
Local Pooling Conditions for
Joint Routing and Scheduling

Andrew Brzezinski
Fidelity Investments
Boston, MA 02210

Andrew.Brzezinski@fmr.com

Gil Zussman
Dept. of Electrical Engineering

Columbia University
New York, NY 10027
gil@ee.columbia.edu

Eytan Modiano
Massachusetts Institute of Technology

Cambridge, MA 02139
modiano@mit.edu

Abstract— A major challenge in the design and operation
of wireless networks is to jointly route packets and schedule
transmissions to efficiently share the common spectrum among
links in the same area. Due to the lack of central control in
wireless networks, these algorithms have to be decentralized.
It was recently shown that distributed (greedy) algorithms
can usually guarantee only fractional throughput. It was also
recently shown that if a set of conditions regarding the network
topology (known as Local Pooling) is satisfied, simple distributed
maximal weight (greedy) scheduling algorithms achieve 100%
throughput. In this paper, we focus on networks in which packets
have to undergo multihop routing and derive multihop Local
Pooling conditions for that setting. In networks satisfying these
conditions, a backpressure-based joint routing and scheduling
algorithm employing maximal weight scheduling achieves 100%
throughput.

I. INTRODUCTION

Efficient operation of wireless networks requires distributed
joint routing and scheduling algorithms that take into account
the interference between simultaneous transmissions. A cen-
tralized joint routing and scheduling framework that achieves
the maximum attainable throughput region was presented by
Tassiulas and Ephremides [18]. Recently, several distributed
algorithms that can achieve only a fraction of the maximum
throughput have been presented. Dimakis and Walrand [8]
presented a set of conditions (termed as Local Pooling) which
are related to the topology of the network. They showed that
if these conditions hold, greedy scheduling algorithms, which
can be implemented in a distributed manner, achieve 100%
throughput. In this paper, we generalize the Local Pooling
conditions and derive conditions under which a greedy joint
routing and scheduling algorithm achieves 100% throughput.
The algorithm is directly based on the on the centralized
framework of [18] but can be implemented in a distributed
manner.

Joint routing and scheduling in a slotted multihop wireless
network with a stochastic packet arrival process was consid-
ered in [18]. The routing and link activation policy presented
there guarantees to stabilize the network (i.e. provide 100%
throughput) whenever the arrival rates are within the stability
region.1 The results of [18] have been extended to various

1We note that the algorithm presented in [3] deals with a similar setting by
using similar methodologies.

settings of wireless networks and input-queued switches (e.g.
[1], [14], [17], and references therein). However, optimal
algorithms based on [18] require repeatedly solving a global
optimization problem, taking into account the queue backlog
information for every link in the network. For example, even
for the simple primary interference constraints2 a maximum
weight matching problem has to be solved in every slot.
Obtaining a centralized solution to such a problem in a
wireless network does not seem to be feasible, due to the
communication overhead associated with continuously collect-
ing the queue backlog information. Therefore, the design of
distributed algorithms has attracted a lot of attention recently.

Assuming that the traffic is exclusively single-hop reduces
the joint problem to a scheduling problem. Regarding primary
interference constraints, it has been shown that in this set-
ting distributed maximal matching algorithms achieve 50%
throughput [5], [13]. It was also proved in [5], [12], [20]
that under secondary interference constraints3 the throughput
obtained by a distributed maximal scheduling algorithm may
be significantly smaller than the throughput under a centralized
(optimal) scheduler. In particular, in [5] it was proved that a
distributed algorithm may achieve as low as 1/8 of the possible
throughput.

Dimakis and Walrand [8] recently showed that although
in arbitrary topologies the worst case performance of dis-
tributed maximal scheduling algorithms can be very low,
there are some topologies in which they can achieve 100%
throughput. In particular, they consider a graph of interfering
queues4 and study the performance of a greedy maximal
weight scheduling algorithm (termed Longest Queue First -
LQF) that selects the set of served queues greedily according
to the queue lengths. They present sufficient conditions for
such an algorithm to provide 100% throughput (notice that
unlike a maximum weight solution a maximal weight solution

2Primary interference constraints imply that each station can converse with
at most a single neighbor at a time (i.e. the set of active links at any point
of time constitutes a matching).

3Secondary interference constraints imply that each pair of simultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [5], [20].

4A graph of interfering queues can be constructed from the network graph
according to the interference constraints and is usually referred to as an
interference or conflict graph [10].

can be easily obtained in a distributed manner [9]). These
conditions are referred to as Local Pooling (LoP) and are
related to the properties of all maximal independent sets in the
conflict graph. The LoP conditions were recently generalized
in [11] that provided conditions under which a greedy maximal
weight matching algorithm obtains some guaranteed fractional
throughput. Moreover, in [4], [21] several graph classes that
satisfy the LoP conditions have been identified and the effect
of multihop interference has been studied. For example, it
has been shown in [21] that under any interference degree,
tree network graphs yield interference graphs that satisfy
LoP (i.e. under any interference degree, distributed algorithms
achieve 100% throughput in trees). Moreover, an application
of the LoP conditions to channel allocation in Wireless Mesh
Networks has been demonstrated in [4].

