

IV. A WORST-CASE CUT

In this section we present an O(N) algorithm for finding a
worst-case cut. The main underlying idea is that the algorithm
only needs to consider cuts which have an endpoint on a link
intersection or a node. Before proceeding, we note that the
set of all possible cuts is compact and the objective function
takes on a finite number of bounded values. This leads to the
following observation.

Observation 1: There always exists an optimal solution to
(1) (i.e., a worst-case cut).

Below, we present the algorithm which finds a worst-case
cut. It can be seen that the complexity of Algorithm WCBG
is O(N®). This results from the following facts: (i) links
are line segments and a pair of line segments can have
at most one intersection point, resulting in at most O(N*)
link intersections; (ii) there are two candidate cuts per link
intersection or node (cuts have two endpoints), and therefore,
the total number of candidate cuts is at most O(N*); (iii) since
evaluating Ly <(ry=ti)ai+l Ly thz (e =12 +1, (Line 7) takes
O(1) time and it has to be evaluated for all (4, j), finding the
capacity of a candidate cut takes O(N?).?

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG)

1: worstCaseCapacityCut « 0
2: for every node location and link intersection [z, yx] do
3: call evaluateCapacityofCut(zy, yx)
4: call evaluateCapacityofCut(xy, yx — h)
Procedure evaluateCapacityofCut(zy, yi)
5: capacityCut «— 0
6: for every (i,j) do
7o i 1y, <y teptt Ly th>(r—1)ay, +1; = 1 then

8: capacntyCut — capacnyCut + CijDij

9: if capacityCut > worstCaseCapacityCut then
100 2" —

1y — oy

12: worstCaseCapacityCut < capacityCut

We now use a number of steps to prove the theorem below.

Theorem 1: Algorithm WCBG finds a worst-casc cut which
is a solution to the optimization problem in (1).

Before proving the theorem, we introduce some useful
terminology and prove two supporting lemmas. If cuty, (v, y)
intersects any links, the links which are intersected closest to
the endpoint [, y] are denoted by (74, jo) and the point where
they intersect the cut is denoted by [, y,] (see Fig. 6 for an
example). Let those links which intersect cuty, (x.y) furthest
from the endpoint [x,y] be given by (i,,j.) and let the
point where they intersect the cut be given by [z, %.,]. Note
that (7., j.,) or (i4,jo) need not be unique. This is because
[€w, Yw] OF [, ya] can be a link intersection. It should be
noted that since the model assumes that there exists a link
with p;;c;; > 0 for some i and j, all worst-case cuts must

3Computational geometry results can probably be used to reduce the com-
plexity of Algorithm WCBG. Pamcularly [5] (based on [3]) enables counting
and locating all the intersections of N2 line segments in O(N2log N + I)
time, where I is the number of line segment intersections. A modified version
of the algorithm of [5] can be used within Algorithm WCBG.

(i{x y ja)

[za; Ya]
® —

cut

Fig. 6. Example showing (., j.) and (M,Ju) (Pery Jo) 18 the lowest link
intersected by the cut and thlb intersection is at [Ta, Yol (fw,jw) are the
highest links intersected by the cut and this intersection is at [z, yw]. Note
how (iw, jw) is not unique.

.\cuth W
o o

cuty (z*,y")

Fig. 7. Example showing how cutj (z*,ys) is a ‘slid up’ version of
cuty, (z*,y*). cuty (z*, ya), which has an endpoint on a link intersection,
is guaranteed to intersect every link cut), (z*,y*) does because there exist
no links at z* from y* to yq.

intersect at least one link. This implies (i, j,,) and (4, jo)
exist for all worst-case cuts.

Lemma 1: If there exists a worst-case cut, cuty(z*,y*),
such that either (i, j.,) is not unique, (i, j,) is not unique,
or x* € {0, 1}, then there exists a worst-case cut which has an
endpoint on a node or link intersection at [z*, y,,] or [2”, yq].

Proof: Assume (i,,j,) is not unique or x* € {0 1}
([7*, o] is a node or link intersection). Consider cuty, (*,)
which is a “slid up” version of the worst-case cut cuty, (x*, y*).
cutp (x*,y,) intersects the same links as cuty(x*,y*) since,
by definition of [24,Yy,], there exist no links at x* from y*
to yo. Thus, cuty(z*,y,) is also a worst-case cut and has an
endpoint on a node or link intersection. For an example, see
Fig. 7. The case where (i, j.) is not unique is analogous
except that cuty, (2*,y,, — h), which is a “slid down” version
of cuty(z*, y*), is considered. n

Lemma 2: If there exists a worst-case cut, cuty(z*,y"),
such that both (4,,,j,) and (is,jo) are unique, then there
exists a worst-case cut which has an endpoint on a link
intersection or node.

Proof:

Let Yo () = (rju — liw)x + li, be the equation of (i, j.,)
on x € [0,1]. Let ya(') = ("ja — lia)T + lin be the equation
of (ia;ja) on @ € [0,1]. Let y;;(x) = (r; — I;)z + I; be the
equation of (i.j) on z € [0, 1].

