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Abstract— We consider a joint randomized scheduling, conges-
tion control mechanism for general wireless networks. We allow
for a set of imperfections in the operation of the randomized
scheduler to account for potential errors in its operation. These
imperfections enable the design of a large class of low-complexity
and distributed implementations for different interference mod-
els. We study the effect of such imperfections on the stability and
fairness characteristics of the system, and explicitly characterize
the degree of fairness achieved as a function of the level of
imperfections. Our results also reveal the relative importance of
different types of errors on the performance of the system, and
provide valuable insight to the design of distributed controllers
with favorable fairness characteristics.

I. INTRODUCTION

There has been considerable recent interest in develop-
ing network protocols to achieve the multiple objectives
of throughput maximization and fair allocation of resources
among competing users. Much of the work in wireless com-
munication networks has focused on centralized control and
has developed throughput-optimal 1 policies (e.g. [23], [17],
[6]). However, these policies do not directly lend themselves
to distributed implementation, which is essential in practice.
In this paper, we provide a class of imperfect randomized
scheduling and flow control algorithms that are amenable
to distributed implementation, and study their stability and
fairness characteristics. In particular, we explicitly characterize
the degree of fairness achieved by such imperfect policies as
a function of the level of imperfections.

Queue-length-based dynamic scheduling and routing strate-
gies has proven to be very successful in effectively utilizing
the system resources. In particular, the class of back-pressure
policies introduced in [23] and later extended in more recent
works (e.g. [1], [19], [17], [8]) have been shown to be
throughput-optimal. While these schedulers can be imple-
mented distributively in wireline networks, the implementa-
tion requires centralized and high-complexity operations in
wireless networks due the coupling effect of the interference
between concurrent transmissions.

Recent work (e.g. [12], [24], [2], [25]) focused on devel-
oping distributed implementation at the cost of sacrificing a

1A throughput optimal policy stabilizes any set of flow rates that is
stabilizable by any other policy.

portion of the capacity region, where the level of sacrifice
depends on the network topology and the interference model.
It is observed in [3] that the level of sacrifice can be significant
for some network models.

In another line of work, a class of low-complexity sched-
ulers are proposed which preserves the throughput-optimality
characteristics. These schedulers are based on [22], where
an iterative algorithm is proposed to gradually improve the
scheduler performance rather than searching for the best
scheduler in every step. This reduces the complexity of the
implementation considerably at the possible cost of a rate-of-
convergence degradation. Also, the associated implementation
was not distributed. In recent works ([15], [4], [18]) the
framework of [22] has been improved to propose distributed
implementations for specific interference models. In particular,
the work of [15] studies the throughput performance of a class
of randomized schedulers with imperfections in their opera-
tion. The incorporation of such imperfections may be useful
in capturing potential errors in the distributed implementation.

In addition to throughput characteristics, another important
performance criteria, especially in the presence of elastic
traffic such as data transmissions, is fairness. We say that
a rate allocation is fair or optimal if it maximizes, over all
feasible rates, the sum of a set of utility functions that model
the preferences of different flows (see e.g. [9], [10], [13], [26],
[20]). Congestion controllers have been developed in numer-
ous studies (see [20] for an overview) to achieve the optimal
allocation via decentralized methods. These controllers are
operated at the sources to regulate the traffic of each flow
based on the congestion level experienced at the time.

More recently, the routing, scheduling component is com-
bined with the congestion controller to develop a joint mecha-
nism ([11], [21], [5], [16], [20], [7]) with optimality properties.
However, the implementation difficulties of the optimal sched-
uler for wireless networks persists in this joint mechanism.

The goal of this work is to study the proximity of the
achieved rate allocation to the optimal allocation under a large
class of imperfect randomized schedulers that are amenable to
distributed implementation. By modeling a variety of imper-
fections that can occur due computational or communication
errors, our work creates a flexible framework for the design of
distributed schedulers under general interference models with
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other attractive features such as robustness, low-complexity,
high convergence rate, and low-overhead.

