
Optimal Path Planning for Mobile Backbone Networks

Anand Srinivas and Eytan Modiano
Massachusetts Institute of Technology

Cambridge, MA 02139
{anand3, modiano}@mit.edu

Abstract— Mobile Backbone Networks are heterogeneous
wireless networks in which a subset of the nodes are more
capable than others. The more capable nodes are referred to
as Mobile Backbone Nodes (MBNs), whose primary role is to
provide a mobile infrastructure in order to facilitate reliable
end-to-end communication between nodes in the Network. In
this paper, we consider the problem of optimally placing the
MBNs over a finite time horizon. Specifically, we consider the
path planning of a single MBN and aim to maximize the time-
average system throughput. We present a discrete problem
formulation, and develop an optimal solution for the single
step velocity-constrained MBN placement problem. Using this
as a sub-routine, we provide a greedy heuristic algorithm for
the overall path planning problem. Next, we develop a dynamic
programming based approximation algorithm for the problem.
Finally, we compare the developed approaches via simulation.

I. INTRODUCTION

Mobile Backbone Networks are heterogeneous wireless
networks in which a subset of the nodes are more capable
than others. The more capable nodes are referred to as
Mobile Backbone Nodes (MBNs), and the others as Regular
Nodes (RNs). The primary role of the MBNs is to provide
a mobile infrastructure in order to facilitate reliable end-to-
end communication between the RNs. Such a hierarchical
architecture, recently proposed and studied by Rubin et al.
and by Gerla et al. (see [9],[15] and references therein), is
applicable to both Wireless Sensor Networks (WSNs) and
Mobile Ad-Hoc Networks (MANETs).

In this paper, we consider the important problem of opti-
mally placing the MBNs over a finite time horizon. Previous
formulations of the Mobile Backbone Network construction
problem have been based on only the knowledge of the
instantaneous locations of the RNs. Specifically, at any given
time, the MBNs are placed and mobilized reactively based
on RNs’ locations at that time. Indeed, this was the approach
taken in [11], [12]. Yet, in many practical scenarios entire
RN trajectories are known a-priori (e.g. as waypoints for
particular missions). If this is the case, then placing the
MBNs by solving a placement problem independently at
each time step is, in general, suboptimal. In particular, it
would be desirable to solve for the entire optimal sequence of
placements for the MBNs at once. In this paper, we address
this MBN path planning problem from a discrete perspective.
For our exposition, we consider planning the path of a single

This research was supported by NSF grant CCR-0325401, by ONR grant
N000140610064, and by a grant from Draper Laboratory.

MBN, given the trajectories of the RNs over a finite time
horizon. Our goal is to optimize system throughput metrics
along the lines of those presented in [11], averaged over
the time horizon under consideration. The model we assume
is that the “throughput” achieved by an RN transmitting to
the MBN is a decreasing function of the distance between
the RN and MBN. Furthermore, the system throughput is
proportional to the throughput achieved by the minimum
throughput RN (e.g. the farthest RN from the MBN). It is
explained in detail in [11] that this is a reasonable model
for several practical wireless systems (e.g. CDMA, Slotted
Aloha-based, etc.). We elaborate further on the mathematical
specifics of the model in section III.

It is important to note that if the throughput metrics are
simply time-averaged and no consideration is given to the
actual movement of the MBN, then there is a straightfor-
ward way to calculate the optimal MBN path. Specifically,
combining the optimal solutions at each time step yields the
overall optimal path. For example, we can obtain such solu-
tions by employing the optimal algorithms developed in [11]
independently at each time step. However, such an objective
function can result in undesirable solutions for instances in
which the required MBN motion in consecutive time steps is
very large, even though the actual RN movement is small. In
particular, instances exist in which the optimal MBN location
moves an arbitrarily large distance in response to a small
movement by the RNs [10]. Finally, there can be scenarios
in which it is undesirable to have large MBN movements
even in response to large RN movements, e.g. limited MBN
velocity, energy constraints, MBN location predictability, etc.

