of
Proposition 9 to multi-hop networks, by associating the
α-parameters of a Max-Weight-α scheduling and Back-
Pressure-α routing policies with the Tail Coefficients of the
arrival flows.

Clearly, the most restrictive assumption of the present
study is the IID nature of the arriving traffic, when evidence
suggests that strong correlations can appear [8]. In case
these correlations are bounded in time, then generalizing
our results is possible, by considering a multi-step Lyapunov
drift argument. In contrast, if the correlations in time extend
to infinity, and particularly if the arriving traffic is long-
range dependent, new paths must be investigated. This is an
interesting and important direction of future research.

V. APPENDIX A - THE Geo[B]/G/1 QUEUE

The Geo[B]/G/1 queue is a discrete-time queue, where
jobs (packets in our setting) arrive in batches (traffic bursts).
The number of jobs in the various batches are independent
and identically distributed random variables, and the arrival
of batches forms a Bernoulli process (IID, geometric inter-
arrival times). The service time of each job is an independent
and identically distributed copy of some integer random
variable, following a general distribution. We assume that
the service discipline is ‘First Come, First Served’ and that
arrivals occur at the end of each time-slot. The expected
queueing delay of a typical job arriving to a discrete-time,
stable Geo[B]/G/1 queue in steady-state, is given by:

E[D] =
λ2b2 − λρ+ λ2b

2λ(1− ρ)
,

where λ and λ2 are the first and second moments of the
number of jobs in each batch, b and b2 are the first and second
moments of the service time of each job, and ρ = λ · b is the
traffic intensity, which has to be strictly less than 1 for the
queue to be stable. More details about the Geo[B]/G/1 queue
can be found in [12]. What is important for our analysis, is
the fact that the expected delay of a Geo[B]/G/1 queue scales
with the second moment of the batch size, which in the case
of heavy-tailed arrivals is infinite.

VI. APPENDIX B - PROOF OF PROPOSITION 2

Suppose that λL < 1
2 . Consider a fictitious queue F that

has the same arrivals as queue L, but is scheduled for service
only at even time-slots. Therefore, it does not get the extra
service slots that L does whenever queue H is empty. We
assume that both queues are in steady-state, and we observe
them at a typical time-slot τ . Arguing similarly to Proposition
1, we can show that the length of queue F dominates the
length of L at a typical time-slot τ , for every sample path.
Since queue L, and consequently queue F, has light-tailed
arrivals, the first and second moment of the size of the
bursts of packets it receives are finite. Moreover, queue F
is a discrete-time, stable Geo[B]/D/1 queue. The expected
queueing delay of a typical packet arriving to it in steady-
state is given by the formula presented in Appendix A, and is
finite. Thus, the expected queue-length of F is also finite. The
fact that the expected length of queue L is finite results from
the deterministic domination between the stationary lengths
of the two queues.

Now suppose that λL > 1
2 . Consider a fictitious system

of two parallel queues, very similar to the original one:
queue H̃ has the same arrivals as queue H, but instead of
‘work-conserving Round-Robin’, it receives a deterministic
service of 1 packet/time-slot, at every time-slot. Queue L̃ has
the same arrivals as queue L, and is served with the same
deterministic rate at i) even time-slots and ii) odd time-slots,
if queue H̃ is empty.

Suppose that both the actual and the fictitious system are
in steady-state, and we observe them at a typical time-slot τ .
First, we compute the expected queue-length of L̃, at time-
slot τ . Consider the events Γ(τ) = {H̃ nonempty at time
τ} and its complement, Γc(τ). We can express the expected
queue-length of L̃, viewed at a typical time-slot τ , as follows:

E[QL̃(τ)] = E[QL̃(τ) | Γ(τ)] · P (Γ(τ))
+E[QL̃(τ) | Γc(τ)] · P (Γc(τ)).

The fact that H̃ is a stable queue, is sufficient to guarantee
that P (Γ(τ)) > 0 and P (Γc(τ)) > 0. Conditioning on the
event Γ(τ), call Z(τ) the age of the busy period of H̃ , at
time-slot τ . Clearly, this random variable is bounded below
by the age of the traffic burst in service, at time-slot τ (the
number of packets from this burst that are already served).
From renewal theory [5], we know that the expectation of the
latter, is proportional to the second moment of the arrivals
to queue H̃ . Since this process is heavy-tailed, the expected
age of the traffic burst in service, at time-slot τ , is infinite,
which leads to:

E[Z(τ) | Γ(τ)] =∞.

