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Abstract—We study the novel hierarchical architecture of
Mobile Backbone Networks. In such networks, a set of Mobile
Backbone Nodes (MBNs) are deployed to provide an end-to-end
communications capability for the Regular Nodes (RNs). In this
work, we address the joint problem of placing a fixed number
K MBNs in the plane, and assigning each RN to exactly one
MBN. We formulate and solve two problems under a general
communications model. The first is the Maximum Fair Placement
and Assignment (MFPA) problem in which the objective is to
maximize the throughput of the minimum throughput RN. The
second is the Maximum Throughput Placement and Assignment
(MTPA) problem, in which the objective is to maximize the
aggregate throughput of the RNs. Our main result is a novel
optimal polynomial time algorithm for the MFPA problem for
fixed K. For a restricted version of the MTPA problem, we
develop an optimal polynomial time algorithm for K ≤ 2. We also
develop two heuristic algorithms for both problems, including
an approximation algorithm for which we bound the worst
case performance loss. Finally, we present simulation results
comparing the performance of the various algorithms developed
in the paper.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) and Mobile Ad Hoc
Networks (MANETs) can operate without any physical infras-
tructure (e.g. base stations). However, it has been shown that
it is sometimes desirable to construct a backbone over which
reliable end-to-end communication can take place [6],[7]. In
particular, if some of the nodes are more capable than others,
these nodes can be dedicated to providing the backbone.
Such networks, termed Mobile Backbone Networks, have been
recently been studied in [15],[19],[16].

Based on [15] and [19], a Mobile Backbone Network was
defined in [16] as composed of two types of nodes. The first
type includes static or mobile nodes (e.g. sensors or MANET
nodes) with limited capabilities. These nodes are refered to as
Regular Nodes (RNs). The second type includes mobile nodes
with superior communication, mobility, and computation ca-
pabilities as well as greater energy resources. These nodes are
termed Mobile Backbone Nodes (MBNs). The main purpose
of the MBNs is to provide a mobile infrastructure facilitating
network-wide communication.

An implicit assumption in previous formulations of the
Mobile Backbone Network construction problem is that an
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arbitrary number of MBNs are available for deployment, and
the goal is to minimize the number actually deployed. Indeed,
this problem formulation was given in [16] as the Connected
Disk Cover (CDC) problem. Specifically, the CDC problem
aims to place the minimum number of MBNs such that (i)
All RNs are covered by at least one MBN, and (ii) The
MBNs form a connected network. In many scenarios however,
a more appropriate (and perhaps realistic) assumption would
be that the number of available MBNs is fixed a-priori, and the
objective is to do the “best we can” with these fixed resources.

Note however, that the CDC-type formulation for MBN
placement arises very naturally given the assumption of a dis-
crete communications model, such as the “disk” connectivity
model. In such a model, two nodes can communicate if they
are within some fixed range, and cannot otherwise. However,
while the disk model is a good first-order communications
model, a more realistic model would account for the fact that
the data rate at which two nodes can reliably communicate
is actually a continuous function of the received Signal-
to-Interference-and-Noise Ratio (SINR). The SINR in turn,
depends on the wireless channel conditions and underlying
PHY/MAC protocols (i.e. the System model). In this paper
and for the specific context of Mobile Backbone Networks,
we distill these issues into the following general model: The
“throughput” achieved by an RN transmitting to its assigned
MBN is a decreasing function of (i) The distance between the
RN and MBN, and (ii) The total number of RNs assigned to
that MBN. The idea is that first factor models the loss due
to wireless propagation, and the second models loss due to
interference caused by multiple RNs trying to access a single
MBN. We elaborate further on the mathematical specifics of
the model, as well as provide examples in section III.

With the above communications model, we are able to re-
formulate the backbone construction problem in a manner
significantly different from previous formulations, and thereby
requiring significantly different solution methodologies. In
particular, we consider the joint problem of placing a fixed
number of MBNs, and assigning each RN to exactly one
MBN, such that a throughput objective is maximized. We
consider two objective functions, yielding two separate prob-
lems. The first is to maximize the throughput of the minimum
throughput RN, which we term the Maximum Fair Placement
and Assignment (MFPA) Problem. The second is to maximize
the aggregate system throughput (i.e. sum of the throughputs
achieved by each RN), which we term the Maximum Through-
put Placement and Assignment (MTPA) problem.
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It should be noted that in contrast to previous backbone
construction problem formulations, the MFPA/MTPA involve
a non-trivial assignment component. Specifically, a solution
needs to balance assigning RNs to their closest MBNs and not
assigning too many RNs to any particular MBN. Thus for the
overall problems, not only do K MBNs need to be placed at
arbitrary locations on the plane, but once placed there are KN

different RN to MBN assignments, among which the optimal
one must be chosen, where N is the number of RNs.

Despite this, we are able to develop an optimal polynomial
time algorithm for the MFPA problem for fixed K. We also
develop an optimal solution for a restricted version of the
MTPA problem for K ≤ 2. As will be described later, the key
lies in exploiting certain geometric properties of the placement
portion of the problem, and certain combinatoric structure
for the associated assignment subproblem. We also develop
approximation and heuristic algorithms for both problems.

As a final point, to our knowledge the joint placement
and assignment problems considered in this paper have not
been addressed before. Thus the primary goal of this paper
is to provide a theoretical framework and develop basic
optimal solutions. We leave the development of more efficient,
distributed and mobility-handling algorithms for future work.