To address this issue, we introduce a constraint on the
MBN velocity. This immediately causes a dependence be-
tween the solutions at each time step, considerably increasing
the difficulty of the overall problem. In this paper we develop
two solution approaches for solving the MBN path planning
problem. The first is a greedy approach in which at any
timestep and given a “current” MBN location, we relocate
the MBN, subject to the velocity constraint, such that the
throughput objective at the next timestep is maximized. Note
that the presence of the velocity constraint makes optimally
solving the single step problem quite non-trivial, and thus
an important contribution of this paper is an algorithm for
this purpose. In the second approach we develop a dynamic-
programming based algorithm that solves for the entire MBN
path at one shot. We elaborate upon the advantages and

913978-1-4244-2247-0/08/$25.00 ©2008 IEEE.

disadvantages of the two methods later in the paper.
Finally, to our knowledge the MBN path planning (MPP)

problem with throughput maximization objective has not
been considered in the literature. Yet, as mentioned in section
II several closely related problems and formulations have
been considered. The goal of this paper is to provide a basic
discrete formulation, as well a characterization of two natural
solution methodologies.

The remainder of this paper is organized as follows. In
section II we discuss related work. In section III we provide
the problem model and formulation. We develop a greedy
solution approach in section IV and a dynamic-programming
based approach in section V. Finally, in section VI we present
simulation results comparing the two approaches.

II. RELATED WORK

To our knowledge the velocity constrained MBN path
planning problem with a throughput maximization objective
has not been considered in the literature. Yet, several closely
related problems and formulations have been considered.
From a discrete perspective, the problem is closely related to
several time-horizon network planning and facility location
works considered in the past, e.g. [13],[14],[6],[4]. Yet, a
key difference between the MPP problem and the network
planning works is that for the MPP problem, the set of
potential locations for the MBNs is infinite (i.e. anywhere on
the plane). By contrast, the network location work assumes
that centers/medians (e.g. MBNs in our context) can only
move along edges and vertices of the graph. Moreover, we
consider general non-linear objective functions as well as a
hard constraint on the MBN movement, as will be further
described later in the paper.

Along the lines of hard constraints on MBN movement
(e.g. velocity) is the work of [2], in which they consider what
approximation ratios to the unconstrained 1-center/median
metrics can be achieved when the ratio of the MBN to RN
velocity is upper bounded. By contrast, we enforce a velocity
bound on the MBN, but leave the RN velocity unbounded.
Our focus is on characterizing the performance with respect
to the MBN velocity constrained MPP objective function.

Finally, it should be noted that time horizon network plan-
ning and facility location problems have also been formulated
in the continuous domain, e.g. [8], [10]. Yet, the problems
considered and the solutions employed significantly differ
from those of this paper.

III. PROBLEM FORMULATION

We consider a network consisting of N RNs P =
{p1, p2, . . . , pN} and a single MBN M , and a finite time
horizon [0, T], discretized by ∆t-spaced time steps t =
0, 1, . . . , K , K = T/∆t. We assume all of the nodes
in the network are situated on a 2-dimensional plane. We
denote by pi(t) , (pix

(t), piy
(t)), t = 0, 1, . . . , K , the x-

y position of RN pi at time step t. Similarly, we define
M(t) , (Mx(t), My(t)) for the MBN M . Let d[u, v] denote
the Euclidean distance between two nodes u and v. We let
di(t) denote the distance between RN pi and the MBN M at

time step t, i.e., di(t) = d[M(t), pi(t)]. Finally, let dmax(t)
represent the distance from the MBN to the farthest RN at
time step t, i.e., dmax(t) = maxi di(t).

We assume the trajectories of the RNs are known a-priori
over the full time horizon t = 0, 1, . . . , K . Thus the goal is
to compute a path M∗ = M(0), M(1), . . . , M(K) for the
MBN given this information. We assume the initial position
of the MBN M0 is fixed and known, i.e. M(0) = M0.
Finally, we enforce a hard constraint that the maximum
speed of the MBN is upper bounded by V , i.e., d[M(t −
1), M(t)] ≤ V ∆t, ∀t = 1, . . . , K .

