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Abstract—We address transmission of data with deadline
constraints over a wireless fading channel. Specifically, the system
model consists of a wireless transmitter with data packets
arriving to its queue having strict deadline constraints. The
transmitter can control the transmission rate over time and
the expended power depends on both the chosen rate and the
present channel state. The objective is to obtain a rate-control
policy that serves the data to meet the deadline constraints while
also minimizing the transmission energy expenditure. Using a
novel approach based on cumulative curves methodology and
continuous-time stochastic control formulation, we obtain the
optimal transmission policy under various specific scenarios.
Utilizing these results, we then present an energy-efficient policy
for the case of arbitrary packet arrivals and deadline constraints,
and also give simulation results comparing its performance with
a non-adaptive scheme.

Index Terms—Energy efficiency, Delay constraints, Wireless
fading channel, Rate control, Quality of Service.

I. INTRODUCTION

Delay constraints and energy efficiency are important con-

cerns in the design of modern wireless systems. Strict delay re-

quirements frequently arise in many situations, for example, in

video and real-time multimedia streaming in wireless data net-

works, in time-critical sensing applications in sensor networks

and in real-time data communication in ad-hoc networks.

Also, for wireless systems, battery energy is clearly a critical

resource and minimizing the energy expenditure has numerous

advantages in efficient battery utilization of mobile devices,

increased lifetime of sensor and ad-hoc networks, and better

utilization of energy sources in satellites. The work in this

paper primarily addresses the above two concerns; specifically,

the focus is to utilize dynamic rate-control to minimize the

transmission energy cost subject to packet deadline constraints.

Modern wireless devices are equipped with channel-gain

measurement and rate adaptation capabilities [1]–[3]. Channel

measurement allows the transmitter-receiver pair to measure

the fade state using a pre-determined pilot signal while rate

control capability allows the transmitter to adjust the transmis-

sion rate over time. Such a control can be achieved in various

ways that include adjusting the power level, symbol rate,

coding scheme, constellation size or any combination of these
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approaches; further, in some technologies the receiver can

detect these changes directly from the received data without

the need for an explicit rate-change control information [3].

Since rate-adaptation can be done very rapidly over millisec-

ond duration time-slots, this capability thus provides ample

opportunity to optimize system performance.

The power-rate function defines the relationship that governs

the amount of transmission power required to reliably transmit

at a certain rate. Two fundamental aspects of this func-

tion, which are exhibited by most encoding/communication

schemes, and hence are common assumptions in the liter-

ature are as follows [7]–[11], [15]. First, for a fixed bit

error probability and channel state, the required transmission

power is a convex function of the communication rate as

shown in Figure 1(a). This implies, from Jensen’s inequality,

that transmitting data at low rates over a longer duration is

more energy efficient as compared to high rate transmissions.

Second, the wireless channel is time-varying which shifts the

convex power-rate curves as a function of the channel state

as shown in Figure 1(b). As good channel conditions require

less transmission power, exploiting the channel variability over

time can lead to reduced energy cost. Thus, it is evident that

adapting the transmission rate intelligently over time, one can

minimize the energy cost while ensuring also that the delay

constraints are met.

In this paper, we consider a wireless transmitter with packets

arriving to the queue having strict deadline constraints. The

channel state varies stochastically over time and is assumed to

be a Markov process. The objective is to obtain a rate-control

policy that serves the packets within the deadline constraints

and also minimizes the transmission energy expenditure. To-

wards this end, we first assume that the packet arrival informa-

tion is known in advance and represent the arrivals, departures

and deadline constraints in terms of cumulative curves. Using

a continuous-time stochastic control formulation we obtain the

optimal policy under various restricted setups. Then, based on

the intuition developed from the optimal policy, we present

a heuristic policy for the case of arbitrary (stochastic) packet

arrivals and deadline constraints, and compare its performance

with a non-adaptive scheme using simulation results.

