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Abstract—In this paper, we consider a distributed one-hop
wireless network with n pairs of transmitters and receivers. It
is assumed that each transmitter/receiver node is only connected
to k receiver/transmitter nodes which are defined as neighboring
nodes. The channel between the neighboring nodes is assumed
to be Rayleigh fading. The objective is to find the maximum
achievable sum-rate of the network in the asymptotic case of
n, k → ∞. It is shown that the asymptotic throughput of the
system scales as n log k

k
. An opportunistic on-off scheduling is

proposed and shown to be asymptotically throughput optimal.

I. INTRODUCTION

Throughput maximization in multi-user wireless networks
has been addressed from different perspectives; resource allo-
cation [1], scheduling [2], routing by using relay nodes [3],
exploiting mobility of the nodes [4] and exploiting channel
characteristics (e.g., power decay-versus-distance law [5]–[7],
geometric pathloss and fading [8], [9]).

In recent years, power and spectrum allocation schemes
have been extensively studied in cellular and multihop wire-
less networks [1], [10]–[12]. Much of these works rely on
centralized and cooperative algorithms. Clearly, centralized
resource allocation schemes provide a significant improvement
in the network throughput over decentralized (distributed)
approaches. However, they require extensive knowledge of
the network configuration. In particular, when the number of
nodes is large, deploying such centralized schemes may not be
practically feasible. Decentralized resource allocation schemes
have been extensively studied as alternatives to centralized
schemes [13]–[16].

In decentralized schemes, the decisions concerning network
parameters (e.g., rate and/or power) are made by the indi-
vidual nodes based on their local information. Most of the
works on the decentralized throughput maximization target the
Signal-to-Interference-plus-Noise Ratio (SINR) parameter by
using iterative algorithms [14], [15]. This leads to the use of
game theoretic concepts [17] where the main challenge is the
convergence issue. A more practical approach to avoid the
extra amount of overhead in iterative algorithms is to rely
on the channel gains as local decision parameters. References
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[18] and [19] consider a multihop ad hoc network model with
random connections and devise routing schemes that maximize
the network throughput. In [20], a wireless network with
n pairs of transmitters/receivers is considered in which the
transmission between each transmitter and its corresponding
receiver takes place in one hop and the channel between
each two nodes is modeled as Rayleigh fading. A distributed
power allocation scheme called threshold-based on-off scheme
(i.e., links with a direct channel gain above certain threshold
transmit at full power and the rest remain silent) is introduced
and shown to be order-optimal in the asymptotic case of
n →∞. Furthermore, the sum-rate throughput of the network
is shown to scale as Θ(log n).

Distributed one-hop networks are extensively studied and
have been considered in wireless standards. Local Area Net-
works (LAN) using unlicensed spectrum (e.g. Wi-Fi systems
based on IEEE 802.11b standard [21]) are a typical example of
such networks. In a LAN, there are several fixed nodes, called
access points (APs). Mobile users can connect to the internet
through APs. In the downlink phase, APs acts as transmitters
and mobile terminals act as receivers. Each receiver observes
the dominant part of the interference from the neighboring
active transmitters in the network. In practice, one of the
main parameters that influence the performance of the network
is the typical range of the transmission, which is referred
as coverage. Having more direct neighbors can increase the
probability of a successful reception from at least one of
the neighbors. However, it can also decrease the chance of
successful decoding due to the overall larger interference.

In this paper, we consider a distributed one-hop wireless
network with n transmitters and n receivers. We simplify the
interference model by introducing the notion of neighbor, i.e.,
a pair of transmitter and receiver are referred as neighbors,
if there exists a communication channel between them. In
practice, the model is justified by observing the simple fact
that signals from far transmitter nodes is negligible due to
the attenuation. In this set-up, coverage is defined from the
perspective of each wireless node as the number of neighbors
that it can communicate with directly, which is assumed to be
k for all nodes. Assuming Rayleigh fading for the connected
links, i) the scaling of the maximum sum-rate throughput of
the network is derived and is shown to scale as n log k

k in



the asymptotic region of n, k → ∞, and ii) an opportunistic
on-off strategy is introduced which is shown to achieve the
maximum sum-rate throughput. The difference between this
work and the works of [20], [22] is that either they consider
only the case of coverage equal to n, i.e., all-connected nodes,
while we consider a more general network set-up, or the
transmitter/receiver pairs are assumed to be dedicated, i.e.,
each transmitter aims to communicate with only one specific
receiver, while in this work, each transmitter can send data to
any receiver which is connected to it. This makes the problem
more challenging as the scheduling is involved. However, it is
demonstrated that in the case of k = n, scheduling provides
no gain in the asymptotic throughput.

