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Abstract-We consider throughput-optimal power allocation
in multi-hop wireless networks. The study of this problem
has been limited due to the non-convexity of the underlying
optimization problems, that prohibits an efficient solution even
in a centralized setting. We take a randomization approach
to deal with this difficulty. To this end, we generalize the
randomization framework originally proposed for input queued
switches to an SINR rate-based interference model. Further, we
develop distributed power allocation and com parison algorithms
that satisfy these conditions, thereby achieving (nearly) 100%
throughput. We illustrate the performance of our proposed power
allocation solution through numerical investigation and present
several extensions for the considered problem.

Index Terms-Power allocation, wireless scheduling, capac
ity region, graph-based interference model, SINR interference
model.

I. INTRODUCTION

Resource allocation in multihop wireless networks involves
solving a joint link scheduling and power allocation problem
which is very difficult in general [1], [2]. Due to this difficulty,
most of the existing works in the literature consider a simple
setting where all nodes in the network use fixed transmission
power levels where the resource allocation problem degener
ates into simply a link scheduling problem [3]-[6]. Further
more, the link scheduling problem has been mostly performed
assuming a simplistic graph-based interference model.

In fact, the resource allocation problem has been mainly
considered in two different network settings in the literature.
The first setting is a static one which does not take randomness
in traffic arrival processes into consideration. In particular,
it is usually assumed users either always have unlimited
amount of traffic to transmit or have predetermined traffic
demands. Here, resource allocation aims at performing fair
radio resource allocation among competing traffic flows or
developing resource allocation algorithms which have nice
performance properties (e.g., constructing minimum length
schedule to support a predetermined traffic demands) [7]-[10],
[11]. The second setting assumes random arrival traffic and one
of the main objectives of the resource allocation problem is
to maximize the average arrival rates which can be supported
while maintaining stability of network queues.
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In the seminal work of [12], Tassiulas and Ephremides
introduce the concept of stability region, defined as the set
of all arrival rate vectors that can be stably supported. They
also propose ajoint routing and scheduling policy that achieves
100% throughput, meaning that it stabilizes the network when
ever the arrival rate vector is in the stability region. More
recently, this throughput-optimal policy has been extended to
wireless networks with power control [13], [14] and for the
scenario where arrival rates lie outside the capacity region [15].

All these resource allocation algorithms, however, require
repeatedly solving a global optimization problem which is
NP-hard in general [16], [2]. Hence, in multi-hop wireless
networks, it may be impractical to find its solution in every
time slot due to limited computation capability, and the need
for distributed operation. As an alternative, distributed greedy
scheduling has been proposed and analyzed [6], [16]-[19].
However, most of the existing works in this context adopt the
graph-based interference models, where transmissions on any
two links in the network are assumed to be either conflict or
conflict-free. Moreover, the use of greedy scheduling typically
results in throughput reduction of at least 50%.

It has been recognized that graph-based interference models
may be overly simplistic because they ignore the cumulative
effect of wireless interference. However, going beyond these
simplistic interference models is challenging. In fact, the
power allocation problem under the SINR rate-based inter-
ference model is non-convex; therefore, obtaining a global
optimal power allocation even in a centralized manner is not
practical. This non-convexity issue in the power allocation
problem has been addressed by several papers [7], [9] con
sidering either the high or low SINR regimes.

This paper deals with the throughput-optimal power alloca
tion problem under the SINR rate-based interference model.
We take a randomization approach to circumvent the difficulty
of the problem. The randomization technique was originally
developed for input queued switches [20], and later extended
for multi-hop wireless networks assuming the graph-based
primary and secondary interference models [3], [4]. Its key
feature is that it does not seek to find an optimal schedule in
every time slot, and consequently, solving a difficult schedul
ing problem can be avoided. Motivated by this observation,
our work attempts to alleviate the difficulty in solving the
non-convex optimization problem involved in optimal power
allocation, using randomization.Our contributions can be sum
marized as follows:



qab(t+ 1) == max[O, qab(t) - rab(p(t))] + Aab(t). (2)

In addition, the throughput-optimal power allocation vector
solves the following "max-weight" problem in each time slot

t, and p(t) the power allocation vector for slot t. Then, the
backlog qab (t) evolves according to the following dynamics:

III. RANDOMIZATION FRAMEWORK

A. Background on Randomization Framework

The randomization approach was first developed for
scheduling in input queued switches [20], and extended for

(5)

(4)Aab ~ rab(p),V(a, b) E E.