In general, networking environments in which the traffic
is inherently single-hop and where packets must depart the
system upon transmission across a link are rare. This is results
from the fact that many connections are necessarily multihop
connections due to geographical and physical constraints on
user connectivity. Networks with multihop traffic, where pack-
ets follow a fixed multihop path, have been studied by Wu and
Srikant [19], who proposed the use of regulators along with
a maximal matching scheduling algorithm. It was shown in
[19] that under primary interference constraints, the throughput
may be reduced to 50%. These results have been extended in
[12], [20] where it was also pointed out that only a fraction
of the throughput is attainable.

Since the LoP results of [8] have been derived for networks
with single-hop traffic, it is desirable to identify topologies in
which distributed algorithms can obtain 100% throughput in
the multihop traffic setting. Therefore, in this paper we study
the LoP properties of a distributed routing and scheduling
framework which is based on the backpressure mechanism
of [18]. In this framework the edge weights are obtained by
the backpressure mechanism but unlike in [18], a distributed
maximal weight scheduling algorithm is used to determine
which edges should be activated in every time slot. We derive
new Multihop Local Pooling conditions that are sufficient for
guaranteeing that this distributed framework achieves 100%
throughput. Similarly to the conditions of [8], the new condi-
tions are based on the interference graph and are not limited
to networks with primary interference constraints.

This paper is organized as follows. In Section II we
present the network model, stability definitions, and the single-
hop LoP conditions. In Section III we present a distributed
adaptation of the backpressure-based framework of [18]. The
new LoP conditions for networks with multihop traffic are
presented in Section IV. We summarize the results and discuss
future research directions in Section V.

II. MODEL AND PRELIMINARIES

A. Network Model

Consider a wireless network GN = (VN , EN), where
VN = {1, . . . , n} is the set of nodes, and EN ⊆ {(i, j) :
i, j ∈ VN , i 6= j} is a set of directed links indicating pairs of

nodes between which data flows can occur, with m , |EN |.
The directionality of data flows across links necessitates the
treatment of the network graph GN as a directed graph.
Depending on the circumstances, we denote links as either
(i, j) or as ek. In GN , if two nodes v1, v2 ∈ VN are within
communication range, then the directed edges e12 = (v1, v2)
and e21 = (v2, v1) both belong to EN . For a directed edge
e, let σ(e) denote the source (initial) vertex, and τ(e) denote
the terminal (destination) vertex. Throughout this paper, bold
symbols are associated with vectors and matrices.

The interference between network links can be summarized
in an interference graph (or conflict graph) GI = (VI , EI)
based on the network graph GN [10]. We assign VI , EN .
Thus, each edge ek in the network graph is represented by a
vertex vk of the interference graph, and an edge (vi, vj) in the
interference graph indicates a conflict between network graph
links ei and ej (i.e. transmissions on ei and ej cannot take
place simultaneously).5

Let Π(GN) denote the set of available link activations in the
network graph GN : the vector π = (πe, e ∈ EN) ∈ Π(GN)
is a 0-1 column vector representing a possible link activation.
The set Π(GN) corresponds to all possible independent sets
in the interference graph GI = (VI , EI). Under primary
interference, Π(GN) corresponds to the set of matchings in
GN . We denote by M(VI) the matrix of maximal independent
sets in GI ; that is, the set of maximal column vectors in
Π(GN).

For simplicity, we assume that time is slotted and that
packets are of equal size, each packet requiring one time slot of
service across any link. There is no self-traffic. We will refer to
packets destined to node j ∈ VN as commodity j packets. Let
Aij(t) denote the number of exogenous commodity j packets
that arrived at node i by the end of slot t. We assume that
the arrivals have long term rates λij = limt→∞ Aij(t)/t, with
overall system arrival rate vector λ = (λij , i, j ∈ VN).

Every node is assumed to have a queue for each possible
destination. For i, j ∈ VN , let Qij(t) be the number of packets
enqueued at node i at time t, whose destination in the network
is node j. Assume that Qij(0) = 0 for all i, j. The differential
backlog (backpressure) of commodity j packets across edge
e ∈ EN at time t is Zej(t) = Qσ(e)j(t) −Qτ(e)j(t), and the
maximum backpressure is Z∗

e (t) = maxj∈VN
Zej(t).

Service is applied to the system at each time slot by activat-
ing a set of edges, and routing a packet of a single commodity
across each active edge. We denote the corresponding m× n
service activation matrix by S = (Sej , e ∈ EN , j ∈ VN).
Here, for edge e ∈ EN and commodity j ∈ VN , Sej can have
value 0 or 1, depending on whether e is inactive or active for
serving commodity j, respectively. Note that an admissible
service activation matrix must have a valid underlying link
activation belonging to Π(GN). This property characterizes

5Although it has been recently shown that in some cases the conflict graph
does not fully capture the wireless interference characteristics [16], it still
provides a reasonable abstraction. Extending the results to general SINR-
based constraints (e.g. [17]) is a subject for further research.

the set of admissible service activation matrices, S:

S =
{

S ∈ {0, 1}m×n : πe =
∑

j∈VN
Sej , π ∈ Π(GN)

}

.

