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worms), and thereby, focus on the logical Internet topology.
Some works such as [9], [14] model the Internet using geo­
graphical notions. Yet, these works do not consider the effect
of failures that are geographically correlated. Finally, variants
of the network inhibition problem in which a set of links has
to be removed from a graph such that the effect on the graph
will be maximized have been studied in [11] and reviewed
in [6]. Yet, to the best of our knowledge, this problem was
not studied under the assumption of geographically correlated
failures. Since disasters affect a specific geographical area,
they will result in failures of neighboring network components.
Therefore, one has to consider the effect of disasters on the
physical layer rather than on the network layer (i.e., the effect
on the fibers rather than on the logical links). It should be noted
that fibers are subject to regional attacks. such as earthquakes,
floods, and even an EMP attack; as these may affect the
electronic amplifiers that are needed to operate the fiber plant.

Our long-term goal is to understand the effect of a regional
failure on the bandwidth and connectivity of the Internet and
to expose the design tradeoffs related to network survivability
under an attack/disaster with regional implications. In this pa­
per, we are interested in the location of geographical disasters
that maximize the capacity of disconnected links. That is, we
want to identify the worst-case location for a disaster or an
attack.

We focus on a graph model which can serve as an ab­
straction of the U.S. fiber plant, the transpacific fiber Jinks,
or the transatlantic fiber links. In this model, nodes, links,
and cuts are geographically located on a plane. We consider
a bipartite graph (in the topological and geographical sense)
which is analogous to the east and west coasts of the U.S.,
where nodes on the left and right sides of the graph represent
west and east coast cities (respectively).] Since the continental
U.S. has a width that is greater than its height, vertical disasters
seemingly cut mostly east-west links. Therefore, and since
vertical line segment cuts are somewhat sin1pler to analyze.,
we focus in this paper on such cuts.

Under this model, we study the effect of a north-south

I. INTRODUCTION

Abstract-Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to human
attacks, such as an electromagnetic pulse (EMP) attack. Such
real-world events have geographical locations, and therefore, the
geographical structure of the network graph affects the impact of
these events. In this paper we focus on assessing the vulnerability
of (geographical) networks to such disasters. In particular, we aim
to identify the location of a disaster that would have the maximum
effect on network capacity. We consider a geometric graph model
in which nodes and links are geographically located on a plane.
Specifically, we model the physical network as a bipartite graph
(in the topological and geographical sense) and consider the set
of all vertical line segment cuts. For that model, we develop a
polynomial time algorithm for finding a worst possible cut. Our
approach has the potential to be extended to general graphs and
provides a promising new direction for network design to avert
geographical disasters or attacks.

Index Terms-Network survivability, geographic networks,
Internet, cut capacity, network design, Electromagnetic Pulse
(EMP)

The U.S. military and civilian communications infrastruc­
ture is



IV. A WORST-CASE CUT

In this section we present an O(N 6
) algorithm for finding a

worst-case cut. The main underlying idea is that the algorithm
only needs to consider cuts which have an endpoint on a link
intersection or a node. Before proceeding, we note that the
set of all possible cuts is compact and the objective function
takes on a finite number of bounded values. This leads to the
following observation.

Observation J: There always exists an optimal solution to
(I) (i.e., a worst-case cut).

Below, we present the algorithm which finds a worst-case
cut. It can be seen that the complexity of Algorithm WCBG
is O(N6

). This results from the following facts: (i) links
are line segments and a pair of line segments can have
at most one intersection point, resulting in at most 0 (N4

)

link intersections; (ii) there are two candidate cuts per link
intersection or node (cuts have two endpoints), and therefore,
the total number of candidate cuts is at most 0 (N4 ); (iii) since

evaluating lYh.'S.(rj-ldxk+lil?Jk+h~(rj-li):rk+li (Line 7) takes
O( 1) time and it has to be evaluated for all (i, j), finding the
capacity of a candidate cut takes O(N2).3

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG)

1: worstCaseCapacityCut f- 0
2: for every node location and link intersection [Xk, Yk] do
3: call evaluateCapacityofCut(Xk, Yk)
4: call evaluateCapacityofCut(~Tk,Yk - h)

Procedure evaluateCapacityofCut(Xk, yr..)
5: capacityCut +- 0
6: for every (i, j) do

7: if lYh::S(rj-l;)xk+li lYk+h~(rj-Li)xk+Li == 1 then
8: capacityCut f- capacityCut + CijPij