In this work we are concerned with maximizing the time
average of the system throughput. This throughput objective
(without the time-averaging aspect) function was described
in [11] as the Maximum-Fair-Placement-and-Assignment
(MFPA) throughput metric. Specifically, at a given timestep
t, the system throughput is equal to H [dmax(t)], where
H() is a decreasing function that represents the throughput
received by the worst case throughput RN. As is described in
[11], for several practical system models (e.g. a CDMA-type
system), H [dmax(t)] can serve as a proxy to describe the
system throughput. Thus we have that over K timesteps the
time averaged throughput is equal to 1

K

∑K
t=1 H [dmax(t)].

We term the MBN path planning problem with time average
MFPA objective function the MPP-MFPA problem, and
formulate it below.

Problem MPP-MFPA: Given the RN trajectories pi(t), ∀i ∈
P, t = 0, . . . , K and initial MBN position M(0) = M0.
Compute the MBN path M∗ = M(0), M(1), . . . , M(K)
such that the average MFPA throughput metric is maximized,
subject to the maximum MBN speed bounded by V . Math-
ematically, the problem is expressed as,

max
M∗

1
K

∑K
t=1 H [dmax(t)] (1)

s.t. d[M(t − 1), M(t)] ≤ V ∆t, ∀t = 1, . . . , T (2)

M(0) = M0 (3)

IV. GREEDY APPROACH TO THE MPP-MFPA PROBLEM

In this section we develop a greedy approach towards
solving the MPP-MFPA problem. The most natural greedy
approach to a multi-step optimization problem aims to opti-
mize the 1-step instantaneous problem at each time step. We
take this approach, and present a high level algorithm below.

Algorithm 1 High Level MPP-MFPA Greedy Algorithm

1: Initialize M(0) = M0

2: for t=1,2,. . . ,K do
3: Compute the location for M(t) that maximizes

H [dmax(t+1)], subject to d[M(t−1), M(t)] ≤ V ∆t
4: return M∗ = M(0), M(1), . . . , M(K)

The key step in the high level algorithm is the solution of
the 1-step optimization problem in line 3. A more complete
formulation of this problem is as follows.

Problem 1-step MPP-MFPA: Given the RN positions at time
t + 1, pi(t + 1), ∀i ∈ P and previous MBN position, M(t).

914

RN

Unconstrained
1-Center

M(t)

Constraining
Circle

V∆t

Fig. 1. Illustration of constrained 1-center instance in which the uncon-
strained 1-center is outside the constraining circle.

Calculate the optimal MBN position at time t + 1, M (t+1),
such that the MFPA throughput metric at time t + 1 is
maximized, subject to the maximum MBN velocity bounded
by V . Mathematically, the problem is expressed as,

max
M(t+1)

H [dmax(t + 1)] (4)

s.t. d[M(t), M(t + 1)] ≤ V ∆t (5)

With the above formulation, we note that the 1-step MPP-
MFPA problem can be viewed as a constrained 1-center
problem1. Specifically, since H() is a decreasing function
in dmax(t + 1), minimizing dmax(t + 1) will maximize the
objective function in (4). If not for the velocity constraint in
(5), the problem would reduce to finding the unconstrained 1-
center, for which several efficient polynomial time algorithms
exist (e.g. [1]). Yet, with the constraint in mind we can view
the problem as one in which we need to to find the 1-center
of the RNs at time t + 1 such that it lies within a circle of
radius V ∆t around M(t). This is depicted in Fig. 1.

The convex polygon constrained 1-center problem was
addressed in [3]. Yet, their algorithm cannot be applied here
since a circular constraint cannot be expressed as a polygonal
constraint. In the next section we develop a simple optimal
algorithm to solve the circular constrained 1-center problem.

A. Circular Constrained 1-Center (CC-1C) Algorithm

We begin with the following observation, which provides
the first step in our algorithm to solve the circular constrained
1-center problem. Let C denote the constraining circle of
radius V ∆t with center M(t)

Observation 1: If the solution to the unconstrained 1-
center problem lies within the circle C, then this is the
solution to the constrained 1-center problem.