The matrix S ∈ S leads to packet transitions through the
network. To model the queue evolution implied by invoking S,
we introduce for each commodity j ∈ VN the n×m routing
matrix Rj = (Rj

ie, i ∈ VN , e ∈ EN), where:

Rj
ie =











1, if σ(e) = i

−1, if τ(e) = i and i 6= j

0, else

Denote by dij(S) the net amount of service, in number of
packets per time slot, to queue Qij under activation matrix
S. Using the above routing matrix we can express dij(S) =
∑

l R
j
ilSlj .

Denote by Dij(t) the total service applied to commodity j
packets at node i up to the end of time-slot t. Finally, for each
S ∈ S, denote by FS(t) the number of time slots up to the
end of time-slot t in which service activation matrix S ∈ S
was active. The following are the system dynamics for t ≥ 0.

Qij(t) = Aij(t)−Dij(t) ∀(i, j)

Dij(t) =
∑

S∈S

dij(S)FS(t) ∀(i, j)

∑

S∈S

FS(t) = t, and FS is non-decreasing

B. Stability Considerations

We can now define the stability region of the network.
Definition 1 (Admissible Rate Vector): A non-negative ar-

rival rate vector λ is admissible if there exists a collection of
service activation matrices Sl ∈ S, 1 ≤ l ≤ L such that

λij ≤
∑L

l=1 αldij(S
l), where αl ≥ 0 ∀l,

∑L

l=1 αl ≤ 1.

The set of all admissible rate vectors is called the stability
region and is denoted by Λ∗.

At each time slot, a joint scheduling and routing algorithm
makes a link activation and routing decision that must satisfy
the interference constraints. A stable algorithm, which we also
refer to as a throughput optimal algorithm or an algorithm that
achieves 100% throughput, is defined as follows.

Definition 2 (Stable Algorithm): An algorithm is stable
if for any arrival process with rate vector λ ∈ Λ∗,
lim

t→∞
Qij(t)/t = 0 with probability 1 ∀i, j ∈ VN .

This stability criterion is termed rate stability [1]. Tassiu-
las and Ephremides developed a stable joint scheduling and
routing algorithm that applies in this setting [18]. At time
t ≥ 0, their algorithm calculates for each edge e ∈ EN the
maximum backpressure, which we express in vector form as
Z∗(t) = (Z∗

e (t), e ∈ EN). Their algorithm then selects a link
activation vector

π∗(t) ∈ argmax
π∈Π(GN)

πTZ∗(t). (1)

Routing is carried out over each edge e having π∗
e (t) = 1, by

serving a commodity j ∈ arg maxj Ze,j(t) across that edge

(for more details regarding the algorithm of [18], see Section
III).

For general interference graph GI , the algorithm of [18]
must find the maximum weight independent set in GI at
each time slot6 to obtain an optimal solution to (1). Namely,
it must solve an NP-hard problem in every time slot or
time frame. Under primary interference, the optimization is
simpler and the algorithm has to schedule the edges of a
maximum weight matching in the network graph at each slot.
This requires O(n3) computation time, using a centralized
algorithm. In wireless networks, implementing a centralized
algorithm is often not feasible and simple distributed algo-
rithms usually obtain an approximate solution, resulting in a
fractional throughput.

C. Local Pooling for Single Hop Traffic

We briefly reproduce important definitions and implications
of Local Pooling (LoP) in networks with single-hop traffic,
presented in [4], [8]. In Section IV we will introduce the LoP
conditions for the multihop traffic case. Recall that M(VI)
is the collection of maximal independent vertex sets on GI ,
organized as a matrix. We designate by e the vector having
each entry equal to unity. We deliberately avoid specifying its
size, because it will be obvious by the context of its use.

Definition 3 (Subgraph Local Pooling - SLoP): An inter-
ference graph GI satisfies SLoP, if there exists nonzero α ∈
R

|VI |
+ and c > 0 such that αTM(VI) = ceT .
Definition 4 (Overall Local Pooling - OLoP): An interfer-

ence graph GI satisfies OLoP, if each induced subgraph over
the nodes V ⊆ VI satisfies SLoP.

We can now describe the stability of the system when the
service in each time slot is scheduled according to the Maximal
Weight Independent Set (MWIS) algorithm. This algorithm
is an iterative greedy algorithm that selects the node of GI

with the longest corresponding queue, and removes it and its
neighbors from the interference graph. This process is repeated
successively until no nodes remain. When multiple queues
have the same length, a tie-breaking rule is applied. The set of
selected nodes is a maximal independent set in the interference
graph. Such a greedy algorithm can be implemented in a
distributed manner and has the following property.

Theorem 1 (Dimakis and Walrand, 2006 [8]): If interfer-
ence graph GI satisfies OLoP, a Maximal Weight Independent
Set (MWIS) scheduling algorithm achieves 100% throughput.