This paper is organized as follows. In Section II we review
related work and in Sections III and IV we formulate the
problem and give illustrative examples. Section V presents
an optimal solution for the MFPA problem. In section VI, we
discuss solutions for a restricted version of the MTPA problem.
In section VII, we present approximation and heuristic algo-
rithms for both problems. Finally, in section VIII we evaluate
the performance of the algorithms via simulation.

II. RELATED WORK

The Mobile Backbone Architecture was originally presented
in [15],[19] (and references therein). In their work, they
assume the RNs and MBNs are already placed, and a-priori
form a connected network. Thus the focus of their work relates
to developing system-level protocols for routing, scheduling,
MBN election, etc. Our approach differs in that we focus on
the more fundamental problem of, given a set of arbitrarily lo-
cated RNs, how to place the MBNs and assign RNs to MBNs,
such that a network performance objective is optimized.

Somewhat along these lines is the work of [16], in which the
specific network performance objective is end-to-end connec-
tivity. In particular, they formulate the Connected Disk Cover
(CDC) problem, which aims to place the minimum number of
MBNs such that (i) All RNs are covered by at least one MBN,
and (ii) The placed MBNs form a connected network. They
present various approximation algorithms towards solving the
CDC problem. However, that an arbitrary number of MBNs
are assumed to be available, as well as the fact that a disk
connectivity model is assumed, makes both the CDC problem
formulation as well as the associated solution methodology
considerably different from that of this paper.

Given the more general communications model considered
in this paper, the closest related work is actually in regards
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Fig. 1. Example of a Cluster.

to base station selection/placement for cellular and indoor
wireless systems, e.g. [4],[17],[18],[12],[10]. However, there
are several aspects which differentiate our work from the work
in this area. First, the major levers of optimization in our work
are both the MBN (e.g. base station) placement and the RN
to MBN assignments. By contrast, much of the cellular work
use trivial solutions to the assignment problem (e.g. assign
each RN to the nearest MBN) and optimize via base station
placement/selection and/or power control. Another key differ-
ence is that practical considerations for cellular base station
placement usually a-priori restricts the set of possible locations
to a discrete set of candidates. This restriction typically results
in solution methodologies along the lines of simple heuristics,
or large scale optimization tools (e.g. MILP, GA, etc). In
contrast, we develop optimal combinatorial algorithms for the
joint node placement and assignment problems of this paper.

Finally, the basic idea of clustering nodes to form a hierar-
chical architecture has been extensively studied in the context
of wireless networks (e.g. [5],[7]). Yet, the idea of deliberately
controlling the motion of specific nodes in order to maintain
some desirable network property (e.g. lifetime or connectivity)
has been introduced only recently (e.g. [16],[11],[14]).

III. PROBLEM FORMULATION

We consider a set of N Regular Nodes (RNs), distributed in
the plane and assume that a set of K < N Mobile Backbone
Nodes (MBNs) are to be deployed. We denote the set of
RNs by P = {1, 2, . . . , N} and the set of MBNs by M =
{m1,m2, . . . ,mK}. For every RN i, let m(i) denote the MBN
to which i has been assigned, (e.g m(i) = k if i is assigned to
mk), and let d(i,m(i)) represent the distance between them.
In general, let d(i, j) represent the distance between nodes i
and j. Next, for every MBN mk, let Pk denote the set of RNs
assigned to it. We refer to the tuple of an MBN and its assigned
RNs as a cluster. For cluster k corresponding to (mk, Pk),
we define the cluster radius Rk as, Rk = maxj∈Pk

d(j,mk).
The number of RNs assigned to MBN mk, |Pk|, is refered
to as the cluster size. An example of a cluster is shown in
Fig. 1. For the communications model, we assume that the
throughput of an RN i transmitting to its assigned MBN m(i)
is some function H

(
d(i,m(i)), |Pm(i)|

)
, that is decreasing in

both it’s arguments. As mentioned earlier, the dependence of
H() on d(i,m(i)) models wireless propagation loss, and the
dependence on |Pm(i)| reflects loss due to interference at MBN
m(i). Note that in this communications model we assume that
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RNs from different MBNs do not interfere with each other, e.g.
different clusters operate on different frequencies.

To gain some intuition about the form H() could take,
consider the following two system examples: (i) Slotted Aloha-
based, and (ii) CDMA-based. In the Slotted Aloha based
model, we assume that all RNs assigned to an MBN mk

transmit within a slot with equal probability, 1/|Pk|. Addi-
tionally, we associate a “distance penalty” proportional to d−α

for an RN located a distance d away from mk, where α
represents the path loss exponent. This could, for example,
reflect extra coding that needs to be used in order to deal with
the propagation loss. The resulting throughput of a node i in
this system is therefore simply the probability that exactly one
RN transmits in a slot, multiplied by the distance penalty, i.e.,

TPSA(i) = 1
|Pm(i)|

(
1 − 1

|Pm(i)|

)|Pm(i)|−1(
1

d(i,m(i))α

)

≈ 1
e·|Pm(i)|·d(i,m(i))α

� HSA

(
d(i,m(i)), |Pm(i)|

)
(1)

where we have left out most of the constants for simplicity,
and we use the approximation that (1− 1/x)x−1 → 1/e even
for small values of x ≥ 1. Note that (1) is of the desired
form for H(), i.e. decreasing in both d(i,m(i)) and |Pm(i)|.
Next, consider a CDMA-based system in which power control
is employed. Specifically, in order to combat the near-far
problem, all RNs assigned to an MBN m(i) equalize their
received power (equal to 1, for simplicity) at m(i) to that of
the farthest away RN. Thus the throughput achieved by every
RN within a cluster is the same, and is proportional to its
Signal-to-Interference-and-Noise Ratio (SINR) at m(i), i.e.,

TPcdma(i) =
1/Rα

m(i)

(1/Rα
m(i))(|Pm(i)|−1)+η

= 1
|Pm(i)|+η·Rα

m(i)−1

� Hcdma

(
Rm(i), |Pm(i)|

)
(2)

where η represents the noise at MBN m(i), and Rm(i) the
radius of cluster m(i). Again, note the form of the throughput
function is as desired, since it is decreasing in both distance
and cluster size. For the purpose of intuition, we will carry
these two examples throughout the paper, whenever possible
directly applying to them the general results that we derive.