Thus the main difficulty lies in solving the constrained
problem when the unconstrained solution lies outside C (e.g.
shown in Fig. 1). The following lemma provides the first key
to solving this problem, where we have defined δC as the
boundary of the circle C.

Lemma 1: Assume the solution to the unconstrained 1-
center problem lies outside the circle C. Then, the solution
to the constrained 1-center problem must lie on δC.

Proof: By the previous discussion, the solution to the
constrained 1-center problem involves minimizing dmax(t+1)

1The (unconstrained) 1-center problem places a single MBN such that
the farthest distance from any RN to the MBN is minimized.

(a) (b)

RN

M(t)

M(t)

R
CMSC C-MSC

qCMSC

R
CMSC

qCMSC

,

i i

j

V∆tV∆t

δC

Fig. 2. Illustration of the two unique ways the constrained 1-center can
be defined. (a) By a single RN. (b) By a pair of RNs.

subject to the circular constraint. The proof involves first
showing that dmax(t+1) is convex in M(t + 1) , [Mx, My].
This will allow us to conclude that from a given MBN place-
ment at M (t+1), changing the solution along the gradient
direction ∇dmax will decrease dmax(t+1). Note that while
dmax(t) is not differentiable at certain points, directional
derivatives exist everywhere [5]. Next, we assume that the
circular constrained optimal M (t+1), denoted M∗(t+1), is
an interior point of C. However, if this were the case, then
there must exist another location M ′(t+1) along the direction
∇dmax(t+1) such that M ′(t+1) is within C (i.e. either also
interior to C or on δC). Thus M ′(t+1) must yield a lower
value of dmax(t+1), contradicting the optimality of M∗(t+1).

To see why dmax(t+1) is convex in [Mx, My] consider its
full expansion, dropping the (t+1) dependence for legibility.

dmax = max
i∈P

di

= max
i∈P

{

√

[Mx − pix
]2 + [My − piy

]2
}

(6)

We know from optimization theory that the maximum of
a set of convex functions is also convex. Since the Euclidean
distance function di() is convex [5], the result follows.

Lemma 1 allows us to restrict our search for M(t + 1) to
the locus of points defined by δC. We define the Constrained
Minimum Spanning Circle (CMSC) for the RNs at time
t + 1, as the circle with center at the optimal location of
M(t + 1) and radius equal to the corresponding value of
dmax(t+1). We denote the center and radius of the CMSC
as qCMSC and RCMSC respectively. Consider the following
lemma regarding the CMSC, illustrated in Fig. 2.

Lemma 2: Assume the unconstrained 1-center is outside
the constraining circle C. Then there are are two unique ways
the CMSC can be defined.

1) By a single RN i ∈ P . If this is the case, then qCMSC

is located at the first intersection between δC and
the directed line segment

−−−→
iM(t). RCMSC is equal to

d(qCMSC , i).
2) By a pair of RNs i, j ∈ P . If this is the case, then

qCMSC is located at an intersection point between
δC and the perpendicular bisector of i and j. The
intersection point is chosen to minimize RCMSC =
d(qCMSC , i).

Proof: Recall that by Lemma 1, the optimal qCMSC

must lie on δC. We now go through several cases regarding
the farthest RN(s) from qCMSC . First assume exactly one RN

915

is farthest from qCMSC . In this case, in order to minimize
RCMSC subject to the constraint that qCMSC ∈ δC it is a
basic geometric fact that qCMSC and RCMSC are defined
as in the first part of the Lemma. The same holds true with
respect to the second part of the Lemma if we assume that
exactly two RNs are simultaneously farthest from qCMSC .
Finally, assume exactly k≥3 RNs are simultaneously farthest.
In this case, we have that all pairs of the k farthest RNs must
be equidistant from the center. Yet, a pair of equidistant RNs
coupled with the constraint that the center must be on δC
uniquely determines a center location (e.g. as per the second
part of the Lemma). Therefore, k ≥ 3 simultaneously far-
thest RNs represents an over-determined situation, wherein
the corresponding qCMSC , RCMSC tuple would have been
considered under the second part of the Lemma.