III. BACKPRESSURE-BASED ROUTING AND SCHEDULING

In this section, we present a simple adaptation to the
backpressure framework of [18] that allows a distributed
implementation. Recall from Section II-B that the optimal cen-
tralized scheduler (1) calculates maximum weight independent
sets based on backpressure link weights. Instead, the presented
algorithm employs maximal weighted independent sets based
on the backpressure link weights. Similarly to the single-hop

6In fact, it can be shown that throughput optimality is maintained when
solutions are obtained at bounded time intervals that are longer than a time
slot (e.g. [15]).

traffic setting [8], we use a Maximal Weight Independent Set
(MWIS) algorithm but unlike in [8] we use the backpressure
link weights (instead of the queue backlogs). The MWIS
algorithm operates on the interference graph and since it is a
greedy algorithm, it can be easily implemented in a distributed
manner (e.g. the algorithm of [9] that can be applied to
a network with primary interference constraints). As in the
single-hop case and as in [18], the algorithm is independent
of the global network topology and traffic statistics.

Algorithm 1 Backpressure Routing and (Maximal) Scheduling
(BRMS)

1: for time index t = 1, 2, . . . do
2: For each directed edge e ∈ EN assign Zej(t) ←

(Qσ(e)j(t)−Qτ(e)j(t))
3: Assign Z∗

e (t) = maxj Zej(t)
4: Obtain a maximal link activation π∗(t) ∈ Π(GN) using

a decentralized MWIS algorithm, based on the edge
weight vector Z∗(t) = (Z∗

e (t), e ∈ EN)
5: For each e ∈ EN such that π∗

e (t) = 1, choose j∗ ∈
arg maxj Zej(t). Route min{1, Qσ(e)j∗(t)} packets of
commodity j∗ across e

6: end for

In step 4, the BRMS algorithm uses the MWIS algorithm to
select a maximal weight link activation based upon maximum
link backpressures, obtained in step 3 (notice that this is the
main difference from [18]). In step 5, the BRMS algorithm
makes routing decisions to service commodities achieving
maximum backpressure.

IV. LOP IN NETWORKS WITH MULTIHOP ROUTING

In this section, we study LoP properties in networks em-
ploying the algorithm described above. We derive new local
pooling conditions that are sufficient for guaranteeing that the
BRMS algorithm achieves 100% throughput in the multihop
traffic environment.

A. Towards Multihop LoP Conditions

Recall that the OLoP conditions consider all possible vertex
subsets of the interference graph, V ⊆ VI . By the definition
of the interference graph, the node set V corresponds to a
subset of the network graph edges, E ⊆ EN . Thus, the OLoP
conditions effectively consider every subset of network graph
edges E ⊆ EN . In the multihop routing scenario, we must
again consider each set of network graph edges E ⊆ EN .
Since routing across network graph edges is not unique in
the multihop scenario, we must additionally consider various
combinations of commodities associated with network graph
edges. We formalize the possible edge/commodity combina-
tions by introducing the Maximum Commodity Family (an
example is given in Section IV-B).

Definition 5: [Maximum Commodity Family] For E ⊆
EN , E 6= ∅, the Maximum Commodity Family is given by

JE = {(JQ
e , e ∈ EN) : Q ∈ QE ,Q 6= 0}, where

QE = {(Qij , i, j ∈ VN , i 6= j) : Qij ∈ R+ ∀i, j,

E = arg maxe maxj(Qσ(e)j −Qτ(e)j)},

JQ
e = {j ∈ VN : j 6= σ(e),

Qσ(e)j −Qτ(e)j ≥ Qσ(e)j′ −Qτ(e)j′ ∀j
′ ∈ VN}.

The Maximum Commodity Family JE relates closely to
a system of differential equations called a fluid limit model
[6], derived from the queueing system. In order to better
understand the Maximum Commodity Family, we next explore
some of its properties. To this end, we introduce for each
commodity j ∈ VN the directed commodity graph Gj =
(VN , Ej), where Ej = {e ∈ E : j ∈ Je}.

Lemma 1: For E ⊆ EN , E 6= ∅, the commodity collection
J = (Je, e ∈ EN) ∈ JE satisfies:

1) Je 6= ∅, ∀e ∈ EN .
2) Je ⊆ VN \ {σ(e)}.
3) For j ∈ ∪e∈EJe, Gj has no directed cycles.
4) If Gj has a directed path between vertices v1, v2 ∈ VN

of length L, then

a) the minimum length path between v1 and v2 in the
network graph GN is L, and

b) the edges of all paths in GN between v1 and v2 of
length L are in Gj .

5) If Gj has a path of length L originating at vertex v,
then

a) GN has no paths of length less than L originating
at vertex v and terminating at vertex j, and

b) the edges of all paths of length L in GN , originat-
ing at vertex v and terminating at vertex j belong
to Gj .

Proof: See Appendix A.
Under the BRMS algorithm, when the set of directed edges

E ⊆ EN have backpressures exceeding those of the other
edges in the graph, there must exist a commodity collection
(Je, e ∈ EN) ∈ JE for which Je is the set of commodities
maximizing differential backlog across e ∈ EN . In this
case, a MWIS algorithm must select a link activation π∗

that is maximal among the edges in E: i.e. π∗
E ∈ M(E).