Transmission power/rate control is an active area of research

in communication networks in various different contexts.

Adaptive network control and scheduling has been studied in

the context of network stability [11], [13], average throughput

[12], [14], average delay [7], [15] and packet drop probability

[16]. This literature considers “average metrics” that are mea-

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

WeB16.4

1-4244-1498-9/07/$25.00 ©2007 IEEE. 1148



convex
increasing

improving
channel state

Power, P

rate, r

Power, P

rate, r

convex
increasing

Figure (a) Figure (b)

Fig. 1. Transmission power as a function of the rate and the channel state;
(a) fixed channel state, (b) variable channel state.

sured over an infinite time horizon and hence do not directly

apply for delay constrained/real-time data. Furthermore, for

strict deadline constraints, rate-adaptation simply based on

steady state distributions does not suffice and one needs to take

into account the system dynamics over time; thus, introducing

new challenges and complexity into the problem. Recent

work in this direction includes [4], [8]–[10]. The work in

[8] studied offline formulations assuming complete knowledge

of the future and then devised heuristic online policies using

the offline solution. The authors in [9] studied several data

transmission problems using Dynamic Programming (DP),

however, the specific problem that we consider in this work

becomes intractable using this methodology. This is due to

the large state space in the DP-formulation or the well-known

“curse of dimensionality”. The work in [10] studied energy-

efficient data transmission over a static channel without fading.

In our earlier work in [4], we utilized a cumulative curves

approach to study data transmission with QoS constraints over

a non-fading channel, while in [5], we considered a fading

channel but a restricted setting with only a single deadline

constraint.

II. SYSTEM MODEL

We consider a continuous-time model of the system where

the rate can be varied continuously in time. Clearly, such a

model is an approximation but the assumption is justified,

since in practice rate-adaptation can be done over time-

slots of duration on the order of 1 msec [1], [2], whereas,

the packet delay requirements are on the order of 100’s of

msec, thus justifying a continuous-time view of the system.

A significant advantage of such a model is that it makes the

problem mathematically tractable and yields simple solutions.

The alternative discrete-time dynamic programming setup is

intractable and would only yield numerical solutions without

much insights. The results obtained using the continuous-time

model can then be applied to the discrete-time system in a

very straightforward manner by simply evaluating the solution

at discrete times as done for the simulations in Section V-B.

A. Transmission Model

Let ht denote the channel gain, P (t) the transmitted signal

power and P rcd(t) the received signal power at time t. We

make the common assumption [7]–[11], [15] that the required

received signal power for reliable communication, with a

certain low bit-error probability, is convex in the rate; i.e.

P rcd(t) = g(r(t)), where g(r) is a non-negative, convex,

increasing function for r ≥ 0. Since the received signal power

is given as P rcd(t) = |ht|
2P (t), the required transmission

power to achieve rate r(t) is given by,

P (t) =
g(r(t))

c(t)
(1)

where c(t)△

=|ht|
2. The quantity c(t) is referred to as the chan-

nel state at time t. Its present value at time t is assumed known

either through prediction or direct channel measurement but

evolves stochastically in the future. In this paper, we take

g(r) to belong to the class of Monomial functions, namely,

g(r) = krn, n > 1, k > 0 (n, k ∈ R). While this assumption

helps mathematically as it leads to simple closed-form optimal

solutions, more importantly, for most practical transmission

schemes the function g(·) is described numerically and its

exact analytical form is unknown. In such situations, one can

obtain the best (least-square) approximation of that function to

the form krn and then apply the results thus obtained. Without

loss of generality, throughout the paper we take k = 1, since

any other value of k simply scales the energy cost without

affecting the optimal policy results.

B. Channel Model

We assume a general first-order, continuous-time, discrete

state space Markov model for the channel state process. Such

models have been widely used in the literature for wireless

channel fading, and first-order Markov models have been

proposed for common fading scenarios of Rayleigh, Rician

etc. [17]–[19].