In a related work [12], authors consider one particular
imperfection in the scheduler operation and study its effect on
the optimality. However, the type of imperfection considered
[12] cannot model the attractive class of schedulers proposed
in [22], [15], [4], [18]. In a more recent work [4], the authors
study a particular class of distributed randomized schedulers
for the secondary interference model with the iterative nature
of [22]. However, the model assumes error-free operations and
hence may not be able applicable to cases where errors are un-
avoidable and/or helpful for lower-complexity implementation.

In this work, we extend the framework of [4] by modeling
various potential errors that can occur in the operation of
the scheduler, and by investigating their effect on the rate
allocation under our proposed joint mechanism. Our results
also reveal the critical components in the design of high-
performance distributed algorithms in wireless networks.

The rest of the paper is organized as follows. In Section II,
we provide the system model together with our objective.
In Section III, we describe a class randomized scheduling
mechanisms that contains many of the existing schedulers and
also allows for many others that can be implemented distribu-
tively. In Section IV, we describe a flow-control mechanism
that will operate concurrently with the randomized scheduler.
In Section V, we analyze the optimality characteristics of
the joint scheduling, flow-control mechanism and explicitly
characterize the proximity of the achieved throughput to the
optimal in terms of the parameters of the randomized policy.
We will provide some concluding remarks in Section VI.

II. SYSTEM MODEL AND OBJECTIVES

A fixed wireless network can be modeled by a directed
graph G = (N ,L) with a node set N (with cardinality
N ), a link set L (with cardinality L). We assume that the
nodes are synchronized to a common clock and that they
operate in a time-slotted fashion with each slot long enough
to accommodate a single packet transmission. Each directed
link corresponds to a potential transmission from the head to
the tail of the link.

A. Interference Model and Stability Region

Due to the nature of the wireless medium, only links that
do not interfere with each other can successfully convey
information simultaneously. In particular, we let I(l) denote
the set of links, other than l itself, that interfere with link
l ∈ L. Each link is either active or inactive in every time slot.
We assume that each link that does not interfere with any other
link that is active in the same slot, can convey a single packet
within one slot.

We let S denote the set of (feasible) link activations or
(feasible) schedules. For each feasible schedule S ∈ S, we
have: S = (Sl)l∈L with Sl ∈ {0, 1} for each l ∈ L; and

Sl +
∑

e∈I(l)

Se ≤ 1,

for all l ∈ L. The latter condition says that no two interfering
links of a feasible schedule can be simultaneously active. We
let S[t] denote the schedule that is picked at Slot-t. This is
a general model that captures all kth − order interference
scenarios whereby any two links within k hops from each
other interfere. In particular: when k = 1, the set of feasible
schedules corresponds to the set of all matchings, which is
a good model for CDMA communication; when k = 2, no
two links within a two hop neighborhood can communicate
simultaneously, which is a good model for IEEE 802.11
networks.

We also define the Stability Region of the network, denoted
by S, as

S , Convex Hull {S}

=

{
S′ : ∃ a prob. dist’n π with S′ =

∑

S∈S
π · S

}
,

where π · S denotes component-wise multiplication.

B. Traffic Model and Optimal Rate Allocation

In this work we assume that each flow traverses a single
link. This is in contrast to the more realistic scenario of flows
with multi-hop routes. The single-hop scenario is sufficient
to capture the essential components of the mechanism while
avoiding the additional complications associated with the
routing mechanism. This allows us to present the analysis more
clearly. We will later comment on the generalization to the
multi-hop routing scenario.

Different flows have different demands from the network,
some valuing higher data rate than others. It is observed in
the literature that utility functions can be used to capture such
preferences in a mathematical framework (e.g. [10], [13], [14],
[20], [5]). Therefore, under the aforementioned traffic model,
we associate a utility function Ul(·) to each link l ∈ L that is a
function of the mean throughput of link l. We further assume
that Ul(·) is a non-negative, non-decreasing, differentiable and
concave function of its parameter.