Additionally, the commodity j that is routed across edge
e ∈ EN must belong to Je. These properties characterize
the Maximal Service Activation Set (an example is given in
Section IV-B):

Definition 6 (Maximal Service Activation Set): For E ⊆
EN and J = (Je, e ∈ EN) ∈ JE , the Maximal Service
Activation Set is given by

SE,J =
{

S ∈ S :
∑

j SEj ∈M(E),

Sej = 1 implies j ∈ Je when e ∈ EN

}

Above, SEj is the vector (Sej , e ∈ E). The Maximal
Service Activation Set SE,J for a set of edges E ∈ EN

consists of every service activation matrix whose underlying
link activation is maximal over the edges in E. Recall that
each edge e ∈ EN is a vertex in the interference graph GI .

0

0

0 0

0

0

0+1

+1−1

v1

v2

v3 v4

v5

(a) (b) (c)

{v1, v2}

{v1} {v1}

{v1}

{v2}

Fig. 1. (a) Network graph GN , (b) the subset E of network graph edges, with corresponding commodity sets labeled at each edge, and (c) commodity
graphs Gv1

(left) and Gv2
(right) for a particular maximal service activation.

(a) (b) (c) (d) (e)

Fig. 2. Commodity graphs for commodity v1, that are invalid based on the properties of Lemma 1.

In order to characterize the stability properties of the BRMS
algorithm, we will track the dynamics of the link differential
backlogs. Hence, we must understand how each service matrix
S ∈ S affects the distribution of commodity backpressures
over the network links. We next introduce the Backpressure
Service Vector.

Definition 7 (Backpressure Service Vector): For E ⊆ EN ,
J = (Je, e ∈ EN) ∈ JE , and service matrix S ∈ S, the
Backpressure Service Vector uE,J(S) contains the decrease
in differential backlog of commodity j across link e under
service matrix S for every edge/commodity pair (e, j) where
e ∈ E, j ∈ Je:

uE,J(S) = ((dσ(e)j(S) − dτ(e)j(S)), e ∈ E, j ∈ Je).

The Backpressure Service Vector uE,J(S) tracks the change
in backpressure incurred by a set of edge/commodity pairs,
when a particular service activation matrix S is employed for
a single time slot.

B. Examples

In this section, we consider the network graph GN of
Fig. 1(a), with the convention that the directed edge from node
vi to vj is labeled eij .

We begin by considering a specific feasible combination
of edges and commodities. The subset E of network edges
of interest is E = {e32, e35, e42, e53, e54}, as depicted in
Fig. 1(b). Each edge in E has associated with it a set of
commodities: Je32

= {v1, v2}, Je35
= {v2}, Je42

= {v1},
Je53

= {v1}, Je54
= {v1}. These commodity sets are elements

of commodity collection J = (Je, e ∈ EN). This collection is
a member of the Maximum Commodity Family.

Assuming primary interference constraints, the Maximal
Service Activation Set SE,J is summarized by the following
table of valid edge/commodity pairs. For example, activation
(e32, v1) means that commodity v1 is sent over link e32.
Additionally, each activation S is translated in the table
below to backpressure service vectors uE,J(S). The service

vectors are ordered by (link, commodity) pairs as follows:
(e32, v1), (e42, v1), (e53, v1), (e54, v1), (e32, v2), (e35, v2).

Service activation S Backpressure service vector uE,J(S)

{(e32, v1), (e54, v1)} (2, 0, 0, 2, 0, 0)
{(e42, v1), (e53, v1)} (0, 2, 2, 0, 0, 0)
{(e32, v2), (e54, v1)} (0,−1, 1, 2, 1, 1)
{(e35, v2), (e42, v1)} (1, 2, 0,−1, 1, 2)

Consider the third service activation from the table, which
activates edge e32 for service of commodity v2, and edge e54

for service of commodity v1. We have depicted in Fig. 1(c)
the active link for serving commodity v1 packets in the graph
on the left, and the active edge for serving commodity v2

packets in the graph on the right. At each node of the graph,
we indicate the number of packets departed from that node
under that service activation. The backpressure service for each
edge/commodity combination (e, j), where e ∈ E and j ∈ Je,
is then obtained by calculating on the graph corresponding
to commodity j the difference between the quantity indicated
at the source node of e and that indicated at the destination
node of e. Edge e54 has a +1 at its source and a −1 at its
destination in the graph for commodity v1, which indicates
a backpressure service of 2 commodity v1 packets. Through
similar computation, we find that edge e32 sees a backpressure
service of 1 commodity v2 packet. Note that although no other
edge is active, some inactive edges do incur service under
this service activation: edge e53 sees a backpressure service
of 1 commodity v1 packet, while edge e42 sees an increase
of commodity v1 backpressure of 1 packet (this implies −1
units of backpressure service). Finally, edge e35 sees a service
of 1 commodity v2 packet. No other edge/commodity pairs
(e, j) where e ∈ E and j ∈ Je, see service. Thus, we
have determined each entry in the backpressure service vector
corresponding to this particular service activation.