Now call τ̃ the time-slot that initiates the busy period of H̃ ,
and consider the stochastic processes {AL̃(t)} and {SL̃(t)},
representing the arrivals and departures from queue L̃. One
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can see that

QL̃(τ) ≥
τ∑
k=τ̃

AL̃(k)−
τ∑
k=τ̃

SL̃(k). (1)

Notice that we have constructed the fictitious system so
that conditioning on the event Γ(τ) does not change the
statistics of the arrivals of L̃, which are identical to the
arrivals to queue L. Moreover, if we start from time-slot τ
and go backwards in time, time-slot τ̃ is a stopping time for
the process {AL̃(t)}; hence, we can invoke Wald’s equality.
Furthermore, conditioned on the event Γ(τ), queue L̃ is
served once every two time-slots. Considering the conditional
expectation of Eq. (1), and taking into account these facts,
we get:

E[QL̃(τ) | Γ(τ)] ≥ E[Z(τ) | Γ(τ)] · (λL −
1
2

)− 1
2
,

which implies that

E[QL̃(τ) | Γ(τ)] =∞,

and thus
E[QL̃(τ)] =∞.

Now we come to the second part of the proof, namely
showing that if the expected queue-length of L̃ is infinite,
then the expected length of L has to be infinite too. The fact
that the two systems are in steady-state, guarantees that there
was a time-slot before τ , when both systems were empty.
For convenience, call this time-slot 0. A simple, inductive
argument is sufficient to prove that QH(t) ≥ QH̃(t), for all
t ≥ 0. We now focus on the evolution of queues L and L̃,
whose dynamics are described by the set of equations:

QL(t+ 1) = QL(t)− SL(t) · 1{QL(t)>0} +AL(t);
QL̃(t+ 1) = QL̃(t)− SL̃(t) · 1{QL̃(t)>0} +AL(t);

and QL(0) = QL̃(0) = 0. Both queues are served on two
occasions i) at even time-slots (common for L and L̃) and
ii) at odd timeslots, whenever queue H/H̃ is empty. Since
QH(t) ≥ QH̃(t), for all t ≥ 0, the set of time-slots when
queue H is empty is a subset of the set of time-slots when
queue H̃ is empty. So, the service opportunities for the two
queues satisfy:

SL̃(t) ≥ SL(t), ∀t ≥ 0.

An inductive argument can show:

QL̃(t) ≤ QL(t), ∀t ≥ 0,

which implies that

E[QL(τ)] ≥ E[QL̃(τ)] =∞.

Finally, if QL is a random variable, distributed according
to the stationary distribution of the queue-length process
{QL(t)}, the fact that we observe the system at a typical
time in steady-state, implies that

E[QL] = E[QL(τ)] =∞.

VII. APPENDIX C - PROOF OF PROPOSITION 5

Suppose that the system of parallel queues is in steady-
state, and a typical burst of packets arrives to queue L, at
time-slot τ . We distinguish between two cases:

Consider first the event Γ(τ), that QL(τ) < QH(τ).
Define the queueing delay WL(τ) that this burst of packets
experiences, as the number of time-slots between its arrival
and the time it starts getting served. Consider the following,
best-case scenario about WL(τ): as soon as this typical burst
arrives to queue L, queue H receives no more packets and is
served at every time-slot, until its length becomes equal to
the queue-length of L. At that point, the scheduling policy
begins to serve queue L, until the first packet of the burst
is finally served. Call T the number of time-slots until the
service switches from queue H to queue L. Our best-case
scenario gives a lower-bound on WL(τ):

WL(τ) ≥ QL(τ) + T. (2)

Under Max-Weight scheduling, for the service to switch,
T must satisfy:

QL(τ) +
T∑
k=0

AL(τ + k) ≥ QH(τ)− T,

which implies that
T∑
k=0

[AL(τ + k) + 1] ≥ QH(τ)−QL(τ).

The last inequality, combined with Wald’s equality, gives

E[T | Γ(τ)] · (λL + 1) ≥ E[QH(τ) | Γ(τ)]
−E[QL(τ) | Γ(τ)]. (3)

Taking the conditional expectation of both sides of Eq. (2)
and combining it with Eq. (3), results in

E[WL(τ) | Γ(τ)] ≥ E[QL(τ) | Γ(τ)] + E[T | Γ(τ)]

≥ 1
λL + 1

· E[QH(τ) | Γ(τ)]

+E[QL(τ) | Γ(τ)] − 1
λL + 1

· E[QL(τ) | Γ(τ)]

≥ 1
λL + 1

· E[QH(τ) | Γ(τ)]. (4)