Interpreting the utility functions as measures of satisfaction
obtained over links, we define the optimal rate allocation
vector x? = (x?

l )l as the feasible mean rate that yields
the maximum total satisfaction over all the rates within the
stability region. In more mathematical terms, we define

x? = arg max
x∈S

∑

l∈L
Ul(xl). (1)

C. System Evolution

Packets are generated for each link based on a
flow/congestion control mechanism that is to be designed. We
let Xl[t] denote the number of packets (not necessarily an
integer) generated during Slot-t over link l. Also, associated
with each link l ∈ L, there exists a virtual queue, denoted by
Ql that holds the packets associated with link l. In particular,
Ql[t] denotes the number of packets that Queue-l contains at
the beginning of Slot-t.
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Then, the evolution of the queue-lengths vector Q[t] =
(Ql[t])l can be given by

Q[t + 1] = (Q[t]− S[t])+ + X[t]
= Q[t]− S[t] + X[t] + U[t] (2)

where (y)+ , max(0, y), and U[t] , max(0,S[t] − Q[t])
denotes the amount of unused service over link l in Slot-t.
We say that the queue Ql is said to be stable if

lim sup
τ→∞

1
τ

τ−1∑
t=0

E [Ql[t]] ≤ Q

for some Q < ∞. We say the network is stable if all queues
are stable. Also, we define

x̄l , lim
τ→∞

1
τ

τ−1∑
t=0

E[Xl[t]],

when it exists, as the mean flow rate over Link-l.

D. Objective

There are two operations, namely scheduling and flow
control, that need to be designed in the context of the network
described so far. On the one hand, the choice of the feasible
schedule needs to determined in each slot subject to the
interference constraints, and on the other hand, the amount of
traffic to be generated by each flow needs to be determined for
each link. These two mechanisms interact to jointly determine
the performance of the system.

The goal of the joint mechanism is to achieve mean link
rates that get arbitrarily close to the optimal rate defined in
(1). Moreover, the resulting mechanism must be amenable
to distributed implementation. In this work, we study the
optimality characteristics of a class of randomized controllers
that are amenable to distributed implementation.

III. PARAMETRIC CLASS OF RANDOMIZED SCHEDULERS

In this section, we describe a generic class of imperfect
randomized schedulers that we will consider. The class, in-
troduced in [15], extends the PICK-and-UPDATE Scheduler of
Tassiulas [22] to include errors in the implementation. Such
an extension may be critical in the distributed operation of
the system since errors and imperfections are typical conse-
quences of distributed computations. The general idea behind
the algorithm is to have the scheduler evolve towards the
optimal solution by an iterative process of: randomly selecting
a candidate feasible schedule (PICK) and replacing the existing
one in case the candidate offers better performance (UPDATE).

Before we start describing the scheduler, let us define the
optimal schedule S?[t] as

S?[t] = arg max
S∈S

〈S,Q[t]〉,

where 〈·, ·〉 denotes the inner product of two vectors. We are
now ready to describe the scheduler that is parametrized by
three variables (δ, γ, ψ), each capturing a different imperfec-
tion in its operation.

Definition 1 (RANDOMIZED SCHEDULER(δ, γ, ψ)): In each
slot, say t, the scheduler performs two steps:
• PICK: Pick a random feasible schedule, R[t], such that

P(R[t] = S?[t]) > δ,

for some δ > 0.
• UPDATE: Set the schedule S[t] such that

P (〈S[t],Q[t]〉 ≥ max {〈S[t− 1],Q[t]〉, (1− γ)〈R[t],Q[t]〉})
≥ 1− ψ,

for some γ and ψ in [0, 1].

The PICK step randomly selects a feasible schedule
with the mild limitation that there is a nonzero probability
of being the optimal schedule as measured by the parameter
δ. The UPDATE step actually encapsulates two operations:
Compute, where the weights of R[t] and S[t − 1] are
computed with respect to the current queue-length vector
Q[t]; Compare, where the maximum of the weights are
chosen. The γ parameter allows for the possibility of error
in the Compute operation, while the ψ parameter allows
for the possibility of error in the Compare operation. These
parameters help us capture the imperfections of distributed or
approximate implementations.

Several existing schedulers fall into this class of schedulers.
In particular: the schedulers of [22] and [4] are the cases when
δ > 0, γ = ψ = 0; the schedulers of [15] contains examples
of δ, γ, ψ > 0; the scheduler of [18] is the case when δ >
0, ψ = 0, γ = 1/m, for a design parameter m > 0. Thus,
the framework is flexible enough to accommodate many other
schedulers with varying features.

Next, we repeat the main result of [15], which describes the
set of rates that are achievable by a Randomized Scheduler.