We next provide examples to illustrate the properties of
Lemma 1. Figs. 2(a)-2(e) show graphs that are inadmissible as
the commodity v1 graph, Gv1

, for the network graph depicted

in Fig. 1(a) (the indices of the vertices in these examples are
according to Fig. 1(a)). Fig. 2(a) fails Property 3 because Gv1

contains a directed cycle; Fig. 2(b) fails Property 4a since edge
e53 provides a shorter path between vertices v5, v3; Fig. 2(c)
fails Property 4b since edges e53, e32 are not included in Gv1

;
Fig. 2(d) fails Property 5a since the path v2 → v3 → v5

belongs to Gv1
, while path v2 → v1 belongs to GN ; and

Fig. 2(e) fails Property 5b since edge e21 does not belong to
Gv1

.

C. Stability of the Backpressure-based Algorithm

We now introduce the multihop LoP definitions, and prove
a sufficient condition for stability of a network operated
according to the BRMS algorithm, based on these conditions.
Recall that the quantity dij(S) is the amount of service at
queue Qij resulting from applying service activation S for
one time slot. Denote vector d(S) = (dij(S), i, j ∈ VN).

Definition 8 (Subgraph Multihop LoP - SMLoP): The di-
rected network graph G = (V, E) with commodity collection
J ∈ JE satisfies SMLoP if there exist vectors α, β ≥ 0 with
α 6= 0, and a constant c ≥ 0 such that

αTuE,J(S) + βTd(S) ≤ c, ∀S ∈ S, (2)

αTuE,J(S) ≥ c, ∀S ∈ SE,J . (3)
The SMLoP conditions associate with each link/commodity

pair (e, j) a non-negative weight αej , where e ∈ E, j ∈ Je.
Further, for each node/commodity pair (v, j), the conditions
associate a non-negative weight βvj , where v, j ∈ VN .

Definition 9 (Overall Multihop LoP - OMLoP): The net-
work graph GN = (VN , EN) satisfies OMLoP if SMLoP is
satisfied by each subgraph G′

N = (VN , E) with commodity
collection J ∈ JE , where E ⊆ EN .

We next state the main theorem regarding stability of the
BRMS algorithm.

Theorem 2: If network graph GN satisfies OMLoP, then
the MWIS scheduling and routing algorithm achieves 100%
throughput.

Proof: See Appendix B.

V. CONCLUSIONS

We have derived new multihop Local Pooling condi-
tions (OMLoP) that are sufficient for the stability of the
backpressure-based joint routing and scheduling algorithm
(BRMS) that makes maximal weight link activation decisions.
Namely, in network graphs that satisfy these conditions, the
BRMS algorithm archives 100% throughput. In [21] we have
made some preliminary attempts to identify graphs that satisfy
these conditions.

There are still several open problems in this area. For
example, the complete characterization of the graph classes
that satisfy the OMLoP conditions is a subject for further
research. Moreover, deriving similar conditions for other joint
routing and scheduling algorithms and studying the effect of
generalizing the interference model from an interference graph
model to a model based on SINR remain subjects for future
research.

ACKNOWLEDGEMENT

This work was supported by NSF ITR grant CCR-
0325401, by NSF grant CNS-0626781, by ONR grant num-
ber N000140610064, and by a Marie Curie International
Fellowship within the 6th European Community Framework
Programme.

APPENDIX A
PROOF OF LEMMA 1

Let E ⊆ EN , with E 6= ∅. Consider any JE ∈ JE , and
suppose JE = (JQ

e , e ∈ EN) for Q ∈ QE . Item 1 follows
because the set JQ

e can never be empty. Item 2 follows by the
definition of JQ

e . For Item 3, suppose that graph Gj contains
a directed cycle, v1 → v2 → · · · → vL → v1. Then since
Q ∈ QE , it must be true that Qvij strictly decreases across
each edge in the cycle. This is clearly a contradiction. For
Item 4a, suppose vertices v1, v2 are joined by a path of length
L in Gj , and there exists a shorter path between v1, v2 in
GN . Then there must exist an edge e on this shorter path for
which Qσ(e)j−Qτ(e)j exceeds the corresponding value across
edges in the path joining v1, v2 in Gj . This violates that Q ∈
QE , which provides a contradiction. Item 4b follows similarly:
suppose there exist two paths of length L in GN , with every
edge in the first path belonging to Gj . By definition, every
edge e in the first path must have equal values Qσ(e)j−Qτ(e)j .
If this is not the case for the second path, then there must
exist some edge e′ whose corresponding value exceeds that of
the edges in the first path. This violates that Q ∈ QE , which
provides a contradiction. Item 5a follows by noting that Qjj =
0, which implies that the differential backlog of commodity j
along at least one edge on the shortest path from v to j exceeds
that of the edges along the path of length L originating at v.
This contradicts the set E. Item 5b follows similarly.