Denote the channel state process as C(t) and the state space

as C. Let c ∈ C denote a particular channel state and {c(t), t ≥
0} denote a sample path. Starting from state c, let Jc be the set

of all states ( 6= c) to which the channel can transition when the

state changes. Let λcc̃ denote the channel transition rate from

state c to c̃, then the sum transition rate at which the channel

jumps out of state c is, λc =
∑

c̃∈Jc
λcc̃. The expected time

that C(t) spends in state c is 1
λc

, and one can view 1
λc

as the

channel coherence time in state c.

Now, define λ △

= maxc λc and a random variable, Z(c), as,

Z(c)△

=

{

c̃/c, with probability λcc̃/λ, c̃ ∈ Jc

1, with probability 1 − λc/λ
(2)

With this definition, we obtain a compact and simple descrip-

tion of the process evolution as follows. Given a channel state

c, there is an Exponentially distributed time duration with rate

λ after which the channel state changes. The new state is

a random variable which is given as C = Z(c)c. Clearly,

from (2) the transition rate to state c̃ ∈ Jc is unchanged at

λcc̃, whereas with rate λ−λc there are indistinguishable self-

transitions. This is a standard Uniformization technique and

there is no process generality lost with the new description as

it yields a stochastically identical scenario.
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Fig. 2. Schematic diagram of A(t), D(t) and Dmin(t) curves.

C. Data Model

To describe the flow of data in the queue we utilize a

cumulative curves approach [4], [20]. As will be evident

later, such an approach provides an appealing visualization

of the energy minimization problem. Let A(t) and D(t) be

the arrival and the departure curve respectively. To model the

packet deadlines (and other quality-of-service) constraints we

introduce a new notion of a minimum departure curve denoted

as Dmin(t). These curves are defined as follows.

Definition 1: (Arrival Curve) An arrival curve A(t), t ≥
0, t ∈ R, is the total number of bits that have arrived in time

interval [0, t].

Definition 2: (Departure Curve) A departure curve D(t),
t ≥ 0, t ∈ R, is the total number of bits that have departed

(served) in time [0, t].

Definition 3: (Minimum Departure Curve) Given an ar-

rival curve A(t), a minimum departure curve Dmin(t) is a

function such that Dmin(t) ≤ A(t),∀t ≥ 0, and is defined

as the cumulative minimum number of bits that if departed by

time t would satisfy the quality-of-service (QoS) requirements.

Thus, in simple terms, A(t) denotes how data arrives to

the queue, D(t) denotes how data leaves the queue and

Dmin(t) denotes the minimum amount of data that must

depart to satisfy the QoS constraints. Clearly, we require that

D(t) ≤ A(t), ∀t (causality constraints), i.e. only past data that

has already arrived can be served and not future data. We also

require D(t) ≥ Dmin(t), ∀t (QoS constraints). Thus, we see

that in a compact way the QoS and the causality constraints

can be expressed as, Dmin(t) ≤ D(t) ≤ A(t), ∀t. Figure 2

gives a schematic illustration of these curves for a packet

arrival model. We, next, present a few illustrative examples

of how Dmin(t) can model various common QoS constraints.

Delay Constraint: Consider an arrival curve A(t) and a

deadline constraint d on the data. In this case, Dmin(t) =
0, t ∈ [0, d) and Dmin(t) = A(t − d), t ≥ d; thus, Dmin(t)
is simply a time-shifted version of A(t). One can also model

variable deadline constraints as presented in Section IV-B.

Buffer Constraint: Consider a buffer constraint of B, i.e. the

queue size must not exceed B,∀t ≥ 0. For an arrival curve

A(t) and a departure curve D(t) the buffer size at any time

t is given by b(t) = A(t) − D(t). Since b(t) ≤ B, we have

D(t) ≥ max[A(t)−B, 0]. This gives the minimum departure

curve as Dmin(t) = max[A(t)−B, 0]. It is easy to incorporate

a time-varying buffer constraint B(t) as well.