We now give a precise formulation for the two problems that
will be addressed in this paper: (i) The Maximum Fair Place-
ment and Assignment (MFPA) Problem and (ii) Maximum
Throughput Placement and Assignment (MTPA) problem.

Problem MFPA: Given a set of RNs (P ) distributed in the
plane, place K MBNs (M ) and assign each RN i to exactly
one MBN m(i) such that the following is maximized:

min
i∈P

TP (i) = min
i∈P

{
H

(
d(i,m(i)), |Pm(i)|

)}
(3)

Problem MTPA: Given a set of RNs (P ) distributed in the
plane, place K MBNs (M ) and assign each RN i to exactly

N-4 RNs

R2-cen R2-cen

m1 m2

(a)

R
2-cen R2-cen+ 

m1 m2

(b)

ε

Fig. 2. K = 2 MFPA example. (a) 2-Center Solution. (b) Optimal Solution.

one MBN m(i) such that the following is maximized:
∑
i∈P

TP (i) =
∑
i∈P

H

(
d(i,m(i)), |Pm(i)|

)
(4)

As a final point, we enforce the following additional con-
ditions on the H() function,

1) H(R,X) > 0,∀R ≥ 0,X ≥ 1.
2) H(R,X) < ∞,∀R ≥ 0,X ≥ 1 (only for MTPA)
Notice that condition (2) is needed for the general MTPA

problem as stated above to be well defined. Otherwise, any
solution in which an MBN is placed on top of an RN could
yield infinite aggregate throughput (i.e. artificially exploiting
the so-called “near-field” effect). Since K < N , this is not an
issue for the MFPA problem, i.e. the worst case throughput
RN cannot have an MBN on top of it.

IV. ILLUSTRATIVE EXAMPLES

In this section we attempt to give some additional intuition
regarding the complexity of the joint placement and assign-
ment problems addressed in this paper. To begin, consider a 1
MBN instance of the MFPA problem. With just one MBN, we
immediately note that the assignment portion of the problem
is trivial (i.e. all N RNs are assigned to the one MBN).
Furthermore, the associated placement portion of the problem
can be solved optimally by placing the single MBN so as to
minimize the farthest distance from any RN. This is precisely
the well known 1-center problem1, for which several efficient
polynomial time algorithms exist [1]. Applying one of these
algorithms solves the 1 MBN MFPA problem optimally.

Next, consider the 2 MBN example illustrated in Fig. 2. Fig.
2(a) shows the MFPA solution if we simply apply a 2-center
algorithm, and assign RNs to their nearest MBN. As shown,
the worst case RN attains a throughput of H(R2−cen, n − 2)
in this case, where R2−cen is the 2-center radius. However,
by increasing the radius of the second cluster by a small
amount, i.e. enough to enclose half of the n−4 RNs clustered
together, the optimal solution can potentially increase the
worst case RNs’ throughput to H(R2−cen+ε, n

2 ); this is shown
in Fig. 2(b). Clearly depending on the exact form of H(),
this improvement can be quite significant. As demonstrated
in this simple example, even if we are given a placement of
the MBNs, the assignment problem is non-trivial, as it may
potentially be beneficial to assign RNs to farther away MBNs.

1In general, the K-center problem places K MBNs such that the farthest
distance from any RN to its nearest MBN is minimized.
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Fig. 3. Illustration of the forms of 1-center (location,radius) tuples. (a)
Midpoint of a pair of points. (b) Circumcenter of a triplet of points. (c) On
top of a single point.

Thus the main difficulty of the MFPA and MTPA problems
for K > 1 can be summarized as follows. First, there are
an infinite number of potential locations for the MBNs (i.e.
anywhere on the plane). Second, for any particular placement
of K MBNs, there are KN different assignments of RNs to
MBNs (i.e. each RN can be assigned to one of K MBNs).

V. MFPA SOLUTION

The key to our approach in solving the MFPA problem is
to decouple the placement and assignment problems in a way
that does not affect the optimality of the resulting decoupled
solution. We start with the following observation and lemma.
The observation applies to any feasible MFPA solution, and
follows from the fact that the overall minimum throughput RN
must be the minimum throughput RN in its own cluster.

Observation 1: Let RN i have minimum throughput among
all RNs, and let m(i) be its assigned MBN. Then, the
throughput of i can be expressed as a function of its cluster’s
radius and size, i.e. TP (i) = H(Rm(i), |Pm(i)|).