9: if capacityCut 2:: worstCaseCapacityCut then
10: J~* +- Xk
II: y* f- Yk-
12: worstCaseCapacityCut f- capacityCut

We now use a number of steps to prove the theorem below.
Theorem J: Algorithm WCBG finds a worst-case cut which

is a solution to the optimization problem in (1).
Before proving the theorem, we introduce some useful

terminology and prove two supporting lemmas. If cuth(:r, y)
intersects any links, the links which are intersected closest to
the endpoint [:r, y] are denoted by (io ' j 0) and the point where
they intersect the cut is denoted by [:ro , Yo] (see Fig. 6 for an
example). Let those links which intersect cuth(X, y) furthest
from the endpoint [:r, y] be given by (iw,jw) and let the
point where they intersect the cut be given by [xw,Yw]. Note
that (iw, jw) or (in' j 0) need not be unique. This is because
[xw,Yw] or [:ro ' Yo] can be a link intersection. It should be
noted that since the model assumes that there exists a link

with PijCi,j > °for some i and j, all worst-case cuts must

3Computational geometry results can probably be used to reduce the com­
plexity of Algorithm WCBG. Particularly, [5] (based on [3]), enables counting
and locating all the intersections of N 2 line segments in O(N2 1og N + I)
time, where I is the number of line segment intersections. A modified version
of the algorithm of [5] can be used within Algorithm WCBG.
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Fig. 6. Example showing (iw, jw) and (ia , joJ. (ia, ja) is the lowest link
intersected by the cut and this intersection is at [x a , Ya]. (iw , jw) are the
highest links intersected by the cut and this intersection is at [xw , Yw]. Note
how (iw, jw) is not unique.

cnth (x*, y*)

Fig. 7. Example showing how cut 11, (x* ,Yo) is a 4 slid up' version of
cuth(X*,y*), cuth(X*,yo.), which has an endpoint on a link intersection,
is guaranteed to intersect every link cut 11, (x* , y*) does because there exist
no links at x* from y* to Yn.

intersect at least one link. This implies (iw,jw) and (io,jo)
exist for all worst-case cuts.

Lemma J: If there exists a worst-case cut, cuth(X*,y*),
such that either (iw, jw) is not unique, (in, j0) is not unique,
or :r* E {O, I}, then there exists a worst-case cut which has an
endpoint on a node or link intersection at [x*, Yw] or [x*, Yn].

Proof:· Assume (io,jo) is not unique or :r* E {0,1}
([x* ,Yo] is a node or link intersection). Consider cuth (:r* , Ya)
which is a "slid up" version of the worst-case cut cuth (x:*, y*).
cuth (:r* , Yo) intersects the same links as cuth (x* , y*) since,
by definition of [:ro , Yo], there exist no links at :r* from y*
to Yn. Thus, cuth (x* , Yo) is also a worst-case cut and has an
endpoint on a node or link intersection. For an example, see
Fig. 7. The case where (iw, jw) is not unique is analogous
except that cuth (:r* ,Yw - h), which is a "slid down" version
of cuth (x* ~ y*), is considered. •

Lemma 2: If there exists a worst-case cut, CUth (x*, y*),
such that both (iw, jw) and (io ~ )0) are unique, then there
exists a worst-case cut which has an endpoint on a link
intersection or node.

Proof:·
Let Yw (x) == (Tjw - liw)X + li~' be the equation of (iw, jw)

on ~c E [0,1]. Let Yn(~c) == (Tjn - li,n):£ + liG be the equation
of (in,jo;) on :c E [0,1]. Let Yij(X) == (Tj - li)X + li be the
equation of (i,)) on x E [0, 1].

Consider the slopes of Yw (x) and Ya (x). There are two
cases:

1) The slope of :tJw (x;) is smaller or equal to the slope of

Yo(:r).

2) The slope of Yw (x) is greater or equal to the slope of



cuth (X*, y*)

Fig. 8. Clith(X* ,y*) is a worst-casecut and has a unique (iw,jw) and
(i o , jo). From this we are ahle to find Clith (x', Yo(x')), a worst-casecut
which hasan endpointon a link intersection.
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network found in [1]. The thick segmentsare locationswhere cuts of length
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We considernow the first case.Let:

lllin x such that x* �~ x: �~ 1 and

Yij �(�~�r�) == Ya�(�~�r�) for any Yij not Yo: or

Yij (x) == Yw �(�~�r�) for any Yij not Yw
1 if the x abovedoesnot exist
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Essentially,x' is the first �~�r�-�l�o�c�a�t�i�o�n after x* whereYw(x;) or
Ya�(�~�r�) intersectanotherlink. If Yw(x) or Yo: �(�~�r�) do not intersect
anotherlink after :r*, then x' == 1.