Algorithm 2 CC-1C Algorithm
1: Compute the unconstrained 1-center location, qUC , using an

algorithm from [1]
2: if qUC is within C then
3: return M(t + 1) = qUC

4: Set Rmin = ∞

5: for all single RNs i ∈ P do
6: Let q be the first intersection point between the line segment

−−−→
iM(t) and δC.

7: Let Rq be the distance between q and i, Rq = d(q, i)
8: if d(q, j) ≤ Rq,∀j ∈ P and Rq < Rmin then
9: Set M(t + 1) = q and Rmin = Rq

10: for all pairs of RNs i, j ∈ P do
11: if the perpendicular bisector of i, j and δC intersect then
12: Let q be that intersection point which yields the lowest

value of d(q, i).
13: Let Rq be the distance between q and i, Rq = d(q, i)
14: if d(q, k) ≤ Rq ,∀k ∈ P and Rq < Rmin then
15: Set M(t + 1) = q and Rmin = Rq

16: return M(t + 1)

The Circular Constrained 1-Center (CC-1C) algorithm is
shown above. The algorithm, which finds the constrained 1-
center, works by directly applying the constructive implica-
tions of the previous discussion. It starts by checking whether
the condition outlined in observation 1 holds. Assuming
it does not, we next check all possible qCMSC , RCMSC

tuples as outlined in Lemma 2 to see if they define a valid
CMSC (i.e. if they cover all the RNs). The valid CMSC with
minimum radius is taken as the overall solution.

The computational complexity of the CC-1C algorithm is
O(N2), where N is the number of RNs. This is because
the for loop in line 10 considers all pairs of RNs, and
thus results in the most complex operation. The solution
of the unconstrained problem (line 1) can be found with
O(N log N) computational complexity [1].

V. DYNAMIC-PROGRAMMING-BASED APPROACH

The greedy algorithm derived in the previous section has
good performance for most problem instances. However, as is
the case with any general path-planning type problem, there
exist certain “bad” problem instances in which a greedy-type
solution can be significantly sub-optimal, and for which one

-8 -6 -4 -2 0 2

RN
trajectory

p(0) p(1)p(3) p(2)p(4)

M
g
(0), M

g
(2) M

g
(1)M

g
(3)M

g
(4)

Greedy MBN
trajectory

Mopt(0), Mopt(1)Mopt(2)Mopt(3)Mopt(4)
Optimal MBN

trajectory

-2(K-1) -2(K-2)

p(K)

M
g
(K)

Mopt(K)

Fig. 3. Single RN, Single MBN, 1-D example of greedy vs. optimal
approaches. Assume Mg(0) = Mopt(0) = p(0) = 0 and V = 2, ∆t = 1.

needs to solve for the entire path at a single shot. In this
section we provide a dynamic-programming based algorithm
that does just this. We start, however, by motivating the
necessity of this type of algorithm by providing a problem
instance in which the greedy approach has poor performance.

The example, involving a single RN travelling on a line
is illustrated in Fig. 3. The trajectory of the RN is shown
on top, and we assume that the MBN’s speed is bounded by
V = 2, and that ∆t = 1, i.e. K = T . In the example both
the RN and MBN start at the same location on the line, i.e.
M(0) = p(0) = 0. Note that in the MPP-MFPA formulation,
the speed of the RN is not bounded, and in the example it
travels at speed equal to 4 between time steps 1 and 2. In
many scenarios, RNs might not travel faster then the MBNs.
Yet, as mentioned earlier, the 1-center of the RNs can travel
arbitrarily faster than any particular RN movement. Thus one
can also think of the RN in the example as a proxy for the
1-center of a number of RNs.