Lemma 1: Let P ∗
1 , P ∗

2 , . . . , P ∗
K represent the optimal

MFPA assignments of RNs to MBNs m1,m2, . . . ,mK re-
spectively. Then, there exists an optimal solution to the overall
MFPA problem in which the MBNs are placed at the 1-center
locations of P ∗

1 , P ∗
2 , . . . , P ∗

K .
Proof: Consider an optimal solution to the MFPA prob-

lem in which the MBNs are not placed at the 1-center locations
of P ∗

1 , . . . , P ∗
K . Next, consider the solution obtained by mov-

ing all of the MBNs to their respective 1-center locations. By
definition of the 1-center, doing this never increases the radius
of any of the K clusters. Therefore, since the cluster sizes
|P ∗

1 |, . . . , |P ∗
K | are fixed, then by observation 1 the throughput

of the worst case throughput RN does not decrease.
The consequence of the above lemma is that for the place-

ment problem, the finite space of 1-center locations contains at
least one solution of optimal cost. Additionally, the associated
cluster radii of each of the K clusters are by definition 1-
center radii. Thus as a first step, we have reduced the search
space from an infinite number of locations on the plane, to a
finite set of 1-center locations (with associated 1-center radii).

At first glance, the total number of 1-center locations/radii
might seem prohibitively large and thus our reduction of lim-
ited use. For example, every subset of RNs has an associated 1-
center location and radius, and there are 2N subsets. However,
it turns out that all of these locations/radii come from a

relatively small (i.e. polynomial in N ) set of candidates. To
show this, we need the following fact, illustrated in Fig. 3,
regarding the 1-center of a set of RNs P [13],

Fact 1: The unique 1-center location and radius of a set of
RNs P , denoted 1C(P ) and R(P ), is defined by either:

1) A pair of RNs i, j ∈ P . If this is the case, then 1C(P )
is situated at the midpoint of i,j, and R(P ) = d(i, j)/2.

2) A triplet of RNs i, j, k ∈ P that form an acute trian-
gle. If this is the case, then 1C(P ) is situated at the
circumcenter2of {i, j, k} and R(P ) is the circumradius.

3) A single RN i ∈ P . This is the degenerate case where
P = {i} is a singleton set, and 1C(P ) is situated on i
itself, and R(P ) = 0.

Indeed, the actual 1-center (1C(P ), R(P )) tuple has minimum
R(P ) such that all RNs are within distance R(P ) of the
location 1C(P ). Let QP denote the full set of candidate 1-
center locations, as described in fact 1 with respect to the
original set of RNs P . Note that since each q ∈ QP is defined
by either 1,2 or 3 RNs in P , it follows that that QP has
cardinality at most

(
N
1

)
+

(
N
2

)
+

(
N
3

)
. Additionally, as described

in Fact 1 and shown in Fig. 3, for each q ∈ QP , we associate
Rq to denote the 1-center radius of a cluster whose 1-center
location is q, and the set wq to denote the set of defining RNs
for q. Note that though several locations in the set QP may be
coincident, all wq’s are distinct. We now state the following
lemma, which follows by construction of QP and fact 1.

Lemma 2: The 1-center (location, radius) tuple of any
subset T ⊆ P corresponds to some (q,Rq) tuple, q ∈ QP .

Combining lemmas 1 and 2 and Fact 1, we can conclude that
restricting our placements of MBNs to the set QP still allows
us to find the optimal solution to the overall MFPA problem.
Moreover, we can restrict ourselves to solutions whereby if an
MBN mk is placed at location q ∈ QP , all of the RNs assigned
to it must be within distance Rq, i.e. d(i,mk) ≤ Rq, ∀i ∈ Pk.
Otherwise, by Fact 1 q cannot be the unique 1-center location
of Pk, i.e. there must exist some other location q′ ∈ QP that
is the actual 1-center location of Pk, with corresponding 1-
center radius Rq′ . As per lemma 1, moving mk to location q′

cannot decrease the MFPA objective.
For clarity, we illustrate the exhaustive search over all place-

ments among locations in QP as the high-level framework
shown below. Let m∗

1, . . . ,m
∗
k denote the optimal locations of

the K MBNs, m∗(1), . . . ,m∗(N) the optimal RN to MBN
assignments, and U∗ the associated optimal cost.

Up to this point, we have not discussed the assignment
subproblem, which we need to solve as a subroutine in step
5 of the high-level framework. It turns out that the specific
methodologies used to solve this problem for K = 2 and
K > 2 are quite different, as we describe below.

A. K = 2 MFPA Assignment Subproblem

With the placement locations and radii fixed, for K = 2
the resulting MFPA assignment subproblem turns out to be

2For a triplet of RNs, the circumcenter is the center of the circle that has
all three RNs on its boundary. The radius of this circle is the circumradius.
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Algorithm 1 High-Level Optimal MFPA Framework
1: initialize U∗ = −∞
2: create the set QP by enumerating over all defining subsets of

size 1, 2 and 3 of P .
3: for all

(|QP |
K

)
placements of K MBNs m1, . . . , mK do

4: if all RNs are within Rj of at least 1 MBN mj in current
MBN placement then

5: calculate the optimal MFPA assignments m(i), ∀i ∈ P ,
given the current MBN placement and subject to the
constraint that m(i) = k only if d(i, mk) ≤ Rk. Let U
represent the corresponding worst case RN throughput.