The arrival process Aab(t) is assumed to be i.i.d. over time
with average Aab' i.e., E[Aab(t)] == Aab' Vt. We assume that
all arrival processes Aab(t) have bounded second moments
and they are upper-bounded by Amax (i.e., Aab(t) ~ Amax,
V(a, b) E E). Now, we define the network stability and
characterize the stabilized arrival rates.

Definition 1: A queue qab (t) is called to be strongly stable
if

p*(t) == argmax L qab(t)rab(p),
pEF (a,b)

Note that in the graph-based interference model, link rates
are fixed and the resource allocation problem degenerates into
the link scheduling problem. Here, the max-weight scheduling
policy which returns a feasible schedule achieving the maxi
mum weight in each time slot is throughput-optimal.

In [14] and [13], it was shown that the power allocation
policy solving the above problem for every slot t achieves
throughput optimality, meaning that it stabilizes the network
whenever the arrival rate vector is within the stability region.
However, the optimization problem (5) is nonconvex in P,

and hence, it may not be possible to find an optimal power
vector for every time slot t, even in a centralized manner. We
address this issue by using randomization [3], [4], [20] and
gossiping [21], originally proposed for input queued switches
and wireless networks under graph-based interference models.

1 t-I

limsup- LE{qab(T)} < 00. (3)
t----+oo t 7=0

A network of queues is called strongly stable if all individual
queues are strongly stable.

Let us drop the indices of a variable to denote its vector
form, for example, q(t) == [qab(t), V(a, b) E E]. Define
capacity region denoted as A as the union of arrival rate vectors
A == (Aab' (a, b) E E) such that there exists a scheduling
policy which stabilizes the network queues. In [13], the
capacity region for wireless networks with power control was
characterized. Specifically, capacity region A consists of all
arrival rate vectors A == (Aab' (a, b) E E) such that there exists
a power vector P in a feasible region of transmit power vector,
defined by F == {p 2:: 0 : LbEV(a) Pab < p:;ax, Va E V} such
that

II. MODEL AND PROBLEM DESCRIPTION

where ru, is the noise power, and gab is the channel gain from
node a to b. It is assumed gab == 00 if a == b. Since the
nodes are static, the channel gains are assumed to be fixed
over time. Note that the second term in the denominator of
(1) is self-interference, and the third is mutual interference.

Let Aab(t) represent the amount of exogenous data that
arrive to the buffer at the source of link (a, b) during slot

• We generalize the randomization framework to the SINR
rate-based interference model, so that we can deal with
the power allocation problem using randomization tech
nique.

• We develop a new optimality condition for random power
allocation that enables the application of the randomiza
tion framework to power allocation problem, and develop
a randomized power allocation that satisfies the new
optimality condition.

• We develop a distributed gossip-based comparison mech
anism together with the randomized power allocation that
achieves 100% throughput.

The rest of the paper is organized as follows. In Section
II, we present the system model and describe the problem
under consideration. In Section III, we review the randomized
scheduling framework and discuss how to extend this frame
work to wireless networks with power control assuming SINR
rate-based interference model in section IV. In section V, we
present implementation for the comparison step of our newly
proposed power allocation framework by using a randomized
gossip algorithm. Simulation results are presented in section
VI and conclusions are stated in section VII.

log (1 + gabPab ), (1)
ru, + L gabPai + L gib L Pij

iEV(a)\{b} i#a jEV(i)

We consider a multi-hop wireless network modeled by a
graph G == (V, E), where V is the set of nodes and E is the
set of links. Let N be the number of nodes, i.e., N == 1V I. It
is assumed that there is a link between two neighboring nodes
if they want to communicate with each other.We assume that
time is slotted and a time slot interval is of unit length. Let
V(a) be the set of node a's neighbors, i.e., V(a) == {b E V:
(a,b) E E}. We assume bidirectional links, hence link (a,b)
exists whenever (b, a) does. For simplicity of exposition, we
assume that there is only single-hop traffic and single channel
available in the network. Node a maintains a data buffer for
each outgoing link (a, b), and its backlog at time t is denoted
by qab(t).