Theorem 1 ([15]): The Randomized Scheduler(δ, γ, ψ) sta-
bilizes the network for any mean link flow rate vector x
satisfying

x ∈
{

y ≥ 0 :

(
1− γ − 2

√
ψ

δ

)
y ∈ S

}
.

Therefore, the impact of the imperfections of the randomized
scheduler results in the shrinkage of the stability region by
a factor of (1 − γ − 2

√
ψ/δ). Note that when ψ = γ = 0,

and δ > 0, the stability region is undisturbed. The questions
we are concerned with in this work are regarding the effect
of congestion control upon this class of schedulers, and the
optimality performance of the overall scheme.

IV. FLOW/CONGESTION CONTROLLER

The congestion control mechanism that determines X[t]
as a function of Q[t] is provided in this Section. Each link
utilizes its queue-length information in the decision process
by interpreting it as a measure of congestion. Then, depending
on its own utility function, each link determines the amount
of new packets it will generate. Such mechanisms have been
shown to provide attractive performance characteristics (see
for example [5], [7], [16]).
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Definition 2 (CONGESTION CONTROL MECHANISM): For
every link l ∈ L, given Ql[t], the congestion control
mechanism picks Xl[t] as

Xl[t] = min
{

M, U ′−1

(
Ql[t]
K

)}
, (3)

where M ∈ [1,∞) and K ∈ (0,∞) are finite constants.

M is included in (3) with practical considerations in
mind to bound the average number of packets generated in a
single time slot. K is a design parameter critically affecting
the performance of the whole mechanism. Intuitively, K can
be interpreted as an aggressiveness measure of the congestion
control mechanism: the greater the K the more packets are
generated by the congestion control mechanism for the same
level of the queues. The impact of K on the performance
will be made explicit in our analysis.

It is not difficult to see that (3) implies that

X[t] = arg max
y∈[0,M ]L

E

[
K

∑

l∈L
Ul(y)− 〈y,Q[t]〉 |Q[t]

]
, (4)

which is a compact form of (3). While (3) reveals the decen-
tralized nature of the congestion controller, (4) is useful in the
analysis, which the subject of the next section.

V. ANALYSIS OF THE JOINT SCHEDULER, CONGESTION
CONTROLLER MECHANISM

In this section, we investigate the stability and optimal-
ity characteristics of the joint scheduling, congestion-control
mechanism. In particular, we show that the network will be
stable under the joint mechanism, and we explicitly charac-
terize the proximity of the achieved mean link rates under the
joint mechanism to the optimal rate allocation x? in terms of
the randomized scheduler parameters (δ, γ, ψ). In a relevant
work [4], this question is answered for the case when δ > 0,
and γ = ψ = 0. Here, we provide the non-trivial extension to
the case when δ, γ, ψ > 0.

To that end, let us first define ε-relaxed stability region for
an arbitrary ε ∈ (0, 1), denoted by S(ε), as

S(ε) , {(1− ε)x : x ∈ S}.
Thus S(ε) is a compressed version of the stability region S by
a factor of (1−ε). We also define the ε-optimal rate allocation
x?(ε) as

x?(ε) = arg max
x∈S(ε)

∑

l∈L
Ul(xl).

Notice that we have lim
ε→∞

x?(ε) = x?. Since M ≥ 1, we have

S ⊂ [0,M ]L, and therefore x?(ε) ∈ [0,M ]L.

The next theorem proves the stability of the network under
the joint mechanism, and quantifies the proximity of the
achieved rate allocation to the optimal allocation in terms of
the parameters (δ, γ, ψ) of the imperfect randomized sched-
uler.

Theorem 2: The network operating under the joint Ran-
domized Scheduler(δ, γ, ψ) and Congestion Controller yields

lim
τ→∞

1
τ

τ∑
t=0

E [‖Q[t]‖1] ≤ KB1 (5)

for some bounded B1, where ‖Q‖1 ,
∑

l∈L
Ql.

Moreover, the proximity of the mean flow rates x̄ = (x̄l)l

to the ε-optimal rate x?(ε) is characterized as

∑

l∈L
Ul (x̄l) ≥

∑

l∈L
Ul(x?

l (ε))−
B2

K
, (6)

for any ε >

(
γ + 2

√
ψ
δ

)
, where B2 is a bounded constant.