6: if U > U∗ then
7: set U∗ ← U , update m∗(i), m∗

k, ∀i ∈ P, k ∈ K
8: return U∗, m∗

1, . . . , m
∗
K and m∗(1), . . . , m∗(N)

easy to solve. In this situation, as depicted in Fig. 4(a), we
define C(1) and C(2) as the sets of RNs that lie exclusively
within radius R1 and R2 of MBNs m1 and m2 respectively.
Similarly, let C(1, 2) denote the “common set” of RNs that
lie within the radii of both m1 and m2. The main idea is that
since the radii are fixed, RNs in C(1), C(2) must be assigned
to m1,m2 respectively. Moreover, in assigning the remaining
RNs in C(1, 2), it is only the number assigned to each MBN
that affects the MFPA objective. Thus we can search over the
|C(1, 2)| + 1 different possibilities and pick the optimal one.

The worst case computational complexity of the overall
MFPA algorithm for K = 2 is therefore O(N7). This follows
from the fact that |QP | ≤ N3 and we need to solve

(|QP |
2

)
assignment problems, each of which takes O(N) time.

B. General K MFPA Assignment Subproblem

The MFPA assignment subproblem for K > 2 is signif-
icantly more difficult than for K ≤ 2. To get a sense of
the additional difficulty, consider the 2 vs. 3 MBN example
illustrated in Fig. 4. For 2 MBNs m1,m2, there is only one
type of “common set” of RNs, i.e. C(1, 2), yielding at most
O(N) ways to assign different numbers of RNs to each MBN.

For K > 2 MBNs, the number of ways to divide different
numbers of RNs within a single common set generalizes to
O(NK−1). Yet, the real difficulty is that for K > 2, there can
potentially be many types of common sets. For example, in
Fig. 4(b), RNs in the set C(1, 2, 3) can be assigned to any of
the 3 MBNs, whereas RNs in C(2, 3) can only be assigned
to either m2 or m3. Thus, the total number of ways the RNs
within all of these different common sets can be divided among
K MBNs is O((NK−1)I), where I represents the number
of distinct common sets. Observing that each MBN location
and radius represents a circular region, we can actually bound
I by K2 [2]. This results in a total complexity of O(NK3

)
to enumerate all possible assignments. While still polynomial
in N , spending this complexity for each of the O(N3K)
assignment subproblems yields an overall algorithm definitely
outside the realm of practicality (e.g. even for K = 3).

With a more practical solution desired, we now develop
an optimal algorithm for the general K MFPA assignment
subproblem that is polynomial in both K and N . To this end,
we start by formulating the MFPA assignment subproblem

R
2

R1
m2m1

R2
R1

m2m1

C(1,2,3)

C(2,3)

m
3

R3

(a) (b)

C(1,2)

C(2)C(1)

Fig. 4. (a) K = 2 vs. (b) K = 3 examples of assignment subproblem.

using a mathematical programming notation. Define indicator
variables xij to equal to 1 if RN i is assigned to MBN
mj . Next, define indicator constants zij to be equal to 1 if
d(i,mj) ≤ Rj . The resulting formulation can be written as,

max min
j∈M

H
(
Rj ,

∑
i∈P

xij

)
(5)

s.t.
∑
j∈M

xij = 1,∀i ∈ P (6)

xij ≤ zij ,∀i ∈ P, j ∈ M (7)

xij ∈ {0, 1} (8)

where constraints (6) ensure that every RN is assigned to
exactly 1 MBN, constraints (7) that we only make valid
assignments, and constraints (8) integrality of the final assign-
ment. Defining the increasing function F () = 1/H(), since
H() > 0, we can re-write the objective function in (5) as,

min max
j∈M

F
(
Rj ,

∑
i xij

)
(9)

Applying one more transformation, we have (avoiding re-
writing constraints (6)-(8) for brevity),

min W (10)

s.t.
∑
i∈P

xij ≤ g(W ;Rj),∀j ∈ M (11)

where we have used the common trick of converting a minimax
objective function into a simple min objective function by
introducing an extra real valued variable W and moving the
max part of the objective function into the constraints. We
define g(W ;Rj) to be the inverse with respect to

∑
i xij of

F (Rj ,
∑

i xij), i.e.,

g
(
F (Rj ,

∑
i xij) ; Rj

)
=

∑
i xij (12)

which we assume exists. This assumption is justified since F ()
is monotonically increasing, and therefore constitutes a one-to-
one (in

∑
i xij) function. As an example, for the Slotted Aloha

H() given in (1) we have that g(W ;Rj) = W/(e · Rα
j ).

At this point, we note that the above optimization problem
can be solved by way of solving a series of feasibility problems
(e.g. fix W , and see if there exist xij’s that satisfy constraints
(11), (6)-(8)).. Consider the following lemma, which follows
from the observations that: (i) g(W ;Rj) is monotonically
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Fig. 5. Construction of the Flow Graph G = (V, E, C) for a given W .

increasing since it is the inverse of a monotonically increasing
function, and (ii) Constraints (8) induce the right hand side of
constraints (11) to be integral for an optimal solution.

Lemma 3: The optimal W ∗ must satisfy g(W ∗;Rj) ∈ Z.
That is, g(W ∗;Rj) must be integral.

We can combine this lemma with the fact that there are
at most K · N distinct integer feasible values for g(W ∗;Rj).
Specifically, for each Rj (of which there are K), W ∗ can be
one of F (Rj , b), b = 1, . . . , N . Therefore, we can exactly find
the optimal W ∗ by solving K · N feasibility problems.

The remaining question is: Given a value for W , how can
we efficiently find (or not find) an assignment of xij’s that
answers the feasibility question? To this end, we will now
show that the feasibility problem can be transformed into a
classical graph problem, Integer Max-Flow, for which several
efficient polynomial time algorithms exist [3].