III. PROBLEM FORMULATION

Consider a time interval [0, T ] and let A(t) be the arrival

curve over this period; we assume that A(t) is known in

advance. Based on the specific QoS requirements, the mini-

mum departure curve Dmin(t) is obtained as outlined in Sec-

tion II-C. Now, given A(t) and Dmin(t) curves, the objective

is to dynamically construct the departure curve D(t) such

that the expected energy cost is minimized. Note that while

A(t) and Dmin(t) are assumed known, the actual departure

curve D(t) followed would depend on the underlying channel

sample path. Later in Section V, we utilize the optimal solution

obtained under the above setup and present an energy-efficient

policy for arbitrary packet arrivals (unknown in advance).

Optimal Control Formulation: We consider a continuous-

time stochastic control formulation with the control being the

chosen transmission rate. Let the system state be denoted as

(D, c, t), where the notation means that at the present time

t, the cumulative amount of data that has been transmitted is

D(t) = D, and the channel state is c(t) = c. Let r(D, c, t)
denote a transmission policy and since the underlying channel

process is Markov, it is sufficient to restrict attention to policies

that depend only on the present system state [23].

Given a policy r(D, c, t) the system evolves in time as

a Piecewise-Deterministic-Process (PDP) as follows. It starts

with the initial state D(0) = 0 and c(0) = c0 (c0 ∈ C). Until

τ1, where τ1 is the first time instant after t = 0 at which the

channel changes, data is transmitted at the rate r(D(t), c0, t).
Hence, over t ∈ [0, τ1), D(t) satisfies the differential equation,

dD(t)

dt
= r(D(t), c0, t) (3)

Equivalently, D(t) = D(0) +
∫ t

0
r(D(s), c0, s)ds, t ∈ [0, τ1].

Then, starting from the new state (D(τ1), c(τ1), τ1) until the

next channel transition we have,
dD(t)

dt
= r(D(t), c(τ1), t),

t ∈ [τ1, τ2); and this procedure repeats in time.

A transmission policy, r(D, c, t), is admissible, if it satisfies

the following:

(a) 0 ≤ r(D, c, t) < ∞, (non-negativity of rate), and,

(b) Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, T ], almost surely (a.s.),

(deadline and causality constraints)

Now, define a cost-to-go function, Jr(D, c, t), as the ex-

pected energy expenditure going forward in time starting from

the state (D, c, t). Then,

Jr(D, c, t) = E

[

∫ T

t

1

c(s)
g(r(D(s), c(s), s))ds

]

(4)

where the above expectation is taken over {c(s), s ∈ (t, T ]}
and conditioned on the starting state D(t) = D, c(t) = c.

Define a minimum cost function, J(D, c, t), as the infimum of

Jr(D, c, t) over the set of all admissible transmission policies.

J(D, c, t) = inf
r(D,c,t)

Jr(D, c, t), r(D, c, t) admissible (5)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeB16.4

1150



The optimization problem, stated concisely, is to compute the

optimal policy r∗(D, c, t) that achieves the minimum cost

J(D, c, t).
Using stochastic control theory, it can be shown that

J(D, c, t) satisfies the following Optimality Equation [6],

[21]–[23],

min
r∈[0,∞)

{g(r)

c
+

∂J(D, c, t)

∂t
+ r

∂J(D, c, t)

∂D

+ λ(Ez[J(D,Z(c)c, t)] − J(D, c, t))
}

= 0 (6)

where Ez[·] above is expectation with respect to the Z(c)
variable which was defined in (2). The above partial differ-

ential equation is also referred to as the Hamilton-Jacobi-

Bellman equation. The optimal rate r∗(D, c, t) for a system

state (D, c, t) is the value of r that minimizes (6) above.

IV. OPTIMAL TRANSMISSION POLICY

In the last section, we presented the optimality equation

for a general setup. We now proceed to present analytical

results for the optimal policy under various specific scenarios.