Denote by Pab the transmit power allocated to link (a, b).
Each node a has a limited power budget p:;ax, and the total
transmit power constraint can be written as LbEV(a) Pab ~

p:;ax. We assume SINR rate-based interference model. That
is, under a power allocation vector P == [Pab, V(a, b) E E], link
(a,b)'s rate r ab (p) is given by



Algorithm 1 Randomized Power Control Framework (for each
time slot t)

1. RAND-POW: Generate a new random power allocation
vector p(t) in a distributed manner.
2. COMPARE: Determine p(t) by comparing the previous
power allocation p(t - 1) and the new power allocation
p(t).

distributed operations in multi-hop wireless networks [3], [4].
Recall that under these settings, a feasible schedule is to be
found in each time slot. The key feature of the randomization
approach is that it does not seek to find an optimal schedule
in every slot, and hence, it can significantly reduce the
computation overhead. In every time slot, the randomization
framework does the following:

(i) RAND-SCH: generate a new random schedule,
(ii) COMPARE: decide on the current schedule by comparing

and selecting the better of the new and old schedules.

Lemma 1 ([20J): Under the condition that the newly gen
erated schedule in RAND-SCH is optimal with positive prob
ability, the randomization framework achieves 100% through
put.
Note that in an input queued switch the number of possible
activations is finite. Hence, it is trivial to develop a random
algorithm to satisfy the condition in Lemma 1. Moreover, the
comparison in a switch can be done in a centralized manner.
However, in multi-hop wireless networks, the COMPARE step
is challenging because each node must compare the network
wide weighted sum rates achieved by the two schedules in
a distributed manner. In [3], this comparison is localized
over connected subgraphs consisting of old and new link
activations; where the decisions in one subgraph do not affect
the decisions at other subgraphs. The communication overhead
can be substantially reduced using this localization.

B. Extension to SINR Rate-Based Interference Model

Our work in this paper is motivated by the intuition that the
difficulty due to the non-convexity in (5) can also be alleviated
using this randomization technique. A natural extension of
the randomization framework to SINR rate-based interference
model is shown in Algorithm 1. The key challenge in this
setting is that it may not be possible to devise a power
allocation policy RAND-POW that has a positive probability
of being optimal since the optimal power allocation takes on
real-values. Consequently, the randomization approach to the
power allocation problem will not be able to achieve 100%
throughput as in the case of the graph-based interference
model. We address this issue by generalizing the condition on
RAND-SCH in the graph-based interference model; namely, the
newly generated power vector is not required to be optimal,
but is required to be within a small factor of optimal.

Another challenge lies in the COMPARE part, as the local
ized comparison in the graph-based interference model may
not work in our setting. With the SINR rate-based interference

model, the interference level experienced at a node is affected
by all the other nodes in the network. Hence, the localized
comparison may lead to a wrong decision, and a network
wide comparison will be inevitable. To resolve this problem,
we will use randomized gossiping [21]. Note that the objective
value in (5) can be written as q(t)Tr(p). The following is the
generalized condition on RAND-POW.

Condition 1 (C1): For every time slot t,

P r [q (t )Tr (p(t )) ~ (1 - 11) q(t )Tr (p* (t ))] ~ 61 > 0, (6)

where II and 61 are some positive constants.
Condition 01 allows for the possibility that the new power
allocation is within a factor of optimal. Notice that when
II == 0, 01 becomes the condition on RAND-SCH in [3],
[20] which requires the new scheduling to be optimal with
positive probability. This generalization is the key to dealing
with the power control problem (5) using the randomization
approach, and the optimality loss under this condition will be
characterized, in Theorem 1.

The following is the condition on COMPARE adopted from
[3].

Condition 2 (C2, [3J): For every time slot t, it is satisfied
q(t )Tr (p(t )) ~ (1 - 12) max{q(t )Tr (p(t - 1)), q(t )Tr (p(t ))}
with probability at least 1 - 62, where 12 and 62«< (1) are
some positive constants.
Condition 02 requires that the weight attained by the chosen
power vector p(t) should not be less than some factor of
the maximum of the weights obtained by p(t) and p(t - 1).
This condition was considered in [3] to account for imperfect
comparison in multi-hop networks.