Proof: We provide an analysis of the joint congestion
control-imperfect randomized scheduler mechanism via a Lya-
punov analysis. Let Y = (Q,S) be a new state. It is not
difficult to see that {Y[t]} under the joint mechanism describes
a Markov Chain.

Consider the quadratic Lyapunov function

V (Y) , 1
2

∑

l∈L
Q2

l =
1
2
‖Q‖22, (7)

where ‖Q‖22 , 〈Q,Q〉.
For notational convenience, let us define the W -step condi-

tional mean drift of the Lyapunov function starting at time t
as

∆(W )
t V , E [V (Y[t + W ])− V (Y[t]) |Y[t]] ,

for each W ∈ {1, 2, · · · }. We first bound the single-step
conditional mean of V (·)

∆(1)
t V

=
1
2
‖Q[t + 1]‖22 − ‖Q[t]‖22

=
1
2
‖Q[t]− S[t] + X[t] + U[t]‖22 − ‖Q[t]‖22

= 〈Q[t],X[t]− S[t]〉+
1
2
‖X[t]− S[t]‖22 + 〈U[t],X[t]〉

+〈U[t],Q[t]− S[t]〉+
1
2
‖U[t]‖22

≤ 〈Q[t],X[t]− S[t]〉+
1
2
‖X[t]− S[t]‖22 + 〈U[t],X[t]〉,

where the last inequality follows from the fact that
〈U[t],Q[t] − S[t]〉 = −‖U[t]‖22. Also noting that Ul[t] ≤ 1
since Sl[t] ≤ 1, and that Xl[t] ≤ M from (3), we can further
upper-bound the mean drift as

∆(1)
t V ≤ 〈Q[t],X[t]− S[t]〉+

(
M2

2
+ M

)
L.

We can extend the same analysis to W -step mean drift to get
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∆(W )
t V

≤
W−1∑
w=0

E [〈Q[t + w],X[t + w]− S[t + w]〉 |Y[t]]

+
(

M2

2
+ M

)
WL

(a)
=

W−1∑
w=0

E

[
K

∑

l∈L
Ul(Xl[t + w])|Y[t]

]

−
W−1∑
w=0

E[E[K
∑

l∈L
Ul(Xl[t + w])−

〈Q[t + w],X[t + w]〉 |Y[t + w]] |Y[t]] (8)

−
W−1∑
w=0

E [〈Q[t + w],S[t + w]〉 |Y[t]]

+
(

M2

2
+ M

)
WL

where (a) follows from adding and subtracting
K

∑
l∈L Ul(Xl[t + w]) to the previous expression, and

from conditioning in (8). Notice from (4) that our congestion
controller is designed to optimize the inner expectation in (8).
Thus, we can get a lower bound on this inner expectation by
noting that x?(ε) ∈ [0,M ]L, and therefore (4) implies that

E

[
K

∑

l∈L
Ul(Xl[t + w])− 〈Q[t + w],X[t + w]〉 |Y[t + w]

]

≥ K
∑

l∈L
Ul(x?

l (ε))− 〈Q[t + w],x?(ε)〉.

We substitute this as a bound to (8) and organize the terms to
obtain

∆(W )
t V ≤

W−1∑
w=0

E

[
K

∑

l∈L
Ul(Xl[t + w])|Y[t]

]

+
W−1∑
w=0

E [〈Q[t + w],x?(ε)− S[t + w]〉 |Y[t]] (9)

−WK
∑

l∈L
Ul(x?

l (ε)) +
(

M2

2
+ M

)
WL

Using Theorem 1, after replacing the exogenous arrival rate
with x?(ε) and assuming that ρ , ε− γ + 2

√
ψ
δ > 0, we can

write

∆(W )
t V ≤

W−1∑
w=0

E

[
K

∑

l∈L
Ul(Xl[t + w])|Y[t]

]

−WK
∑

l∈L
Ul(x?

l (ε))

−ρW‖Q[t]‖1 +
(

M2

2
+ M

)
WL.