The rest of the paper is organized as follows: In section II,
the network model and assumptions are described. Section III
is devoted to the asymptotic analysis of sum-rate throughput,
and finally, section IV concludes the paper.

II. NETWORK MODEL

We consider a wireless communication network with n pairs
of transmitters and receivers. We assume that each transmitter
is a neighbor to k receivers and each receiver is a neighbor to
k transmitters. It is assumed that both n and k tend to infinity.
Each transmitter can send data to any of its corresponding
neighboring receivers and the transmission takes place in one
hop. Let us define Φi as the set of the receivers which are
neighbors to ith transmitter and Ψi as the set transmitters
neighbors to ith receiver.

The channel between ith transmitter and jth receiver is
characterized by the channel gain hij . It is assumed that
the channel gains are independent and identically distributed
(i.i.d.) random variables with cumulative distribution function
(CDF) F (.). We consider an additive white Gaussian noise
(AWGN) with unit variance at the receivers.

We assume that receivers are equipped with single user
detectors, i.e. each receiver decodes only the signal from the
intended transmitter and consider the interference from other
transmitters as noise. It is also assumed that the transmitters
utilize on-off power scheme, i.e., they either transmit with
full power, or remain silent. The power constraint of all
transmitters is assumed to be equal to ρ. Assuming Gaussian
signal transmission from all the transmitters, the interference
distribution is also Gaussian. Therefore, the maximum rate of
the transmitter i to the receiver j ∈ Φi is equal to

rij = log
(

1 +
hij

υ + Iij

)
(1)

where Iij =
∑

l∈Ij ,l 6=j hil, in which Ij denotes the set of
active transmitters in Ψj , and υ , 1

ρ . In this paper, the
performance measure is the average system throughput which
is defined as the average sum-rate of all links.

III. THROUGHPUT ANALYSIS

A. Lower-bound on the average throughput

In this part, we derive a lower bound on the average
throughput of the system. Let Φ(τ)

i ∈ Φi denote the set of

the receivers which their corresponding channel gains to the
transmitter i are above τ . Similarly, let Ψ(τ)

i ∈ Ψi denote the
set of transmitters which their corresponding channel gains to
the receiver i are above τ . We give the following opportunistic
scheme, which is called opportunistic on-off scheme:

At the receivers, the channel gains are estimated. A single-
bit data is fed back to the transmitters acknowledging permis-
sion of transmission. If the channel gain of only one of the
links is above τ , the receiver acknowledges the corresponding
transmitter for the transmission permission. If the transmitter
receives acknowledgment from only one receiver, it transmits
to the corresponding receiver with full power. Otherwise, it
remains silent.

This opportunistic scheme constructs a one-to-one map from
the set of transmitters to the set of receivers. In fact, the
transmitter i and the receiver j communicate iff Φ(τ)

i = {j}
and Ψ(τ)

j = {i}. Let us call such an event L. Assume that
πi’s are the indices of the active transmitters and θi’s are
the corresponding receivers. The average throughput of the
opportunistic scheduling can be written as follows:

T = E

{
n∗∑

i=1

log
(

1 +
hπiθi

υ + Iπiθi

)}
, (2)

where n∗ is the number of active transmitters and the expecta-
tion is taken over n∗, hπiθi , and Iπiθi . The following theorem
gives a lower-bound on the average throughput based on the
proposed opportunistic on-off scheme:

Theorem 1 The asymptotic average throughput of the pro-
posed opportunistic scheme in a Rayleigh fading environment
can be lower-bounded as follows:

T ≥ n log k

k
, (3)

as n, k →∞.