An MBN path obtained by applying a greedy (i.e. myopic)
approach that tries to maximize the instantaneous MFPA
objective at every time step is shown in the middle of the
figure. Notice that for all time steps t ≥ 2, the greedy MBN
trails the RN by a distance of 2. This results in an MPP-
MFPA objective of 1

K
[H(0)+(K−1)H(2)]. By contrast, the

optimal MBN path involves accepting some sub-optimality in
the first time step by staying at position 0 at time step t = 1.
However, doing this allows the optimal MBN to follow the
RN exactly for all time steps t ≥ 2, yielding an MPP-MFPA
objective of 1

K
[H(2) + (K − 1)H(0)]. Depending on the

exact form of H(), this can be significantly larger than that
achieved by the greedy approach.

A. DPA Algorithm

We now present the Dynamic-Programming based Ap-
proximation algorithm (DPA). We start by gridding the plane
with vertical and horizontal spacing ǫ ≤ V ∆t. Next, we
construct K copies of the resultant grid points, denoted
by Y (1), Y (2), . . . , Y (K), where a grid point v ∈ Y (t)
represents a potential location for the MBN at time t. For
notational convenience, we define the set Y (0) to denote just
a single point, M0, i.e. the given MBN starting position.

We next define an edgeweighted graph G = (V ′, E),
illustrated in Fig. 4, as follows. Let the vertex set V ′ consist
of all the Y (t)’s, t = 0, 1, . . . , K . We add an edge (u, v)

916

1 2 3 K

Copies of Grid
Points

Y(1) Y(2) Y(3) Y(K)

Y(0)

Fig. 4. Illustration of Trellis Structure. Edges between vertices at consec-
utive time steps are drawn only if the grid points they represent are at most
V ∆t distance apart.

to E between u ∈ Y (t), v ∈ Y (t + 1), t = 0, . . . , K − 1,
if d(u, v) ≤ V ∆t, where d(u, v) is the distance between
grid points u and v. Constructing the edge set in this way
restricts the MBN to only travel between grid points in
successive time steps that are at most a distance V ∆t apart.
Finally, we define the weight w(u, v) of an edge (u, v) ∈ E,
u ∈ Y (t), v ∈ Y (t + 1), t = 0, . . . , K − 1 to equal to
the instantaneous throughput value assuming the MBN is
located at v at time t + 1. Specifically, this is expressed
as w(u, v) = H [max

i
{d(v, pi(t + 1))}]. By construction,

the graph has the following property; this forms the main
justification for the algorithm.

Lemma 3: Assume the MBN is restricted to travel be-
tween grid points during time steps t = 1, . . . , K . The opti-
mal MPP-MFPA path subject to this restriction is equivalent
to the longest (maximum weight) path in G from the vertex
Y (0) to some vertex v ∈ Y (K).

We next observe that the graph G represents a Trellis
Graph, or more generally, a Directed Acyclic Graph. In such
graphs the longest path can be found efficiently in a similar
manner to finding a shortest path, e.g. by slightly modifying
a well known dynamic-programming based algorithm known
as the Viterbi algorithm [7]. For brevity we do not present the
algorithm here, although a detailed description can be found
in [10]. The computational complexity of the algorithm is
equal to O

((

|Y (1)|) · (⌈ 2V ∆t
ǫ

⌉)2 · K
)

, where |Y (1)| is
the total number of grid points. Note that for a plane of
dimensions L × L, |Y (1)| = (⌊L

ǫ
⌋ + 1)2.

Finally, we note that as mentioned in Lemma 3, the DPA
algorithm finds the optimal MPP-MFPA path subject to the
constraint that the MBNs must only travel between grid
points. Yet, it would be desirable to calculate how close
this solution approximates the original unconstrained optimal
MPP-MFPA solution. It turns out that for an unbounded
plane, this can be a function of both the grid spacing ǫ as
well as the end time step K . In presenting the results of the
analysis, for brevity we omit the proofs, which can be found
in [10]. We define dopt

max(t) to be the distance from the MBN
to the farthest RN at time step t in the optimal solution (i.e.
not constrained to lie on grid points).