Then, we take the expectation of both sides of the previous
inequality to eliminate the conditioning, and then take the

telescoping sum of P such consecutive W -step drifts to obtain
E [V (Y[PW ])− V (Y[0])]

≤
PW−1∑

k=0

E

[
K

∑

l∈L
Ul(Xl[k])

]
−KPW

∑

l∈L
Ul(x?

l (ε))

+
(

M2

2
+ M

)
WLP − ρ

P−1∑
p=0

E [‖Q(pW )‖1] .
(10)

Noting that V (y) ≥ 0 for all y ≥ 0, and re-arranging and
bounding some terms in this expression, we can obtain

1
P

P−1∑
p=0

E [‖Q(pW )‖1]

≤
K

∑

l∈L
Ul(M) +

(
M2

2
+ M

)
WL +

E[V (Y[0])]
PW

ρ
.

Also noting that Ql[t + k] ≤ Ql[t] + kM for each l ∈ L, we
can write

1
W

W−1∑

k=0

E [‖Q(pW + k)‖1] ≤ E [‖Q(pW )‖1]

+
M(W − 1)L

2
,

which, when combined the previous inequality, yields

lim
P→∞

1
PW

PW−1∑

k=0

E [‖Q(k)‖1]

≤ lim
P→∞

1
P

P−1∑
p=0

E [‖Q(pW )‖1] + M(W − 1)L
2

≤

(
K

∑

l∈L
Ul(M) +

(
M2

2
+ M

)
WL

)

ρ
+

M(W − 1)L
2

≤ B1K,

for the appropriate choice of B1, which proves (5).
Next, we re-organize the terms of (10) in a different way

to obtain

1
WP

PW−1∑

k=0

E

[∑

l∈L
Ul(Xl[k])

]

≥
∑

l∈L
Ul(x?

l (ε))−
L

K

(
M2

2
+ M

)

Also note that

1
WP

PW−1∑

k=0

E

[∑

l∈L
Ul(Xl[k])

]

≤
∑

l∈L
Ul

(
1

WP

PW−1∑

k=0

E [Xl[k]]

)
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by Jensen’s inequality.

Since x̄l = lim
P→∞

1
WP

PW−1∑

k=0

E [Xl[k]] , in the limit as P →
∞, we can write

∑

l∈L
Ul (x̄l) ≥

∑

l∈L
Ul(x?

l (ε))−
L

K

(
M2

2
+ M

)
,

which proves (6) with B2 := L
(

M2

2 + M
)

.

This shows that our joint mechanism, despite the imperfections
of the randomized scheduler, is guaranteed to achieve provably
good performance, where the degree of optimality is explicitly
described as functions of the imperfections of the underlying
scheduling mechanism. Since M and K are design parameters,
they can be picked to make the utility achieved by our
mechanism be at least as good as x?(ε).

Note that the imperfection measured by ψ (associated with
the Compare operation) can be much more detrimental to
the optimality as opposed to the imperfection measured by γ
(associated with the Compute operation). This is reasonable
since an error in the Compare operation may result in a
completely undesirable scheduler in which case it will take
a long time for the iterative scheduling mechanism to recover
from such a mistake. In comparison, an error in the Compute
operation will result in a scheduler with a performance that
is guaranteed to be within a (1 − γ) fraction of the current
scheduler. Thus, its influence on the performance is milder.
This suggests that in the design of distributed algorithms
within this framework, one should be considerably more
careful against errors in the Compare operation as opposed
to errors in the Compute operation.

In the case of multi-hop traffic, the joint scheduling, con-
gestion control mechanism needs to be extended by adding a
backpressure routing scheme (see e.g. [23], [17], [21], [12],
[7]) which utilizes queue-length levels to dynamically route
multi-hop traffic towards a direction of less congestion. The
results of Theorem 2 can be generalized to this scenario.

VI. CONCLUSIONS

We investigated the stability and optimality properties of a
class of joint scheduling, congestion control mechanisms. The
randomized and imperfect nature of the schedulers enables dis-
tributed implementations. The imperfections allow for errors in
the computation and communication operations that need to be
performed during scheduling. We explicitly characterized the
impact of these imperfections on the optimality characteristics
of the joint mechanism. Our results revealed the sensitivity
of the framework to different types of errors, which will be
useful in the design of new distributed algorithms.
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