To present the results, however, we require a few additional

notations regarding the channel process. Let there be total m
channel states in the Markov model and denote the various

states c ∈ C as c1, c2, . . . , cm. Given a channel state ci, the

values taken by the random variable Z(ci) (defined in (2))

are denoted as {zij}, where zij = cj/ci. The probability that

Z(ci) = zij is denoted as pij . Clearly, if there is no transition

from state ci to cj , pij = 0. Also, as pointed out earlier,

without loss of generality we take the multiplicative constant

k = 1 in the power-rate function.

A. BT -problem

We consider first the following setup – the transmitter has

B bits of data in the queue, there are no new arrivals and there

is a single deadline T by which this data must be transmitted.

We refer to this as the “BT -problem” and it was analyzed

in detail in [5]. In terms of the cumulative curves, we have

A(t) = B, t ∈ [0, T ] since the queue has B bits to begin with

at time 0 and no more data is added. We have Dmin(t) =
0, t ∈ [0, T );Dmin(T ) = B since until the deadline t < T
there is no minimum data transmission requirement while at

T the entire B bits must have been transmitted. A schematic

diagram of this is given in Figure 3(a).

Theorem I: (BT -problem) Consider the BT -problem with

g(r) = rn, n > 1, n ∈ R and a Markov channel model. The

optimal policy, r∗(D, c, t), and the function, J(D, c, t), are,

r∗(D, ci, t) =
B − D

fi(T − t)
, i = 1, . . . ,m (7)

J(D, ci, t) =
(B − D)n

ci(fi(T − t))n−1
, i = 1, . . . ,m (8)

The functions {fi(s)}
m
i=1 are the solution of the following

ODE with the boundary conditions fi(0) = 0, f ′
i(0) = 1,∀i1,

1For numerical evaluation of the ODE solution, take a small ǫ > 0, set
fi(ǫ) = ǫ, ∀i and use an initial-value ODE solver to obtain {fi(s)}, s ≥ ǫ.
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Fig. 3. Cumulative curves for (a) BT -problem, (b) Variable deadlines case.

f ′
1(s) = 1 +

λf1(s)

n − 1
−

λ

n − 1

m
∑

k=1

p1k

z1k

(f1(s))
n

(fk(s))n−1
(9)

...

f ′
m(s) = 1 +

λfm(s)

n − 1
−

λ

n − 1

m
∑

k=1

pmk

zmk

(fm(s))n

(fk(s))n−1
(10)

A complete proof of the above theorem can be found in [6],

however, as a direct check it can be verified that the solution

in (7)-(8) satisfies the optimality equation in (6).

The ODE system for {fi(s)}
m
i=1 above can be easily solved

numerically using standard techniques (eg. ODE solvers in

MATLAB). Also, this computation needs to be done only

once before the system starts operating. In fact, {fi(s)} can

be pre-determined and stored in a table in the transmitter

memory. Once the functions {fi(s)} are known, the closed

form structure of the optimal policy in (7) requires no further

computation. At time t, the transmitter simply looks at the

amount of data D that has been transmitted, the channel state

ci, and then using the appropriate fi(·) function it computes

the transmission rate as B−D
fi(T−t) .

From (7), we see that the optimal rate is linear in (B −D)
(amount of data left) with slope 1

fi(T−t) . Viewing the quantity
1

fi(T−t) as the “urgency” of transmission at time t for channel

state ci, we obtain an appealing view of (7) as follows,

optimal rate = amount of data left * urgency of transmission

As t → T , fi(T − t) goes to zero; thus, as expected, the

urgency of transmission increases as t approaches the deadline.

Another observation is that setting λ = 0 (no channel varia-

tions) gives fi(T − t) = T − t,∀i, and, r∗(D, c, t) = B−D
T−t

.

Thus, with no channel variations the optimal policy is to

transmit at a rate that just empties the buffer by the deadline.