Consider now the event Γc(τ), that QL(τ) ≥ QH(τ).
Consider also the following, best-case scenario about the
delay WL(τ) that the typical burst of packets experiences in
this case: as soon as the burst arrives, queue L starts getting
served constantly, until the first packet of the burst is served.
Our best-case scenario indicates a lower-bound on the delay:

WL(τ) ≥ QL(τ) ≥ QH(τ) ≥ 1
λL + 1

·QH(τ),

which implies that

E[WL(τ) | Γc(τ)] ≥ 1
λL + 1

· E[QH(τ) | Γc(τ)]. (5)

118



Since the system is assumed to be in steady-state, both
events Γ(τ) and Γc(τ) have positive probability, so the
conditional expectations that we considered are well-defined.
Proposition 1 and the BASTA property (see [9] for a precise
statement) imply that

E[QH(τ)] =∞. (6)

Combining Eq. (4), (5) and (6), we have:

E[WL(τ)] ≥ 1
λL + 1

· E[QH(τ)] =∞. (7)

Little’s law and Eq. (7) imply that the expected number of
traffic bursts, and hence the expected number of packets in
queue L in steady-state, is infinite. So, if QL is some random
variable, distributed according to the stationary distribution
of the queue-length process {QL(t)}:

E[QL] =∞.

VIII. APPENDIX D - PROOF OF PROPOSITION 6
Define the queue-length vector Q = (QH , QL) as the state

of the system, and consider the Lyapunov function:

V (Q) =
∑

n∈{H,L}

1
αn + 1

Qαn+1
n .

We have:

E[V (Q(t+ 1)) | Q(t)]

=
∑

n∈{H,L}

E
[ 1
αn + 1

(Qn(t) + ∆n(t))αn+1 | Q(t)
]
,

where
∆n(t) = An(t)− Sn(t) · 1{Qn(t)>0}.

Here, An(t) and Sn(t) represent the number of arriving and
departing packets from queue n at time-slot t. Note that
for the system of parallel queues described in Section II,
Sn(t) can only take the values 0 and 1. Finally, the indicator
function 1{Qn(t)>0} ensures that packets depart only from
nonempty queues. Throughout the proof we use the shorthand
notation:

Vn(Qn(t)) =
1

αn + 1
Qαn+1
n (t).

We now consider the conditional expectation of the terms
Vn(Qn(t+ 1)), distinguishing between two cases:

Regarding the term(s) Vn(Qn(t)) with αn + 1 < 2
(corresponding to queue H, and possibly queue L, depending
on the value of αL), consider the 0th order Taylor expansion
around Qn(t):

1
αn + 1

(Qn(t) + ∆n(t))αn+1

=
1

αn + 1
Qαn+1
n (t) + ∆n(t) · ξαn ,

for some ξ ∈ [Qn(t)− 1{Qn(t)>0}, Qn(t) +An(t)]. Thus,

Vn(Qn(t+ 1)) = Vn(Qn(t)) + ∆n(t) · ξαn ,

and

E[Vn(Qn(t+ 1)) | Q(t)]
= Vn(Qn(t)) + E[∆n(t) · ξαn | Q(t)].

Consider the event Γn(t) = {∆n(t) < 0} and its comple-
ment. Then,

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+E[∆n(t) · (Qn(t)− 1{Qn(t)>0})αn | Q(t),Γn(t)]

·P (Γn(t) | Q(t))
+E[∆n(t) · (Qn(t) +An(t))αn | Q(t),Γcn(t)]

·P (Γcn(t) | Q(t)).

Since Qn(t) and An(t) are nonnegative integers, and 0 ≤
αn < 1, it is not difficult to verify that:

(Qn(t) +An(t))αn ≤ Qαn
n (t) +Aαn

n (t),
(Qn(t)− 1{Qn(t)>0})αn ≥ Qαn

n (t)− 1.

Using these inequalities, we have:

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+E[∆n(t) | Q(t)] ·Qαn

n (t)
+E[−∆n(t) | Q(t),Γn(t)] · P (Γn(t) | Q(t))

+E[∆n(t) ·Aαn
n (t) | Q(t),Γcn(t)] · P (Γcn(t) | Q(t)),

and

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+E[∆n(t) | Q(t)] ·Qαn

n (t)
+1 + E[Aαn+1

n (t) | Q(t),Γcn(t)] · P (Γcn(t) | Q(t)).

In the last equation we used the fact that when ∆n(t) < 0
(event Γn(t)), then ∆n(t) = −1. Also, when ∆n(t) ≥ 0
(event Γcn(t)), then ∆n(t) ≤ An(t), so that ∆n(t) ·Aαn

n (t) ≤
Aαn+1
n (t). Since αn+1 < Cn, we know that E[Aαn+1

n (t)] <
∞, which implies that E[Aαn+1

n (t) | Q(t),Γcn(t)] <∞. So,
there exists a finite constant bn, such that:

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+(λn − Sn(t)) ·Qαn

n (t) + bn.