The Integer Max-Flow problem is defined as follows: We
are given a flow graph G = (V,E,C), where C defines an
integer set of capacities cij on each edge (i, j) ∈ E, and a
source vertex s and a sink vertex t, s, t ∈ V . The objective is to
assign positive integer flows fij on each each edge (i, j) ∈ E
such that the aggregate flow from s to t, equal to

∑
j fsj , is

maximized. The fij’s must obey the following constraints:
1) fij ≤ cij ,∀(i, j) ∈ E (capacity constraints)
2)

∑
i fij−

∑
k fjk = 0,∀j ∈ V \{s, t} (flow conservation)

3)
∑

i fis =
∑

j ftj = 0 (source and sink property)
Returning to our problem, we start by constructing a flow

graph G = (V,E,C) in the following manner, depicted in
Fig. 5. Let P ∈ V represent a set of vertices corresponding
to each RN, and similarly M ∈ V for the MBNs. Next,
define source and sink vertices s, t ∈ V . Next, define N
source edges (s, i) with capacities c(s, i) = 1, ∀i ∈ P . Next,
define edges between nodes (i, j) with capacities c(i, j) = zij ,
∀i ∈ P, j ∈ M . Finally, define K sink edges (j, t) with
capacities c(j, t) = g(W ;Rj), ∀j ∈ M . At this point we
run a Max-Flow algorithm to find the maximum (integral)
flow between s and t in G. Given the Max-Flow solution,
we interpret a non-zero flow fij = 1 on an edge of type
(i, j), i ∈ P, j ∈ M to mean that in the assignment solution
RN i should be assigned to MBN j. Our main result lies in
the following lemma, which we only prove for one direction;
the converse holds by construction.

Lemma 4: For a given W , the MFPA assignment subprob-
lem is feasible if and only if the Max-Flow from s to t has
value equal to N .

Proof: Assume an integer max-flow of value N is found.
To show this corresponds to a feasible solution to the MFPA
assignment subproblem, it suffices to show that all of the
constraints (11), (5), (6) are satisfied. Constraints (5) are
satisfied since if the max-flow is equal to N , it must mean that
all source edges carry a flow of 1. Thus by flow conservation,
each RN (at the endpoint of each of the source edges) must be
assigned to exactly 1 MBN. Next, note that constraints (6) are
satisfied since if edge (i, j), i ∈ P, j ∈ M has non-zero flow
across it, then by construction it’s capacity, which is equal to
zij must be equal to 1. Finally, constraints (11) are satisfied
since if more than g(W ;Rj) RNs are assigned to any MBN
mj , this would correspond to edge (j, t) having a greater flow
than it’s assigned capacity.

The preceding lemma gives us the final piece of the puzzle
needed in order to construct an efficient algorithm for the
MFPA assignment subproblem. The algorithm is given below.

Algorithm 2 Fixed K MFPA assignment algorithm
1: initialize W ∗ ←∞
2: for k = 1 to K do
3: for b = 1 to N do
4: set W ← F (Rk, b)
5: if W < W ∗ then
6: construct flow graph G = (V, E, C) as follows:
7: set V ← P

⋃
M

⋃{s, t}
8: set E ← E

⋃{(s, i)}, c(s, i)← 1, ∀i ∈ P
9: set E ← E

⋃{(i, j)}, c(i, j)← zij , ∀i ∈ P, j ∈M
10: set E ← E

⋃{(j, t)}, c(j, i)← �g(W ; Rj)�, ∀j ∈M
11: solve s − t Max-Flow on G. Let fij be the flows on

each edge (i, j) and Fmax the max-flow value.
12: if Fmax = N then
13: set m(i)← j if fij = 1, ∀i ∈ P, j ∈M
14: set W ∗ ←W
15: return W ∗, m(1), . . . , m(N)

We conclude the section by noting that the best Integer
Max-Flow algorithm has running time O(KN2 log N) [8].
Therefore, the algorithm depicted above has O(K2N3 log N)
complexity. The result is a worst case complexity
O(N3K+3 log N) algorithm for the fixed K MFPA problem.
As will be shown in section VIII, this algorithm can be
applied to solve instances with relatively small K and N .

VI. MTPA SOLUTION

It turns out the general MTPA problem as formulated in
4 is significantly more difficult to optimally solve than the
MFPA problem. For example, consider the MTPA problem
for K = 1 MBN (i.e. ignore the assignment subproblem). At
first glance it would seem like the MTPA problem looks like
the well known 1-median/Fermat-Weber problem (numerically
solvable in polynomial time [1]), in which one seeks to place
the MBN in the location that minimizes the sum of the
distances to each RN. However, the general MTPA objective is
actually to maximize the sum of arbitrary decreasing functions
of each of the distances; the difference is quite substantial.
For example, consider a very simple decreasing function
H(di) = 1/(di+γ), where di represents the distance from RN
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i to the placed MBN and γ some positive constant. Clearly
minimizing

∑
i di achieves a significantly different objective

from maximizing
∑

i 1/(di + γ) (for which to our knowledge
no optimal algorithm exists).

Thus we consider a restriction on the general MTPA prob-
lem, in which we enforce the condition on the H() function
that all RNs within a cluster get the same throughput, which
is a function of the cluster radius and size, i.e.,

TP ′(i) = H

(
Rm(i), |Pm(i)|

)
,∀i ∈ P (13)

The reasoning behind this particular restriction is two-
fold. First, the above expression yields a lower bound on the
general MTPA objective, i.e. since H(d(i,m(i)), |Pm(i)|) ≥
H(Rm(i), |Pm(i)|),∀i ∈ P . It is therefore still useful to
optimize. Second, this approach allows us to heavily leverage
the discussion we have evolved through this paper for the
MFPA problem. To start, for K = 1 the 1-center algorithm
optimally solves the restricted version of the MTPA problem.