This observation is consistent with the earlier results in the

literature for non-fading/time-invariant channels [4], [8], [10].

Constant Drift Channel: In Theorem I, the optimal policy

was presented under full generality on the Markov channel

model. If we now impose a special structure on the channel

model which we refer to as the constant drift channel, the ODE
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can be solved analytically. In this channel model, we make

the assumption that the expected value of the random variable

1/Z(c) is independent of the channel state; i.e. E[1/Z(c)] =
β, a constant. Thus, starting in state c, if c̃ denotes the next

transition state, we have E
[

1
c̃

]

= E
[

1
Z(c)

]

1
c

= β
c

. This

means that if we look at the process 1/c(t), the expected value

of the next state is a constant multiple of the present state. We

refer to β as the “drift” parameter of the channel process. If

β > 1 the process 1/c(t) has an upward drift; if β = 1 there

is no drift and if β < 1 the drift is downwards.

There are various situations where the above model is

applicable at least over the time scale of the deadline. For

example, when a mobile device is moving in the direction of

the base station, the channel has an expected drift towards

improving conditions and vice-versa. Similarly, in case of

satellite channels, changing weather conditions such as cloud

cover makes the channel drift towards worsening conditions

and vice-versa. In many cases, the time scale of these drift

changes is longer than the packet deadlines in which case a

constant drift channel serves as an appropriate model.

Theorem II: Consider the BT -problem with g(r) = rn,

n > 1, n ∈ R and a constant drift channel with drift β. The

optimal policy, r∗(D, c, t), and the function, J(D, c, t), are,

r∗(D, c, t) =
B − D

f(T − t)
(11)

J(D, c, t) =
(B − D)n

c(f(T − t))n−1
(12)

where f(s) = (n−1)
λ(β−1) (1 − exp(−λ(β−1)

n−1 s)).
Proof: Omitted for brevity but can be found in [6].

Note that for this channel model, the function fi(s) is the

same for all channel states and is denoted as f(s) above.

B. Variable Deadlines Setup

Consider now the second setup where the queue has M
packets that are arranged and served in the earliest-deadline-

first order. Let bj be the number of bits in the jth packet

and Tj be the deadline for this packet; assume 0 < T1 <
T2 < . . . < TM . There are no new arrivals and the objective

is to serve this data with minimum energy while meeting the

deadline constraints. In terms of the cumulative curves, the

setup is as shown in Figure 3(b). Let Bj =
∑j

l=1 bl, where

Bj is the cumulative amount of data in the first j packets.

Then, A(t) = BM ,∀t, since BM bits are in the queue at time

0 and no more data is added. The curve Dmin(t) is piecewise-

constant with jumps at times Tj ; i.e. at time Tj , Dmin(Tj) =
Bj , since the first Bj bits must be transmitted by time Tj .

A direct solution of the variable deadlines problem by

solving the PDE equation in (6) is fairly difficult, due to

the complexity of the multiple deadline constraints involved.

Therefore, we consider a natural decomposition of it in terms

of multiple BT -problems. This provides a simple transmission

policy which can be shown to be optimal under the constant

drift channel model. A visual comparison of the two diagrams

in Figure 3 suggests the following approach. First, we can

visualize the deadline constraints in terms of the cumulative

amounts as {BjTj}
M
j=1 constraints, that is, a total of Bj

bits must be transmitted by deadline Tj (j = 1, . . . ,M ).

Clearly, each BjTj constraint is like a BT -problem except

that now there are multiple such constraints that all need to

be satisfied. For every time t and channel state c, we know the

optimal transmission rate to meet each of the BjTj constraint

individually (assuming only this constraint existed), thus, to

meet all the constraints a natural solution is to simply choose

the maximum rate among them.