Now, the achievable stability region under our randomiza
tion framework can be characterized as follows:

Theorem 1: If RAND-POW and COMPARE in Algorithm 1
satisfy 01 and 02, then it stabilizes the network for any arrival

rate vector in pA where p < 1 - ('/'1 + (1 - '/'1)"(2) - 2/f;.
Proof: See the Appendix. •

When II is 0, i.e., when a new power vector is optimal with
probability 61, the obtained throughput mainly depends on
the comparison performance (,2). However, the throughput
loss increases as II increases. In case of perfect comparison
(i.e., 12 == 0 and 62 == 0), the throughput loss depends only
on the optimality loss in the random power allocation. In
brief, our randomized power control framework can achieve
nearly 100% throughput if we can develop a power allocation
policy (RAND-POW) and a comparison algorithm (COMPARE)
satisfying conditions 01 and 02 with small 11, 12 and 62. In
the rest of the paper, we focus on developing such algorithms.

C. Implementation

For better presentation, we illustrate the structure of time
frame in our randomization framework. As shown in Figure
1, a time slot consists of 4 parts including pick, training,
comparison and data transmission. In the pick slot, a new
power allocation is randomly generated, i.e., the transmitter
receiver pairs are selected and also transmit power levels are
selected as well. The training slot consists of three mini slots,



Fig. I . Time slots in randomization framework
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Algorithm 2 RAND-PAIR

I: Each node a decides to be a transmitter w.p. 1/2 and a
receiver w.p. 1/2, and initializes Jab = 0, Vb E V(a).

2: Each transmitting node a sends a pair-request message
(PQM) to one of its neighbors in V(a) uniformly at
random.

3: If node b receives a PQM, one of the following happens:

(i) If node b is a receiver, then it accepts the request and
sends a pair-request-accepted message (PAM) to node
a.

(ii) Otherwise, ignore the PQM and nothing happens for
node a.

4: If node a receives a PAM from node b, set Jab = 1,
meaning that node b is a receiver of node a.

subject to P ~ 0 and LbEV(a) Pab = p~. Since this function is
strictly convex in [Pab, Vb E V(a) ], it is maximized at comer
point, i.e., Pab = P~ for some b « V(a) and zero for all others.
This shows that it is optimal to transmit to at most one node .

•
According to Lemma 2, at the optimal point, a node is
not allowed to transmit to multiple neighbors, and to be a
transmitter and receiver simultaneously. Note , however, that it
is possible for a node to receive from multiple transmitters, and
this should be discriminated from a matching in which a node
cannot be shared by multiple edges. For ease of exposition, a
definition of pairing is introduced as follows:

Definition 2: Assume that the head and the tail ofa directed
edge denote a transmitter and a receiver respectively. A
directed subgraph of G is called a pairing if it satisfies (i)
and (ii) in Lemma 2.
Note that a pairing is different from a matching because it
allows a node to be shared by multiple edges.

A. Transmitter-Receiver Pairing

From Lemma 2, it is clear that finding a power allocation
can be decomposed into two steps. First, find a pairing, and
then select the transmit power levels for the given pairing.
Since there is a finite number of pairings, and one of them
is optimal, it is easy to generate an optimal pairing with
positive probability. One such algorithm is given by RAND
PAIR (see Algorithm 2), which has 0(1) computation and
communication complexity, and will find an optimal pairing
with positive probability, as stated in the following lemma.

Lemma 3: Algorithm RAND-PAIR finds an optimal pairing
with probability at least (4N) - N .

Proof Consider an arbitrary pairing. Let (a, b) denote
one of the links in the pairing. The probability that this link
is created (under RAND-PAIR) is ~ . ~ . Wea)1 ~ 4}y . Since
there can be at most N links in a pairing, the probability that
RAND-PAIR finds this pairing is at least (4N) -N. Hence, it
will find an optimal pairing with probability at least (4N) - N .

•
Note that in the interference graph model , a new scheduling
should be a max-weight matching (or independent set in

(7)
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and it is used for computing the weighted sum rates under
the old power allocation and the new power allocation. Once
every node obtains these values , they compare the old value
and the new value by running a distributed gossiping in the
comparison slot, and select the better power allocation. The
data is finally transmitted using the selected power allocation.
We will discuss the detail of each part.