Theorem 1: For an unbounded plane, the MPP-MFPA
objective value of the solution path found by the DPA

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

x

y

p(t)
M

dpa
(t)

M
greedy

(t)

t = 0

t = 30

Fig. 5. MPP-MFPA Single RN, 2-D example. The RN travels according to
a random waypoint model. Both DPA and Greedy Approaches use ∆t = 1.
The plot show the MBNs spatial movement with respect to the RN, and ‘*’
is used to depict the starting locations.

algorithm is at least 1
K

∑K

t=1 H(dopt
max(t) + 2

√
2tǫ).

Yet, since the above Theorem simply shows a lower
bound on the MPP-MFPA objective achievable by the DPA
algorithm, we do not know if this is a true reflection of the
worst case performance of the algorithm. As reflected in the
following Theorem, it turns out the lower bound is tight in
the sense that the difference between ddpa

max(t) and dopt
max(t)

can potentially increase without bound as a function of the
number of time steps (i.e. assuming fixed ∆t).

Theorem 2: For an unbounded plane, there exists a worst
case problem instance where lim

t→∞

{ddpa
max(t)−dopt

max(t)} = ∞.

VI. SIMULATION RESULTS

In this section we present simulation results comparing
the greedy and DPA algorithmic approaches developed in
this paper. We start with the situation in Fig. 5. This shows
a single RN instance travelling in a 20 × 20 2-dimensional
plane according to a Random Waypoint Model. In such
a mobility model, RNs continually repeat the process of
choosing a random location in the plane and travel there at a
randomly chosen constant speed in the range [Vmin, Vmax].
We chose Vmin = 0.5, Vmax = 2, and assumed the MBN
speed was bounded by V = 2. We consider a time horizon
t ∈ [0, 30] with ∆t = 1 for both algorithms, and ǫ = 0.2 for
the DPA. Finally, we assume the MBN starts at M0 = (8, 0),
and denote starting points with a star. From the figure, we
can see that early in the time horizon the greedy deviates
from the DPA, but because the RN is not moving faster than
the MBN it is able to catch up by time step t = 5. As
the performance ratio plot in figure 6 would indicate, it is
up to here that the DPA algorithm seems to be performing
better than the greedy algorithm. Specifically, the DPA is
worse than the greedy during 0 ≤ t ≤ 2, but better for
3 ≤ t ≤ 5. For time steps t ≥ 5 however, the greedy MBN
is able to stay exactly on top of the RN, whereas the DPA
MBN is restricted to travel between grid points. Again this
is reflected in the instantaneous time performance ratio plot,
since for time steps t ≥ 5 the throughput achieved by the
greedy algorithm is either as good as the DPA or slightly

917

0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time, t

H
greedy

(t)/H
dpa

(t)

Fig. 6. Evolution of the greedy to DPA performance ratio with respect to
time. Plot corresponds to the 2D random waypoint example in Fig. 5.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of RNs, N

greedy/dpa (slow RN)
greedy/dpa (fast RN)

Fig. 7. Average case plot for varying numbers of RNs, over a time horizon
t ∈ [0, 100] and ∆t = 1 for both algorithms.

better. Indeed, in general it would seem that in situations
when the MBN can travel at a speed as fast or faster than
the RNs the greedy algorithm can perform quite well.

This observation is confirmed by the plot depicted in Fig.
7. It shows the average ratio (over 10 runs) between the MPP-
MFPA objective achieved by the greedy to that achieved
by the DPA algorithm for varying numbers of RNs over a
time horizon t ∈ [0, 100] , with ∆t = 1 and MBN speed
bounded by V = 2. The mobility model used for the RNs is
a random waypoint model over a 50 × 50 dimension plane,
for a “fast RN” and “slow RN” scenario. For the “fast RN”
scenario we assume [Vmin, Vmax] = [5, 10], and we assume
[Vmin, Vmax] = [0.5, 2] for the “slow RN” scenario. As can
be seen in the plot, for faster speeds and small numbers of
RNs, the DPA algorithms outperforms the Greedy algorithm.
However, once the number of RNs passes 10, the greedy
performs as well or better than the DPA algorithm. This
can likely be attributed to the fact that for larger number
of RNs, the 1-center is more stable and slower moving, and
thus the greedy can get to the exact location even though the
MBN is slower than individual RNs. In contrast, the DPA
algorithm is limited to an approximate location (i.e. on a grid
point). Indeed, for slower RNs the greedy outperforms the
DPA algorithm for this reason.