For K > 1, we note that Observation 1 along with lemmas
1-2 all apply to the restricted MTPA problem. Therefore, the
high-level framework in section V solves the placement por-
tion of the problem. Additionally, for K = 2 the simple MFPA
assignment algorithm in section V-A also solves the restricted
MTPA assignment subproblem, as long as the appropriate (i.e.
MTPA) objective function is used.

For K > 2, the brute force approach discussed in the begin-
ning of section V-B applies to the restricted MTPA problem.
However, the fixed K MFPA assignment algorithm does not
solve the fixed K restricted MTPA assignment problem.

VII. LOWER COMPLEXITY HEURISTICS

Although the algorithms developed so far in this paper find
optimal solutions in polynomial time, their complexity is still
prohibitively high unless both K and N are quite small. For
example for K = 3, N = 35, the running time of the optimal
MFPA algorithm was 3 hours on a Pentium 2.4GHz computer.

Thus in this section, our goal is to develop suboptimal
approaches that have significantly less running time than the
optimal approach, but still perform comparably well. We will
discuss 2 such approaches: (i) An approximation algorithm
that is based on cutting down the number of candidate MBN
placements, and (ii) A simple and fast heuristic algorithm, but
with no worst case performance guarantee. For the most part,
the discussion applies to both the MFPA and restricted MTPA
problems. For brevity, we will describe the algorithms in the
context of the MFPA problem, noting any key issues specific
to the restricted MTPA when appropriate.

A. Extended Diameter Algorithm (EDA)

As discussed in section V, the complexity of the optimal
MFPA algorithm is dominated by the number of (optimality-
preserving) possible placements,

(|QP |
K

)
= O(N3K). In-

deed, the set QP is of size O(N3) due to having to con-
sider all possible locations/radii corresponding to circumcen-
ters/circumradii of triplets of RNs (see Fact 1). If we did not

r

b
a

Ext. Diameter
Circumcenter

β

√
3a

Fig. 6. Extended Diameter-type vs. Circumcenter-type placement.

consider such “circumcenter-type” locations, but instead only
looked at locations defined by (i) pairs of RNs (i.e. “diameter-
type”) and (ii) single RNs (i.e. “singular type”), the number
of possible placements would immediately reduce to O(N2K).
This is the main idea behind the approach in this section.

Recall that in the high-level framework, we only consider
placements at locations q ∈ QP , and assignments such that
if an RN i is assigned to MBN mk located at q ∈ QP , then
d(i,mk) ≤ Rq. We denote such solutions as valid. However,
an issue that comes up when we remove circumcenter-type
locations from QP is that a valid solution may not even exist
(e.g. consider 3 RNs that form a equilateral triangle).

To compensate for this, we define extended-diameter type
locations, shown in Fig. 6, whose locations are the same as
the original diameter-type locations, but whose associated radii
are

√
3 times larger. Let Q′

P denote the set of all extended-
diameter and singular-type locations with respect to a set of
RNs P . Note that a direct analog with lemma 2 applies, i.e.
Q′

P contains all extended-diameter and singular-type locations
(with associated radii) with respect to any subset of RNs T ⊆
P . The next lemma ensures that placements among locations
in Q′

P are guaranteed to contain a valid MFPA solution.
Lemma 5: For a set of RNs P , there exists a valid solution

to the MFPA problem with placements at locations in Q′
P .

Proof: To prove the lemma, we need to show that
for every circumcenter-type location/radii tuple in QP , there
exists an extended-diameter-type location/radii tuple in Q

′
P

that covers the same set of RNs. To this end, consider
some circumcenter-type placement, and the extended-diameter
location corresponding to the midpoint of the longest side (of
length 2a) of the acute triangle formed by the circumcenters’
defining RNs. The situation is depicted in Fig. 6. Let b be
the distance between the extended-diameter and circumcenter
locations. Next, let r denote the circumradius. By the triangle
inequality, we know that the distance between the extended
diameter location and any RN covered by the circumcenter
placement is at most b + r. Therefore, we have that,

b + r = r +
√

r2 − a2 = a
sinβ +

√
a2

sin2β − a2

≤ 2a√
3

+ a√
3

=
√

3a (14)

where we have used a geometric property of circumcenters
that r = a

sinβ . Additionally, we have used the observation
that since the defining triangle is acute and since the extended-
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Fig. 7. Example of solutions found for a K = 3, N = 20 instance of the
MFPA problem with the Slotted Aloha throughput function. (a) Unoptimized
Farthest Point Heuristic (FPH) (b) Unoptimized Extended Diameter Algorithm
(c) Optimal MFPA algorithm.

diameter location under consideration is defined by the longest
edge of the triangle, that π/3 ≤ β ≤ π/2.

Finally, define the extended-diameter 1-center of a set of
RNs P as the location in Q′

P that minimizes the maximum
distance from any RN in P . We now state the analog of lemma
1 applied to this context, whose proof follows from lemma 5.