IV. RANDOMI ZED POWER ALLOCATION

We present a power allocation policy RAND-POW that
satisfies G1, i.e., finds with positive probability a power vector
within a small factor of the optimal value in (5). The problem
(5) is to maximize

p* = argmax L L qab X

10:E(F
J

: VbE V (O) , _,," , )

b nb +gah L P a i + L gib L P i j ,

i EV (a )\b i,i a j E V( i )

where F = {p ~ 0 : LbEV(a) Pab < p~nax, Va E V}. Clearly,
the new power vector p in RAND-Pow is desired to be as
close to p* as possible, and hence, identifying the optimality
properties of (7) would be helpful for generating such p. The
following lemma characterizes some useful properties of p*.

Lemma 2: Under the optimal power allocation p* in (7),
(i) A node transmits to at most one of its neighbors,

(ii) A node does not transmit while receiving, and vice versa.

Proof Recall the assumption gaa = 00 , Va. Under this
assumption, if a node transmits to a transmitting node, it will
achieve zero rate due to infinite interference. Hence, at optimal
p*, case (ii) does not happen.

To prove (i), let P~ = LbEV(a) P~b' i.e., P~ is the total
power transmitted by node a at optimal point. It is obvi
ous that solving the problem (7) with additional constraints
LbEV (a) Pab = P~ , Va will obtain the same optimal solution.
In this case, the objective function in (7) can be written as

"" I (1 + gabPab )L..J L..J qab og * * .
a bEV(a) nb + gab(Pa - Pab) + i~ gibPi

Clearly, changing transmit power Pab , Vb E V(a) under fixed
total power does not affect mutual interference, but only
change self-interference. Hence, the new optimization problem
can be solved separately with respect to each node, i.e., for
each a, we only need to maximize

" I (1 + gabPab )L..J qab og * *
bEV(a) nb + gab(Pa - Pab) + i~ gibPi



Algorithm 3 RAND-PSEL (for given pairing I)

1: Each node a initializes Pab == 0, Vb E V (a).
2: Every paired transmitting node a does the following:

(i) Select a number, say u, from [0, p:ax] uniformly at
random, and set Pab == u for b such that lab == 1.

general) with positive probability. Because the max-weight
matching is one of maximal matchings, and such a probability
can be increased by performing multiple iterations until the
obtained matching becomes maximal. However, in our case,
maximal pairing may not be always optimal. Hence, per
forming multiple iterations does not necessarily enhance the
probability of being optimal, and further it may not guarantee
that the obtained pairing has a positive probability of being
optimal.

B. Power Level Selection

Now what remains is to select a power level which together
with RAND-PAIR satisfies C1. Note that RAND-PAIR gener
ates a pairing I == [lab' b E V (a), a E V]. Given this pairing,
the problem (7) can be rewritten as:

p* (I) ==

arg max E E qablog (1 + 9abPab ) •

pEF aEV b:l
a b

= 1 nb+E E 9ibPij

l#aj:lij=l

(8)
Notice that the self-interference has been removed and the
mutual interference has been simplified due to the constraints
(i) and (ii) in Lemma 2. Since the pairing I found by RAND
PAIRhas a positive probability of being optimal, the condition
C1 can be satisfied if a power level is selected such that it is
within a factor of the objective in (8) with positive probability.
To meet this requirement, Algorithm RAND-PSEL simply
chooses power levels uniformly at random. In particular,
each transmitting node a randomly selects its transmit power
from the feasible region, i.e., [0, p:ax]. This random power
selection meets the requirement as shown in the following
lemma.

Lemma 4: Assume p:ax == 1, Va. For any E E (0,1),
Algorithm RAND-PSEL generates a power vector P such
that P E B (p* (I), E) with probability at least (N)N, where
B (p* (I) , E) == {p E F : lip - p* (I) 112 ::; E}.

Proof: For given pairing I, each transmitting node a will
select its power level Pa uniformly at random from [0,1]. Let
Tx(l) be the set of transmitters under pairing I. Then, we

have

•
Note that this lemma can be easily extended to the case of
general p:ax. Combining Lemmas 3 and 4, we can show that
Condition C1 can be satisfied by RAND-PAIR and RAND
PSEL.