Proof: In order to derive the average throughput, we first
derive the probability of activation for any of the transmitters.
The probability of the activation event can be lower bounded
by the event that the channel gain between the transmitter
to exactly one receiver in its neighborhood is greater than
τ and the channel gain of this receiver to the rest of the
transmitters in its neighborhood is less than τ . Hence, due
to the independence of the channels, the probability that a
transmitter becomes active can be bounded as follows

Pr(L) ≥ k(1− F (τ))F (τ)2k−1, (4)

where F (.) denotes the CDF of the channel gain which is
equal to F (τ) = 1−e−τ in the case of Rayleigh fading. Noting
that for the active links the corresponding channel gains are
above τ , the average throughput in (2) can be lower-bounded
as follows:

T ≥ E
{∑

log
(

1 +
τ

υ + Iπiθi

)}

≥ E

{
n∗ log

(
1 +

τ

υ + 1
n∗

∑n∗
i=1 Iπiθi

)}
, (5)



where the second inequality results from the convexity of
log(1+ a

x+b ) with respect to x and applying Jensen’s inequal-
ity. By selecting τ = log(2k), we have F (τ) = 1− 1

2k . Using
(4), we have Pr(L) ≥ 1

2 (1 − 1
2k )2k−1 ≥ 1

2e for all k. This
implies that E {n∗} ≥ n

2e and as a result, n∗ → ∞ with
probability one. Using Tchebychev’s inequality, we have

Pr

(∣∣∣∣∣
1
n∗

n∗∑

i=1

Iπiθi − E{Iπiθi}
∣∣∣∣∣ ≥ β

)
≤ σ2

β2
, (6)

where σ2 denotes the variance of the term 1
n∗

∑n∗

i=1 Iπiθi .
Since the terms Iπiθi are independent of each other for
different i and the variance of each term IπiΘi can be shown
to be kPr(L), it follows that σ2 = kPr(L)

n∗ . Noting that
E{Iπiθi} = kPr(L), and selecting β = εkPr(L), we have

Pr

(
1
n∗

n∗∑

i=1

Iπiθi > kPr(L)(1 + ε)

)
≤ 2e

kn∗ε2
, (7)

which approaches zero for some ε > 0. This implies that
1

n∗
∑n∗

i=1 Iπiθi < kPr(L)(1 + ε), with probability one. Substi-
tuting in (5), we have

T ≥ E{n∗} log
(

1 +
log(2k)

kPr(L)(1 + ε)

)

= nPr(L) log
(

1 +
log(2k)

kPr(L)(1 + ε)

)

≈ n log k

k(1 + ε)
, (8)

where the last line follows from the fact that log(1 + x) ≈ x,
for x = o(1). Selecting small enough ε, the theorem is proved.

B. Upper Bound on the average throughput

In the following, we derive an upper-bound by removing
the constraint that each receiver should be served by at most
one neighboring transmitter. In other words, we assume that
each receiver can be served by more than one neighboring
transmitter without imposing any interference on each other,
which gives an upper bound on the performance of the
system. By removing this constraint, we can assume that the
transmitters operate independently which makes the analysis
tractable.

It is known that in a broadcast block fading channel, the
maximum sum-rate throughput is achieved by transmitting to
the user with the highest channel gain at a time. Here, from the
view point of each active transmitter, we have a single-antenna
broadcast channel in which the statistics of the noise (capturing
also the imposed interference from the other transmitters) is
the same for all neighboring receivers. Therefore, to maximize
the sum-rate for this channel, the transmitter should send
data to the receiver with the highest direct channel gain.
Note that however, due to the imposed interference from
the active transmitters to their neighboring receivers who are
served by other transmitters, activation of all transmitters may
not be optimum. Since each transmitter is only aware of

its local channel information, i.e., the channel gains to its
corresponding neighboring receivers, the decision of being
active or not is solely performed based on these information.
In general, the transmission scheme can be expressed based
on a function f(.) such that for the channel realizations for
which f(hi) ≥ 0, the ith transmitter is active and otherwise it
remains silent, where hi = {hij}j∈Φi . Note that because of
the network symmetry, f(.) is the same for all transmitters.

Based on the set-up introduced here, the following theorem
gives an upper-bound on the system throughput.

Theorem 2 The asymptotic average throughput of the system
in a Rayleigh fading environment is upper bounded as follows:

T ≤ (1 + ε)n log k

k
, (9)

for some ε > 0.