This, in turn, implies (trivially) that for every yn > 0, there
exists some finite constant Bn(yn) such that:

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+(λn − Sn(t)) ·Qαn

n (t)

+
yn
4
·Qαn

n (t) +Bn(yn).

Regarding a possible term Vn(Qn(t)) with αn + 1 ≥ 2
(corresponding to queue L, if αL is chosen to be greater
than or equal to 1), consider the 1st order Taylor expansion
around Qn(t):

1
αn+1 (Qn(t) + ∆n(t))αn+1

= 1
αn+1Qn(t)αn+1 + ∆n(t) ·Qαn

n (t)

+∆2
n(t)
2 · αn · ξαn−1,
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for some ξ ∈ [Qn(t)− 1{Qn(t)>0}, Qn(t) +An(t)]. Thus,

E[Vn(Qn(t+ 1)) | Q(t)] = Vn(Qn(t))
+E[∆n(t) | Q(t)] ·Qαn

n (t)

+E
[∆2

n(t)
2
· αn · ξαn−1|Q(t)

]
.

Since αn − 1 ≥ 0, the last term can be bounded above by:

E
[∆2

n(t)
2
· αn · ξαn−1 | Q(t)

]
≤ E

[∆2
n(t)
2
· αn · (Qn(t) +An(t))αn−1 | Q(t)

]
.

It is easy to verify that

(Qn(t) +An(t))αn−1 ≤ 2αn−1 · (Qαn−1
n (t) +Aαn−1

n (t)),

and also
∆2
n(t) ≤ A2

n(t) + 1.

Using these inequalities we have:

E
[∆2

n(t)
2
· αn · ξαn−1 | Q(t)

]
≤ 2αn−2 · αn · (E[A2

n(t)] + 1) ·Qαn−1
n (t)

+2αn−2 · αn · (E[Aαn+1
n (t)] + E[Aαn−1

n (t)]).

Since 2 ≤ αn + 1 < Cn, we know that the terms
E[A2

n(t)], E[Aαn+1
n (t)], and E[Aαn−1

n (t)] are finite. So, for
every yn > 0, there exists some finite constant Bn(yn) such
that:

E
[∆2

n(t)
2
· αn · ξαn−1 | Q(t)

]
≤ yn

4
·Qαn

n (t) +Bn(yn).

Hence,

E[Vn(Qn(t+ 1)) | Q(t)] ≤ Vn(Qn(t))
+(λn − Sn(t)) ·Qαn

n (t)

+
yn
4
·Qαn

n (t) +Bn(yn).

Summing over n ∈ {H,L}, we have an upper bound for
the Lyapunov drift:

E[V (Q(t+ 1)) | Q(t)] ≤ V (Q(t))

+
∑

n∈{H,L}

(λn − Sn(t)) ·Qαn
n (t)

+
∑

n∈{H,L}

yn
4
·Qαn

n (t) +
∑

n∈{H,L}

Bn(yn).

The admissibility of the arriving traffic implies the existence
of a positive constant γ, such that:∑

n∈{H,L}

λn = 1− γ.

Moreover, by the definition of the Max-Weight-α scheduling
policy, we know that∑

n∈{H,L}

Sn(t) ·Qαn
n (t) = max

n∈{H,L}
{Qαn

n (t)}.

Recall that yn can be chosen aribitarily small. By suitably
choosing yn = γ for all n, we have:∑

n∈{H,L}

(λn + yn) ≤ 1− γ/2.

So, the Lyapunov drift term can be bounded above by:

E[V (Q(t+ 1)) | Q(t)] ≤ V (Q(t))

−γ
2
· max
n∈{H,L}

{Qαn
n (t)}+

∑
n∈{H,L}

Bn(γ),

which implies that for every n ∈ {H,L}:

E[V (Q(t+ 1)) | Q(t)] ≤ V (Q(t))

−γ
2
·Qαn

n (t) +
∑

n∈{H,L}

Bn(γ).

By Foster’s Criterion for irreducible Markov Chains [2],
the queue-length processes {QH(t)} and {QL(t)} converge
in distribution to some random variables QH and QL re-
spectively. Additionally, Fatou’s Lemma, the Law of Iterated
Expectations and a telescopic summation of terms, are suffi-
cient to show that

E[Qαn
n ] ≤ 2

γ
·

∑
n∈{H,L}

Bn(γ) < ∞, n ∈ {H,L}.
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