Thus in general the following observations can be made
regarding the two solution approaches. First, while the
greedy approach can be vulnerable to certain “bad” problem
instances (e.g. Fig. 3), it performs well on average. Moreover,
consider a problem instance in which the unconstrained 1-
center locations at consecutive time steps are always within
a distance V ∆t of each other (e.g. a “slow RN” case). Also
assume that M0 is within V ∆t the unconstrained 1-center
location in the first time step. If this is the case the greedy
approach will find the exact optimal solution. By contrast, the
DPA algorithm would still only find an approximate solution,
since the MBN placements would be restricted to grid points.

VII. CONCLUSION

In this paper we considered the path planning of a single
MBN with the goal of maximizing the time-average system
throughput. To this end, we formulated a discrete MBN
path planning problem with velocity constraint as the MPP-
MFPA problem. We developed two solution approaches: (i) a
greedy approach based on an optimal algorithm for the single
timestep problem, and (ii) a dynamic programming based
approximation algorithm, for which we presented worst case
results. Future work includes extending the single MBN
formulation to multiple MBNs, as well as a continuous
formulation and solution of the MBN path planning problem.
Additional work includes considering formulations in which
the hard velocity constraint is relaxed (e.g. as a penalty).

REFERENCES

[1] P. Aggarwal and M. Sharir, “Efficient Algorithms for Geometric
Optimization,” ACM Comput. Surveys, 30, pp. 412-458, 1998.

[2] S. Bereg, B. Bhattacharya, D. Kirkpatrick, M. Segal, “Competetive
Algorithms for Maintaining a Mobile Center,” Mobile Networks and
Applications, 11, pp. 177-186, 2006.

[3] P. Bose and G. Toussaint, “Computing the constrained euclidean
geodesic and link centre of a simple polygon with applications,” Proc.
of Pacific Graphics International, 1996.

[4] D. Erlenkotter, “A comparative study of approaches to dynamic
location problems,” Eur. J. Oper. Res., 6, pp. 133143, 1981.

[5] S. K. Jacobsen, “An algorithm for the minimax weber problem,” Eur.
J. Oper. Res., 6, pp. 144-148, 1981.

[6] S. L. Hakimi, M. Labbe and E. Schmeichel, “Locations on Time-
Varying Networks,” Networks, 34, 4, pp. 250-257, 1999.

[7] S. Haykin, “Communication Systems,” 4th Ed., Wiley, 2001.
[8] A. Orda and R. Rom, “Location of central nodes in time varying

computer networks,” Oper Res Lett, 10, pp. 143152, 1991.
[9] I. Rubin, A. Behzad, R. Zhang, H. Luo, and E. Caballero, “TBONE:

a mobile-backbone protocol for ad hoc wireless networks,” in Proc.
IEEE Aerospace Conf., Mar. 2002.

[10] A. Srinivas, “Mobile Backbone Architecture for Wireless Ad Hoc
Networks: Algorithms and Performance Analysis,” PhD Thesis, Mas-
sachusetts Institute of Technology, June 2007.

[11] A. Srinivas and E. Modiano, “Joint node placement and assignment
for throughput optimization in mobile backbone networks,” IEEE
INFOCOM ’08, April 2008.

[12] A. Srinivas, G. Zussman, and E. Modiano, “Mobile Backbone Net-
works: Construction and Maintenance,” ACM MOBIHOC’06, May
2006.

[13] G.O. Wesolowsky, “Dynamic facility location,” Mgmt Sci, 19, pp.
12411248, 1973.

[14] G.O. Wesolowsky and W.G. Truscott, The multiperiod location- allo-
cation of facilities, Mgmt Sci, 22, pp. 5765, 1975.

[15] K. Xu, X. Hong, and M. Gerla, “Landmark routing in ad hoc networks
with mobile backbones,” J. Parallel Distrib. Comput., 63, 2, pp. 110-
122, 2003.

918