Proof: Let us denote the probability that any transmitter
i becomes active by p and the set of active transmitters by S .
Since the activation of transmitters is performed independently
by our relaxing assumption, it follows that |S| is a Binomial
random variable with parameters (n, p). In the sequel, we
consider two cases for p:

• p = ω
(

1
k

)
: This case is referred to the strong interference

scenario, as E{Iπi,θi} = kp = ω(1). In this case,
one can easily show that |S| ≈ np and the number of
interfering transmitters for each active link πi, denoted by
|Iπi | ≈ kp, with probability one. More precisely, using
the Gaussian approximation for the Binomial distribution
one can show that Pr (np(1− ε) ≤ |S| ≤ np(1 + ε)) ≤
1 − e−npε/2 and Pr (kp(1− ε) ≤ |Iπi | ≤ kp(1 + ε)) ≤
1− e−kpε/2 for some ε > 0, such that kpε = ω(1).
As mentioned earlier, the upper bound is achieved if the
link activation strategy leads to a one-to-one transmission
map from the transmitters to the receivers. In other
words, transmitter i sends to the corresponding receiver
θi, where hiθi = maxj∈Φi hij and θ(.) is a one-to-one
map. Considering this assumption, and defining

Υiθi , maxj∈Φi
hij

1/ρ +
∑

l∈Uθi
,l 6=i hlθi

, (10)

where Uj denotes the set of active transmitters in the
neighborhood of the jth receiver, we can bound the
asymptotic average throughput of the system as follows:

T ≤ E




|S|∑

i=1

log (1 + Υiθi)





(a)≈ npE {log (1 + Υiθi)}
(b)

≤ np log (1 + E{Υiθi
}) , (11)

where (a) follows from the fact that |S| ≈ np, with



probability one1 and (b) follows from the concavity of
log(.) function and Jensen’s inequality. The following
lemma, gives an upper-bound on E {Υiθi}.

Lemma 1 There exists some ε > 0 for which

Pr
(

Υiθi >
(1 + ε) log k

kp

)
→ 0, (12)

with probability one. This also implies that E {Υiθi} ≤
(1+ε) log k

kp .

Proof: See Appendix A.
Using the result of Lemma 1, the upper-bound on the
throughput given in (11) can be written as

T ≤ np log
(

1 +
(1 + ε) log k

kp

)

≤ (1 + ε)n log k

k
, (13)

where the second line comes from the fact that log(1 +
x) ≤ x.

• p = O
(

1
k

)
: In this case, p can be upper-bounded as

c/k for some constant c. An upper-bound on the average
throughput can be given as

T
(a)

≤ E




|S|∑

i=1

log
(

1 +
maxj∈Φi hij

υ

)



(b)

≤ E {|S|} log
(

1 +
α log k

υ

)

≤ cn log log k

k
, (14)

for some constant c, where (a) results from removing
the interference term in the denominator of Υiθi and (b)
follows from the fact that maxj∈Φi hij < α log k with
probability one for some α > 1. It can be observed that
this upper-bound is less than the one given in the case
p = ω(1/k). This completes the proof of Theorem 2.

IV. DISCUSSION

Combining the results of Theorems 1 and 2, it follows that
the average sum-rate capacity of the network scales as n log k

k ,
which is achieved by opportunistic on-off scheme. Defining
the connectivity factor of the network as κ , k

n , it follows
that T ∼ log k

κ . This implies that the network throughput is
inversely proportional to the connectivity factor. The factor
log k can be interpreted as the scheduling diversity gain, since
it captures the effect of selecting the best transmission link for
each transmitter.

The more interesting observation is the case of k = n.
The existing results in the literature [20], [23] indicate that

1To be precise, however, we should also show that the contribution of the
realizations in which |S| /∈ [np(1−ε), np(1+ε)] in the average throughput is
negligible. This fact can be shown easily, however, due to the space limitations
we do not bring the proof here.

the average network throughput scale as log n for the case of
dedicated links. Our results also show the same scaling in the
case of opportunistic transmission, i.e., non-dedicated links.
This implies that in the case of k = n, scheduling provides no
gain in the asymptotic network throughput. However, it should
be noted that in the case of dedicated network, only a few
portion of the transmitters must be active in order to achieve
the maximum throughput, while in the proposed opportunistic
scheme, it is possible to achieve the maximum throughput with
the activation probability of 1

2e .