We now showthat :r' is an �~�r�-�l�o�c�a�t�i�o�n whereit is possibleto
cut all the links which intersectcuth(X*, y*). Since links are
line segments,we know y(x') == y(x*)+(x' -:r*)(rj-li) Vi,j.
Sincewe know Yw(x*) �~ Ya(:r*) +h �(�c�u�t�h�(�~�r�*�,�y�*�) hits both
Yw(:r) and Yo: (;:r)) and (rjw -liw)(:r' - x*) �~ (Tjo: -lioJ(:r'­
x:*) (case 1 above and x' - :r* 2 0), we have Yw(x*) +
(Tjw - liw) (x:' - :r*) �~ Yo(:r*) + (rjo - lin,) (x:' - :r*) + h.
Thus yw(:r') �~ Yo: (x') +h. SeeFig. 8.

This means CUth (:r', Ya(:r')) will cut both (iw, jw) and
(i a,1a)' Since both theselinks do not intersectanotherlink
on x* �~ :r < x', links which are cut by cuth (:r;* , y*) are also
cut by cuth(X:',yo:(:r')) (they are "trapped"between(iw,lw)
and (in:, loJ in x* �~ �~�c < :r').

Now we know cuth(X',Ya(:r')) is a worst-casecut andx'
1, [x',Ya(:r')] is a link intersection,or [:r',yw(x')] is a link
intersection.Therefore,by Lemma 1, we know there exists a
worst-casecut which hasan endpointon a link intersectionor
node.

The secondcasefollows in an analogousfashion. •
Basically, accordingto Lemma 2, if (iw, jw) and (i cn jo)

are both unique for a worst-casecut, we can find another
worst-casecut suchthat it hasat leastone endpointon a link
intersectionor node(seeFig. 8).

Using the abovelemmas,we now proveTheorem1.
Proof'of Theorem1: Since (iw' jw) and (io:, .ja) exist for

all worst-casecuts, Lemmas1 and 2 imply that we needonly
checkcutswhich haveendpointsat nodesor link intersections
to find a worst-casecut. Algorithm 1 checksall possible nodes
and intersectionsas endpoints,and thereforewill necessarily
find also a worst-casecut. •

V. NUMERICAL RESULTS

In this sectionwe presenta numerical result that demon­
stratesthe use of the WCBG algorithm. The result highlights
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the vulnerabilities of a specific fiber network that has a
bipartite structure.Clearly, the WCBG algorithm can be used
to analyzeothernetworksthat havemostly bipartite structure.
The resultswere obtainedusing MATLAB.

We modeled the Pacific Ocean submarine cables as a
bipartite graph. We usedthe Alcatel submarinenetwork map
found in [1] to identify the nodesand links in the graph.The
nodeson the left sideof the graphare largeAsian cities which
are connectedto thesecables.The nodeson the right side of
the graphare U.S. west coastcities. We assumetwo cities are
connectedby a fiber of unit capacity if there is a submarine
fiber connectingthem. We also assumethat the fibers follow
straight lines. We model a cut as a vertical line segmentof
heightequalto onedegreeof latitude (rv60 miles). Sucha cut
could representan underwaterearthquakeor an intentional
cut by a dragginganchor. We used the WCBG algorithm to
identify high capacitycuts for this model.

Fig. 9 presentsthe results obtainedby the algorithm. The
thick segmentsin the figure show cuts of length h == 1 (1
degreeof latitude)which cut at leastthreecables.Theseresults
are intuitive; somecuts simply disconnectnodes(major cities)
which have many fibers attachedto them (e.g. Tokyo, San
Luis Obispo, and Bandon). There are also locations in the
tnid-Pacific wherecuts will disconnect3 or more links. These
representlocationswherefibers havebeenlaid overeachother
and thus make for a more vulnerablearea for attack. In the
future we plan to extendthe algorithm such that it will deal
with generalgraphsand to obtain numerical results for the
continentalU.S.

VI. CONCLUSIONS

Motivatedby applicationsin the areaof networkrobustness
and survivability, in this paper, we focused on the problem
of geographicalcuts in a graph, whose nodesand links are
locatedin Euclideanspace.We provided a preliminary study