Consider the slopes of y,(x) and y,(z). There are two
cases:

1) The slope of y, (x) is smaller or equal to the slope of
;’l/ar("l')-

Tjw — liw < Tja — lia

2) The slope of y,,(x) is greater or equal to the slope of

cuty, (2, yo (2))
:\' I /:

Fig. 8. cuty(z*,y*) is a worst-case cut and has a unique (i, jw) and
(v jor). From this we are able to find cutp (z’, yo(z')). a worst-case cut
which has an endpoint on a link intersection.

Yo ().
Tjw — liw > Tja — liu

We consider now the first case. Let:

mina such that x* < <1 and
. ij (¥) = ya(x) for any yi; not y, or
yij(x) = yo(x) for any y;; not y,,
1 if the = above does not exist

Essentially, z’ is the first z-location after z* where y,, () or
Yo () intersect another link. If y,, () or y,(x) do not intersect
another link after «*, then 2’ = 1.

We now show that 2 is an x-location where it is possible to
cut all the links which intersect cuty (z*,y*). Since links are
line segments, we know y(z2') = y(z*)+(a'—a*)(r;—1;) Vi, j.
Since we know y,,(¢*) < yo(x™) + h (cuty(x*,y*) hits both
yo(x) and yo (2)) and (rj, — L) (@' = 27) < (7jo = lin) (2" =
2*) (case 1 above and &' — x* > 0), we have y,(¢*) +
(Tjw — Liw)(@ — @) < yola*) 4+ (Tja = Lia)(@" —2*) + h.
Thus y.(2') < yo(2’) + h. See Fig. 8.

This means cutp(2’, yo(x")) will cut both (i, j.) and
(iqs ja). Since both these links do not intersect another link
on x* < x < ', links which are cut by cut,(z*,y*) are also
cut by cuty (2, yo(x")) (they are “trapped™ between (i,,. j.,)
and (iq,jo) in 2% <o < a').

Now we know cuty, (2, yo (') is a worst-case cut and o’ =
1, [2',ya(2")] is a link intersection, or [z, y,(x’)] is a link
intersection. Therefore, by Lemma 1, we know there exists a
worst-case cut which has an endpoint on a link intersection or
node.

The second case follows in an analogous fashion. []

Basically, according to Lemma 2, if (i, jo,) and (ia. Jjo)
are both unique for a worst-case cut, we can find another
worst-case cut such that it has at least one endpoint on a link
intersection or node (see Fig. 8).

Using the above lemmas, we now prove Theorem 1.

Proof of Theorem I: Since (iy. j.,) and (iy. j,) exist for
all worst-case cuts, Lemmas 1 and 2 imply that we need only
check cuts which have endpoints at nodes or link intersections
to find a worst-case cut. Algorithm 1 checks all possible nodes
and intersections as endpoints, and therefore will necessarily
find also a worst-case cut. []

V. NUMERICAL RESULTS

In this section we present a numerical result that demon-
strates the use of the WCBG algorithm. The result highlights

Seattle
45 Nedonna

Bandon
40

San Francisco
Tokyo

Pusan 35 /
Shanghai
30k

B San Luis Obispo

Latitude

Hong Kong

Guam

L |
170W 150w ISIOW

L L
130E 150E 170E
Approximate Longitude

Fig. 9. Results obtained by the WCBG algorithm for the Pacific Ocean fiber
network found in [1]. The thick segments are locations where cuts of length
h =1 (1 degree of latitude) can disconnect at least 3 cables.

the vulnerabilities of a specific fiber network that has a
bipartite structure. Clearly, the WCBG algorithm can be used
to analyze other networks that have mostly bipartite structure.
The results were obtained using MATLAB.

We modeled the Pacific Ocean submarine cables as a
bipartite graph. We used the Alcatel submarine network map
found in [1] to identify the nodes and links in the graph. The
nodes on the left side of the graph are large Asian cities which
are connected to these cables. The nodes on the right side of
the graph are U.S. west coast cities. We assume two cities are
connected by a fiber of unit capacity if there is a submarine
fiber connecting them. We also assume that the fibers follow
straight lines. We model a cut as a vertical line segment of
height equal to one degree of latitude (~60 miles). Such a cut
could represent an underwater earthquake or an intentional
cut by a dragging anchor. We used the WCBG algorithm to
identify high capacity cuts for this model.

Fig. 9 presents the results obtained by the algorithm. The
thick segments in the figure show cuts of length h = 1 (1
degree of latitude) which cut at least three cables. These results
are intuitive; some cuts simply disconnect nodes (major cities)
which have many fibers attached to them (c.g. Tokyo. San
Luis Obispo, and Bandon). There are also locations in the
mid-Pacific where cuts will disconnect 3 or more links. These
represent locations where fibers have been laid over each other
and thus make for a more vulnerable area for attack. In the
future we plan to extend the algorithm such that it will deal
with general graphs and to obtain numerical results for the
continental U.S.

VI. CONCLUSIONS

Motivated by applications in the area of network robustness
and survivability, in this paper, we focused on the problem
of geographical cuts in a graph, whose nodes and links are
located in Euclidean space. We provided a preliminary study