APPENDIX B
PROOF OF THEOREM 2

The proof of stability makes use of the fluid limit tech-
nique. We consider a countably infinite sequence of queueing
systems, indexed by r, subject to the same arrival process,
Aij(t), i, j ∈ {1, . . . , n}, for t ≥ 0. The queueing variables of
the r-th system are given by Qr

ij(t), A
r
ij(t) = Aij(t), U

r
ij(t)

for all i, j ∈ {1, . . . , n}, and F r
S(t) for all S ∈ S. At time

t = 0, the r-th system is assumed to contain zero packets in
every queue. The following are the queue evolution properties
of the r-th system:

Qr
ij(t) = Ar

ij(t)− U r
ij(t), t ≥ 0

U r
ij(t) =

∑

S∈S

dij(S)F r
S(t), t ≥ 0

∑

S∈S

F r
S(t) = t, and FS is non-decreasing, t ≥ 0

Ar
ij(0) = 0, U r

ij(0) = 0, ∀i, j, F r
S(0) = 0, ∀S ∈ S

We extend the queueing variables to the reals using Y (t) =
Y (⌊t⌋) for Y = Qr

ij , A
r
ij , U

r
ij , F

r
S . Now each of these

processes is scaled according to qr
ij(t) = Qr

ij(rt)/r. We obtain

the scaled processes qr
ij , a

r
ij , u

r
ij , f

r
S. As in [2], we can infer

the convergence with probability 1 of the scaled processes
over some subsequence of system indices {rk} to a fluid limit
(qij , aij , uij , fS) having the following key properties:

qij(t) = aij(t)− uij(t), t ≥ 0

aij(t) = λijt, t ≥ 0

uij(t) =
∑

S∈S

dij(S)fS(t), t ≥ 0

∑

S∈S

fS(t) = t, and fS is non-decreasing, t ≥ 0

aij(0) = 0, uij(0) = 0, ∀i, j, fS(0) = 0, ∀S ∈ S

The convergence of each process is uniform on compact sets
for t ≥ 0, and it easily follows that the limiting processes
qij , aij , uij , fS are Lipschitz-continuous in [0,∞).

Consider zej(t) = qσ(e)j(t)−qτ(e)j(t), the fluid differential
backlog of commodity j across the directed link e. Define the
function h : [0,∞) → [0,∞) where h(t) = maxe,j zej(t).
Consider a regular time7 t ≥ 0, at which h(t) > 0. Assign

E = {e ∈ EN : ∃j such that zej(t) = h(t)}, (4)

and for e ∈ EN , assign Je = arg maxj zej(t). Note that using
Q = (qij(t), i, j ∈ VN) in conjunction with Definition 5, we
have J , (Je, e ∈ EN) ∈ JE . Under the backpressure-based
algorithm, it is simple to demonstrate that no link activation
outside of SE,J can have an increasing value fS(t). Thus we
have,

∑

S∈SE,J

ḟS(t) = 1

where ḟS(t) is the derivative of fS(t). Assuming an admissible
arrival rate vector λ = (λij , i, j ∈ VN), we have for e ∈ E
and j ∈ Je,

że,j(t) =

λσ(e)j − λτ(e)j −
∑

S∈SE,J

ḟS(t)(dσ(e)j(S)− dτ(e)j(S)) =

∑

S∈S

φS(dσ(e)j(S)− dτ(e)j(S))−

∑

S∈SE,J

ḟS(t)(dσ(e)j(S)− dτ(e)j(S)) =

∑

S∈S

φSuej(S)−
∑

S∈SE,J

ḟS(t)uej(S) (5)

for some φ = (φS,S ∈ S) satisfying φS ≥ 0,
∑

S∈S φS ≤ 1.
The following lemma provides a condition under which the
fluid differential backlogs are guaranteed to be non-increasing
at any regular time. Recall our notation that e denotes the
all-ones vector.

Lemma B.1: Let t ≥ 0 be a regular time at which h(t) >
0. Let E ⊆ EN satisfy (4) and Je = argmaxj zej(t) for

7A regular time is a point at which the system is differentiable. By the
Lipschitz continuity of the fluid limit, almost every time in [0,∞) is regular.

each e ∈ EN . Suppose that the solution θ∗ to the following
optimization problem is θ∗ ≤ 0:

Maximize θ (6)

Subject to
∑

S∈S

µSuE,J(S) ≥
∑

S∈SE,J

νSuE,J(S) + θe

eT µ ≤ 1
∑

S∈S

µS

∑

e

Rj
ieSej ≥ 0 i, j = 1, . . . , n (7)

eT ν = 1 (8)

µS ≥ 0 ∀S ∈ S

νS ≥ 0 ∀S ∈ SE,J (9)

Then ḣ(t) ≤ 0.
Proof: Suppose θ∗ ≤ 0. For an admissible arrival

rate vector λ = (λij , i, j ∈ VN), we have λij =
∑

S∈S φSdij(S) ≥ 0, where φS ≥ 0 ∀S, and
∑

S∈S φS ≤ 1.
Furthermore,

∑

S∈SE,J
ḟS(t) = 1 and ḟS(t) ≥ 0 ∀S. Thus,

the vectors (φS,S ∈ S) and (fS(t),S ∈ SE,J) are feasible
as vectors µ, ν respectively, in the linear program (6). The
solution θ∗ ≤ 0 in the optimization clearly implies that there
must exist e ∈ E and j ∈ Je such that

∑

S∈S

φSuej(S)−
∑

S∈SE,J

ḟS(t)uej(S) ≤ 0. (10)

By (5), equation (10) implies that żej(t) ≤ 0. Since t is a
regular time, żej(t) = ḣ(t), which provides ḣ(t) ≤ 0, as
desired.

It only remains to demonstrate that the multihop local
pooling conditions (2)-(3) are sufficient for stability. The
following lemma demonstrates this property by studying the
dual optimization problem to that in (6).