Theorem 2: Choosing a power allocation according to
RAND-PAIR and RAND-PSEL satisfies C1 with arbitrarily
small y, > 0 and 61 > 0 (depending on '1).

Proof: Let f (p) be the objective function in (8), and
consider an arbitrary ,1 E (0, 1). Due to the continuity
of f (p), there exists E > 0 (depending on ,1 such that
f (p) 2:: (1 - '1) f (p* (I) ) for any feasible p such that
lip - p* (I) II < Eo By Lemmas 3 and 4, the power allocation
obtained through RAND-PAIR and RAND-PSEL achieves at
least (1 - '1) fraction of optimal value of problem (7) with
probability at least (4E('1)N ~ )- N, satisfying Condition C1.

•
According to Theorems 1 and 2, the throughput loss due to the
optimality loss ('1) under our power allocation is negligible, as
long as 62 « 61. However, the probability 61 under our power
allocation policy is an extremely small number. Therefore, we
will need a comparison algorithm that achieves very small or
preferably zero 62.

v. GOSSIPING-BASED COMPARISON

The goal of the COMPARE algorithm is to choose a power
allocation p(t) by selecting one of the two power allocations
p(t - 1) and p(t), so that Condition C2 can be satisfied.
Such a selection is easy in a centralized setting; namely, one
can compare q(t)Tr(p(t - 1)) and q(t)Tr(p(t)), and pick
one having larger value. However, in multi-hop networks,
centralized computation is prohibitive, hence we will use
randomized gossiping [21] to implement COMPARE in a
distributed manner.

Let xg1d and xbew be the weighted (receiving) rates at node b
under the old power p(t-1) and new power p(t), respectively.
Then, they can be expressed as xg1d == E qab (t)r ab (p(t - 1))

aEV
and xbew == E qab(t)rab(p(t)). Let Xb(O) == xbew - xg1d, i.e.,

aEV
Xb (0) is the increment of weighted rate at node b in case of
changing from p(t -1) to p(t). Define X as the network-wide
increment of objective value, i.e., X == E xa(O). Then, the

aEV
COMPARE algorithm must choose the new power if X > 0,
and the old one if X ::; o. This can also be accomplished using



Algorithm 4 COMPARE

1: For iteration i == 1, ... , M, do the following:

(i) Each node a updates xa(i) == xa(i - 1).
(ii) Each node decides to be active w.p. 1/2 and inactive

w.p. 1/2. An active node a does nothing w.p. 1- Ift,
and contacts one of its neighbors uniformly at random
(i.e., with equal probability -k).

(iii) If node b is contacted, one of the following happens:

(a) If b has decided to contact a, they average as
(

") _ (") _ xa(i-l)+xb(i-l)
X a 't - Xb t. - 2 .

(b) If b is inactive and has not been contacted, they

(
1 )K-Kb

average w.p. 1 - 2K .

(c) Otherwise, b ignores the contact and nothing hap
pens for a.

2: Each node a decides Pa(t) == Pa(t) . 1x a (M » o + Pa(t 
1) . 1x a (M ):S; o .

the average increment X == X / N instead of X, and hence
if every node can compute an accurate estimate of X, they
can make a decision leading to C2. A randomized gossiping
algorithm is used to estimate X.

Assume that each node a has X a (0) (In fact, this value
is computed in the training slot discussed in Section III-C).
Let K a be the degree of node a, i.e., K a == IV(a)1 and K
be the maximum node degree, i.e., K == maxaEV K a . The
comparison and decision is described in Algorithm COMPARE;
where each node a estimates the average X using gossiping,
and after M iterations, decides its transmit power vector
Pa (t) based on the estimation x., (M). The following is the
restatement of the results on gossiping-based averaging in [21],
[22].

Theorem 3: Under Algorithm COMPARE, there exists a
finite number M(N) such that for any E,8 > 0, Pr[xa(m) E

((1 ± E)X), Va] ~ 1 - 8,Vm ~ M(N), where M(N) ==
8(-N 3 (1og E + log 8)).
The number M(N) is called e-convergence time. This result
can be used to show that Algorithm COMPARE eventually
satisfies C2, in which case M(N) == 8( -N31og('282)). Note
that the e-convergence time is a conservative lower bound in
that a unanimous decision satisfying C2 can be made once all
the nodes reach to the same sign of their estimates. This has
led us to define a new concept of sign-wise convergence (or
s-convergence).