Lemma 6: Let P ∗
1 , P ∗

2 , . . . , P ∗
K represent the optimal as-

signments of RNs to MBNs m1,m2, . . . ,mK respectively.
Then, there exists a solution to the overall MFPA problem
in which MBNs are placed at the extended-diameter 1-centers
of P ∗

1 , P ∗
2 , . . . , P ∗

K . Also, the objective value of this solution
is at least H(

√
3R∗, |P ∗|), where R∗ and |P ∗| represent the

worst case cluster radius and size of the optimal solution.
We define the Extended-Diameter Algorithm (EDA) for

the fixed K MFPA as well as the K = 2 MTPA problem,
as basically the optimal algorithms described earlier, with
Q′

P used in place of QP . The only difference is a final
optimization step, in which after the suboptimal extended-
diameter placement is decided, we move each of the MBNs
to the actual 1-center location of their assigned RNs.

By the preceding discussion, the EDA algorithm is a
H(

√
3R∗,|P∗|)

H(R∗,|P∗|) -approximation algorithm for the MFPA. For
path loss exponent α=2 this ratio evaluates to 1/3 for both
the Slotted-Aloha and CDMA throughput functions. The worst
case running time of the algorithm is O(N5) for K=2, and
O(N2K+3 log N) for fixed K>2.

B. Farthest Point Heuristic (FPH)

This next algorithm is simply an adaptation of Gonzalez’s
Farthest Point Heuristic (FPH) [9], with an additional opti-
mization step tailored to our setting. The algorithm works as
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Fig. 8. Average case simulation for K = 2 for the MFPA problem with
Slotted Aloha throughput function

follows: Initialize the algorithm by placing an MBN on top an
arbitrary RN, and assign all RNs to this MBN. Place the next
MBN on top of the RN farthest from its assigned MBN, and
re-assign RNs to their nearest MBN. Repeat the previous step
until all K MBNs are placed. The above placement can be
“optimized” by moving each MBN to the 1-center location of
its assigned RNs. The running time of the unoptimized version
of this algorithm is O(N log K), and using a practical 1-center
algorithm [1], the optimized version takes O(KN log N) time.

VIII. SIMULATION RESULTS

In this section we compare the performance of the various
algorithms presented in this paper via simulation. To this end,
we begin with an example of running the algorithms on a
single K = 3 MBNs, N = 20 RNs, MFPA instance, shown
in Fig. 7. We assume the RNs are randomly distributed in a
600×600 plane, and we use the Slotted-Aloha H() throughput
function given in (1), with α = 2.

As can be seen, the optimal solution achieves the ideal
balance between lightly loading clusters of large radii vs.
heavily loading clusters of smaller radii. By contrast, the FPH
solution potentially creates enormous radius clusters. More-
over, since nothing intelligent is done by the FPH regarding
the assignment problem (i.e. just assign RNs to their closest
MBN), the large radius clusters can also get heavily loaded.
The EDA does better, in that even though its cluster radii are
larger than optimal, it intelligently assigns RNs in a way that
achieves optimal load balancing among the placed clusters.

Figs. 8 and 9 show an average case plot for varying numbers
of RNs, and K = 2 and K = 3 MBNs. The parameters are
the same as for the previous scenario, and we average each
data point over 20 random instances. We present the average
ratio of the throughput achieved by the suboptimal algorithms
as compared to that of the optimal algorithms described in
sections V. In both figures, we can notice that the optimization
step significantly improves the performance of the heuristics.
However, as exhibited by the poor performance of both the
optimized and regular FPH, the optimization step can only
help insofar as lowering the cluster radius if possible; it cannot
make up for already-made poor assignment decisions.
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Fig. 9. Average case simulation for K = 3 for the MFPA problem with
Slotted Aloha throughput function

Finally, Fig. 10 shows an average case simulation for the
K = 2 MTPA problem with the CDMA throughput objective
function from (2). We set η = 10−4 in order to normalize the
SNR somewhat, and add 1 to the denominator so as to maintain
H() < ∞ as mentioned in section III. Note that the O-EDA
achieves aggregate throughput very close to optimal. In fact,
all of the algorithms perform significantly better (relative to
optimal) for the MTPA objective than for the MFPA objective,
albeit with different H() functions. Nevertheless, this would
seem to indicate that the max-sum (i.e. MTPA) objective is
less sensitive to suboptimal MBN placement/assignment than
the max-min (i.e. MFPA) objective.

IX. CONCLUSION

The recently studied Mobile Backbone Network architec-
ture can significantly improve the performance, lifetime and
reliability of MANETs and WSNs. In this paper, we have
focused on the key problem of how to jointly place the Mobile
Backbone Nodes (MBNs), and assign every Regular Node
to exactly one MBN. To this end, we have formulated two
problems under a general communications model. The first
is the Maximum Fair Placement and Assignment (MFPA)
problem in which the objective is to maximize the throughput
of the minimum throughput RN. The second is the Maximum
Throughput Placement and Assignment (MTPA) problem, in
which the objective is to maximize the aggregate throughput
of the RNs. Our main result is a novel optimal polynomial
time algorithm for the MFPA problem for fixed K. We have
also provided an optimal solution for a restricted version of
the MTPA problem for K ≤ 2. We have developed two
heuristic algorithms for both problems, including an approxi-
mation algorithm with bounded worst case performance loss.
Finally, we have presented simulation results to evaluate the
performance of the various algorithms developed in the paper.

To our knowledge the problems presented in this paper have
not been considered before. Thus for this paper, our primary
goal has been to provide a theoretical framework, as well as
basic optimal solutions. Future work involves the development
of more efficient, distributed and mobility-handling algorithms
for both the MFPA and MTPA problems.
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Fig. 10. Average case simulation for K = 2 for the MTPA problem with
CDMA throughput function
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