Lemma B.2: Consider graph G = (VN , E), where E ⊆
EN . Then G satisfies SMLoP under commodity collection J ∈
JE if and only if the corresponding optimization problem (6)
has solution θ∗ ≤ 0.

Proof: Suppose that the optimization (6) has solution
θ∗ ≤ 0. This implies that there exists a dual solution and
complementary slackness conditions hold. It is simple to
demonstrate that the dual problem to (6) is:

Minimize c1 + c2 (11)

Subject to αT uE,J(S) + β
T
d(S) ≤ c1, ∀S ∈ S

αT uE,J(S) ≥ −c2, ∀S ∈ SE,J

eT α = 1

α, β, c1 ≥ 0

Since the solution to (6) is θ∗ ≤ 0, the dual solution is attained
at the point (α∗, β∗, c∗1, c

∗
2), where c∗1 + c∗2 ≤ 0. Then the

values α = α∗, β = β∗, c = c∗1 satisfy the SMLoP conditions,
as desired.

Conversely, suppose that the SMLoP conditions are sat-
isfied, with values (α, β, c) ≥ 0, where α 6= 0. Then,
the point (α/(eT α), β, c,−c) is a feasible point in the dual
optimization problem (11). This feasible point has cost 0. By

duality, this implies that the primal problem must attain a
solution θ∗ ≤ 0, as desired.

Combining Lemmas B.1 and B.2, we conclude that if
SMLoP is satisfied for any E ⊆ EN , with any commodity
collection J ∈ JE , then ḣ(t) ≤ 0 for any regular time t
at which h(t) > 0. Noting that h(0) = 0, and applying [7,
Lemma 1], Lemma B.1 allows us to conclude that h(t) = 0 for
almost every t ≥ 0. This immediately implies that qij(t) = 0
for almost every t ≥ 0, which gives the rate stability of the
BRMS algorithm. Thus the OMLoP conditions are sufficient
for stability, as desired.

REFERENCES

[1] M. Ajmone Marsan, E. Leonardi, M. Mellia, and F. Neri, “On the
stability of isolated and interconnected input-queueing switches under
multiclass traffic,” IEEE Trans. Inform. Th., vol. 51, no. 3, pp. 1167–
1174, Mar. 2005.

[2] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queueing system with asynchronously
varying service rates,” Probability in the Engineering and Informational
Sciences, vol. 18, pp. 191–217, 2004.

[3] B. Awerbuch and T. Leighton, “Improved approximation algorithms for
the multi-commodity flow problem and local competitive routing in
dynamic networks,” in Proc. ACM STOC’94, 1994.

[4] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed
throughput maximization in wireless mesh networks - a partitioning
approach,” in Proc. ACM MOBICOM’06, Sep. 2006.

[5] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, “Throughput and fairness
guarantees through maximal scheduling in wireless networks,” To appear
in IEEE Trans. Inform. Th., vol. 54, no. 2, Feb. 2008.

[6] J. G. Dai, “On the positive Harris recurrence for open multiclass
queueing networks: a unified approach via fluid limit models,” Ann.
Appl. Probab., vol. 5, no. 1, pp. 49–77, Feb. 1995.

[7] J. G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. IEEE INFOCOM’00, Mar. 2000.

[8] A. Dimakis and J. Walrand, “Sufficient conditions for stability of longest
queue first scheduling: second order properties using fluid limits,” Adv.
Appl. Probab., vol. 38, no. 2, pp. 505–521, June 2006.

[9] J.-H. Hoepman, “Simple distributed weighted matchings,” Oct. 2004,
eprint cs.DC/0410047.

[10] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of
interference on multi-hop wireless network performance,” ACM/Springer
WINET, vol. 11, no. 4, pp. 471–487, July 2005.

[11] C. Joo, X. Lin, and N. B. Shroff, “Performance limits of greedy maximal
matching in multi-hop wireless networks,” in Proc. IEEE CDC’07, Dec.
2007.

[12] X. Lin and S. Rasool, “Constant-time distributed scheduling policies for
ad hoc wireless networks,” in Proc. IEEE CDC’06, Dec. 2006.

[13] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on
cross-layer rate control in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 2, pp. 302–315, Apr. 2006.

[14] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% throughput in an input-queued switch,” IEEE Trans. Commun.,
vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

[15] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proc. ACM SIGMETRICS’06, June
2006.

[16] T. Moscibroda and R. Wattenhofer, “The complexity of connectivity in
wireless networks,” in Proc. IEEE INFOCOM’06, Apr. 2006.

[17] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[18] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automat. Contr., vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[19] X. Wu and R. Srikant, “Regulated maximal matching: a distrib-
uted scheduling algorithm for multi-hop wireless networks with node-
exclusive spectrum sharing,” in Proc. IEEE CDC’05, Dec. 2005.

[20] ——, “Bounds on the capacity region of multi-hop wireless networks
under distributed greedy scheduling,” in Proc. IEEE INFOCOM’06, Apr.
2006.

[21] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling for
distributed throughput maximization in wireless networks,” To appear in
Proc. IEEE INFOCOM’08, Apr. 2008.