Definition 3: A real-number vector x is said to be uniform
in sign (u.i.s.) if x > 0 or x ~ 0 component wise.

Definition 4 (s-convergence time): For a sequence
of vectors {x(m)}, the sign-wise convergence
time MS(N) is defined by MS(N, 8)
inf {m ~ 0 : Pr [x(m) is u.i.s. ] ~ 1 - 8}.
Note that once a sequence {x (m )} generated by Algorithm
COMPARE becomes u.i.s., it will remain u.i.s. forever because
the averaging operation between any nodes of the same
sign does not change their signs. Moreover, after MS (N, 8)
iterations, the converged sign will be the same as X with

probability 1 - 8, because otherwise it will contradict to the
previous result [21] that every node will get more accurate
estimate of X as iteration proceeds. Therefore, for any M ~

MS(N, 82 ) , Algorithm COMPARE will satisfy C2 with 12 == o.
The following result is obvious.

Lemma 5: Assume IXI ~ E* > 0, then for any E < E*,

s-convergence time is smaller than e-convergence time.
According to Lemma 5, the agreed decision satisfying C2
can be reached faster than expected in the previous analysis
(adopting e-convergence time). This will be verified through
simulations in the next section.

VI. SIMULATION RESULTS

We generated a network topology by randomly placing N
nodes in a plane. For each link (a,b), packets arrive according
to a Poisson arrival process of rate A == 0.5, with the mean
packet size of2p. The offered load is thus p, and this parameter
will be changed to examine the algorithm performance. Let dab
be the distance between nodes a and b. The channel gain gab
is fixed to 1/(1 + d~b) if a i- b, and as assumed in Section
II, gab == 00 if a == b. The noise power and the maximum
transmit power are fixed as na == 0.01 and p:;ax == 1 for
every node a.

Figure 2(a) compares e-convergence time and sign-wise
convergence time of the gossiping-based averaging in Algo
rithm COMPARE. The e-convergence time increases quadrat
ically in number of nodes, whereas the s-convergence time
increases linearly. Hence, the gossiping-based decision can
satisfy C2 with much less iterations than expected in the pre
vious analysis. Figure 2(b) plots the stability performance of
gossiping-based comparison (Algorithms RAND-PAIR, RAND
PSEL and COMPARE; denoted by gossip) and centralized
comparison (Algorithms RAND-PAIR, RAND-PSEL with cen
tralized comparison; denoted by centralized comp.). The cen
tralized comparison satisfies C2 with 12 == 0 and 82 == 0,
and hence by Theorem 1, it achieves nearly 100% throughput.
As the number of iterations (M in Algorithm 4) increases,
the performance of gossiping approaches that of centralized
comparison. This implies that our distributed power control
scheme can achieve maximum throughput.

VII. CONCLUSION

We considered the problem of achieving maximum through
put under SINR-based rate model in multi-hop wireless net
works. Typically, this requires repeatedly solving an optimal
power allocation problem by taking into account channel
conditions and queue backlog information. However, finding
such a power allocation for every time slot is impractical due to
not only the difficulty of the problem but also the need for dis
tributed operation. In order to circumvent this difficulty, we use
a randomization approach that has been successfully applied
to graph-based interference model. To that end, we developed
a new optimality condition for random power allocation that
enables the application of the randomization framework to
the throughput-optimal power allocation problem. We also
developed a randomized power allocation that satisfies the new
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(17)

(16)

- Tab(t + T)) Iq(t )} (14)

T - l

+ B l + 2 L E {1IJ(t + T)lq(t)} (19)
T =O

T - l

+ L L E {Aab(t + T)2 + Tab(t + T)2Iq(t)} . (15)
T =O (a,b)E E

b.T(t) = E {L(q(t + T)) - L(q(t) lq(t))}
T- l

< 2 L L E {qab(t + T) (Aab(t + T)
T =O (a,b)E E

Therefore, the expected conditional T -step Lyapunov drift can
be bounded as

where T* (t ) is the optimal rate which corresponds to the
optimal power allocation given the queue length vector q(t) at
time t (i.e., it achieves the maximum weight). Then , we have