APPENDIX A: PROOF OF LEMMA 1

Proof: The CDF of the maximum channel gain among
k channels is Fmax(x) = F (x)k. In the case of Rayleigh
fading channel, we have Fmax(x) = 1 − (1 − e−x)k. Noting
that the number of active transmitters in the neighborhood of
θj can be well approximated by kp2, the interference term
Iiθi =

∑
l∈Uθi

,l 6=i hlθi in the denominator of Υiθi in (10)
has χ2(2k∗ − 2) distribution, where k∗ , kp. Hence, η ,
Pr(Υiθi > x) can be written as

η =
∫ ∞

0

Pr(Υiθi > x|Iiθi = y)Pr(Iiθi = y)dy

=
∫ ∞

0

(1− (1− e−x(υ+y))k)
yk∗−2e−y

(k∗ − 2)!
dy

(a)

≤
∫ ∞

0

min{1, ke−x(υ+y)}yk∗−2e−y

(k∗ − 2)!
dy, (15)

where (a) results from the fact that 1 − (1 − e−z)k ≤
min{1, ke−z} for z > 0. The integral in the last line can
be written as the summation of two integrals as follows:

RH(15) =
∫ log k

x −υ

0

yk∗−2e−y

(k∗ − 2)!
dy +

∫ ∞

log k
x −υ

ke−x(υ+y) y
k∗−2e−y

(k∗ − 2)!
dy

≤
∫ log k

x

0

yk∗−2e−y

(k∗ − 2)!
dy +

ke−xυ

(x + 1)k∗−1

∫ ∞

( log k
x −υ)(1+x)

yk∗−2e−y

(k∗ − 2)!
dy,

(16)

where γ(a, z) ,
∫ z

0
e−tta−1dt is the incomplete Gamma

function which can be expanded as follows

γ(a, z) = a−1zae−z

(
1 +

z

a + 1
+

z2

(a + 1)(a + 2)
+

z3

(a + 1)(a + 2)(a + 3)
+ · · ·

)
. (17)

By choosing x = α log k
k∗ , where α > 1 is a real number and

substituting it in (16), the first term in the right hand side of

2For simplicity, we assume that kp is an integer number.



(16) can be simplified as follows:

γ(k∗ − 1, log k
x )

(k∗ − 2)!
=

(k∗/α)k∗−1e−k∗/α

(k∗ − 1)!

(
1 +

1
α

+

k∗

α2(k∗ + 1)
+ · · ·

)

≤ k∗k∗e−k∗/α

αk∗−1k∗!
α

α− 1
(a)≈ α2e−k∗(log(α)+α−1−1)

√
2πk∗(α− 1)

, (18)

where (a) results from applying Stirling’s approximation, i.e.
k! ≈

√
2πkkke−k. Also, defining t ,

(
k∗
α − υ

)
(1 + x), the

second term in the right hand side of (16), denoted by S2, can
be written as

S2 =
ke−xυ

(x + 1)k∗−1

∫ ∞

t

yk∗−2e−y

(k∗ − 2)!
dy

=
ke−xυ

(x + 1)k∗−1

k∗−2∑
m=1

tme−t

m!

(a)

≤ ke−xυ

(x + 1)k∗−1
k∗

tk
∗−2e−t

(k∗ − 2)!

≤ keυ

(x + 1)k∗−1

k∗
(

k∗
α (x + 1)

)k∗−2

e−
k∗
α (1+x)

(k∗ − 2)!

≤ eυk∗k∗−1e−
k∗
α

αk∗−2(k∗ − 2)!
(b)

≤ c
√

k∗e−k∗(log(α)+α−1−1), (19)

for some constant c. In the above equation, (a) follows from
the fact that as t > k∗3, we have tm

m! ≤ tk∗−2

(k∗−2)! , and (b) follows
from applying Stirling’s approximation in a similar manner as
in (18).

Setting α = 1+ε and using the approximations log(1+ε) ≈
ε − ε2

2 and (1 + ε)−1 ≈ 1 − ε + ε2 for small enough ε, the
right hand sides of (18) and (19) can be written as

RH(18) ≈ c1
e−k∗ε2/2

√
k∗ε

, (20)

and

RH(19) ≈ c2

√
k∗e−k∗ε2/2, (21)

respectively. Selecting ε = 2
√

log(k∗)
k∗ , it can be observed that

both term approach to zero polynomially, as k∗ increases,
which gives us the desired result. Furthermore, we have

E {Υiθi} ≤ x +
∫ ∞

x

tfΥiθi
(t)dt

= x + xPr (Υiθi
> x) +∫ ∞

x

Pr (Υiθi
> t) dt. (22)

3Note that one can select α such that t > k∗.

Using (18) and (19), it follows that xPr (Υiθi > x) → 0 and∫∞
x

Pr (Υiθi > t) dt → 0, for x = (1+ε) log k
k∗ and some ε > 0.

This completes the proof.
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