T - l

b.T(t) ::::; 2 L E {q(t + Tf'\ - q(t + Tf T*(t + T)lq(t)} (18)
T=O

(9)

ApPENDIX A

PROOF OF THEOREM I

Consider the following Lyapunov function

L(q(t + T)) - L(q(t))
T -l

< 2 L L qab(t+ T) (Aab(t + T) - Tab(t + T)) (12)
T=O (a ,b) EE

T -l

+ L L {Aab(t + T)2 + Tab(t + T)2} . (13)
T=O (a ,b) EE

L(q(t)) := L qab(t)2.
(a ,b) EE

Define a one-step Lyapunov drift as follows:

L(q(t + 1)) - L(q(t)) := L [qab(t + 1)2 - qab(t)2] . (10)
(a ,b)EE

For notational convenience, we will omit time index t when
we refer to a value of any variable at this time instant (e.g. ,
q refers to q(t)) . Using the queue evolution equation (2), we
have

optimality condition, and a distributed gossip-based compari
son mechanism that achieves 100% throughput, together with
the randomized power allocation. Future directions include
extending this result to the network with multi-hop traffic and
multiple channels.

We observe that the link rate can be upper-bounded as

(
g prnax)Tab ::::; log 1 + ab a = T~ax

nb

where the equality holds when link (a, b) uses the maximum
power and there is no interference from other nodes in the
network. Therefore, under the assumption that the link arrival
processes have bounded second moments, the term in (15)
is bounded by a finite number Bi, Also, because the arrival

qab(t + 1)2 < (qab - Tab)2 + A~b + 2Aabmax [0, qab - Tab ] processes are independent of the queue length processes in

< (qab - Tab)2 + A~b + 2Aabqab any time slot t + T, we have

q~b + 2qab (Aab - Tab) + A~b + T~b ' (II) T -l

b.T(t) < 2 L E {qab(t + T) (,\ab - Tab(t + T)) Iq(t )} + e;
Hence , the one-step Lyapunov drift can be bounded as T=O

L(q(t + 1)) - L(q(t)) ::::; L [2qab(Aab - Tab) + A~b + T~b ] Now, let us define

(a,b) EE \lJ(t) := q(tfT*(t) - q(tfT(t )
Using this result for t , t +1, .. . ,t+T - 1 and sum both sides
together, we can obtain the following



Define the following quantities for any arrival rate lies within the capacity region, we have
T T Aab < Rmax. Therefore, we have

ZI .- inf{q(t+T) r(t+T)~'lq(t+T) r*(t+T)}(20) -
7>0 T-l

Z2 .- i~f{C2failsattimet+Zl+T}-t. (21) L{q(t+T)TA-q(t+T)Tr*(t+T)}
7~0 7=0

Now, we try to upper-bound the last term in (19). First, note
that because both link rate and the amount of arriving traffic
in any time slot are bounded (see (16)), we have for any 0 ::;
T::;T

W(t+T) < q(t+T)Tr*(t+T) (22)

< q(t)T r" (t) + B 2 (23)

< T [q(t)TA - q(t)T r" (t)] + ts, (30)

where Bs, is a finite number. Now, consider any arrival rate
vector A which lies strictly inside the p-scaled capacity region
(i.e., inside pA). Then, there exists a feasible power allocation
vector p for any backlog vector q such that

(31)

where r* is the optimal rate which achieves the maximum
weight (i.e., qTr* == maxpEF qTr(p)). Suppose A lies strictly
inside the p-scaled capacity region, then there exists a vector
E1 such that A+ E1 also lies strictly inside the p-scaled capacity
region where 1 is a vector of all ones. That means we have
the following
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where B 6 == B 1 + 2Bs + 2B4 is a finite number. Now, if we
choose T == J1/(6162), we have

/}.T(t) < -T { 1 - P - 1'1 - (1 - 1'1)1'2 - 2~} W*(t)

-2ETq(t)T1 + B 6 ·

Therefore, for any p < 1 - 1'1 - (1 - 1'1)1'2 - 2jF;, /}.T(t)
becomes negative when q(t)Tl is large enough. Hence, the
network queue is stable.
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