More precisely, given a system state (D, ci, t) and using

(7), the rate function to satisfy an individual BjTj constraint

is
Bj−D

fi(Tj−t) . Let r̃(D, c, t) denote the transmission rate for our

proposed policy, then, r̃(·) is the maximum value among the

rates for all BjTj constraints for which (Bj ≥ D,Tj ≥ t).

r̃(D, ci, t) = max
j:(Bj≥D,Tj≥t)

Bj − D

fi(Tj − t)
(13)

Clearly, by construction, all the BjTj constraints are satisfied

since at all times we choose the maximum value among rates

required to meet each of the remaining constraints. Hence,

the policy in (13) is admissible. Furthermore, since the policy

in (13) is based on the BT -solution, it inherits the useful

properties of that solution. As before, the functions {fi(s)}
m
i=1

can be obtained numerically using a standard ODE solver

and this computation needs to be done only once before

system operation. Having pre-computed {fi(s)}, the online

computation is minimal. At time t, the transmitter simply looks

at the cumulative data transmitted D and the channel state

ci; then, using the appropriate fi(·) function it computes the

maximum among a set of values as in (13).

The transmission policy in (13) applies for a general Markov

channel model, and more specifically as shown below, it is in

fact the optimal policy for the constant drift channel model.

Theorem III: (Variable Deadlines Case) Consider the vari-

able deadlines problem with g(r) = rn, n > 1, n ∈ R

and a constant drift channel with drift β. The optimal rate,

r∗(D, c, t) for Dmin(t) ≤ D ≤ A(t), t ∈ [0, TM ) is given as,

r∗(D, c, t) = max
j:(Bj≥D,Tj≥t)

Bj − D

f(Tj − t)
(14)

where f(s) = (n−1)
λ(β−1) (1 − exp(−λ(β−1)

n−1 s)).
Proof: See Appendix A.

C. Arrivals with a Single Deadline

In this section, we consider a setup with arrivals as follows.

There are M packet arrivals to the queue with the first packet

arrival at time T0 = 0 and the rest arriving at times {Tj}
M−1
j=1 ,

where 0 < T1 < T2 < . . . < TM−1. Let bj be the number of

bits in the jth packet arrival. The deadline constraint is that

all the data must depart by time T > TM−1. This problem

has motivations in a sensor network scenario where the data

collected at certain times must be transmitted to a central node

within a particular time-interval.

In terms of the cumulative curves we have the following

picture. Let Aj =
∑j

l=1 bl; where Aj denotes the cumulative

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeB16.4

1152



A(t)

A
1

A
2

A
M

A
M-1

T
1

T
2

0 T
M-1

T
M

=T

D(t)

D
min

(t)

Fig. 4. Cumulative curves for the arrivals with a single deadline case.

amount of data arrived in the first j packets. Then, A(t) is a

piecewise-constant curve with jumps at times Tj as depicted

in Figure 4; i.e. at time Tj , A(Tj) = Aj+1, j = 0, . . . ,M −1
and A(T ) = AM . The minimum departure curve is Dmin(t) =
0, t ∈ [0, T );Dmin(T ) = AM , since for t < T there is no

minimum transmission requirement while at T the entire AM

bits must be transmitted. For convenience we define, TM
△

= T .

From Figure 4, we see that this cumulative curves picture

can be viewed as a “dual” of the variable deadlines case.

Earlier, we had constraints from Dmin(t) but now there are

causality constraints from the arrival curve A(t) and a final

deadline constraint at time T . Thus, using similar reasoning

as in the variable deadlines case, we can obtain a transmission

policy as follows. First, note that a constraint AjTj , j =
1, . . . ,M − 1 requires that no more than Aj bits must be

transmitted before time Tj , while AMTM requires that the

queue must be empty by time TM . Starting from a system state

(D, ci, t) and without considering other constraints, emptying

the buffer by time Tj (i.e. transmitting Aj bits by time Tj) is

equivalent to a BT -problem with B = Aj and T = Tj . From

(7) the rate for this is given as
Aj−D

fi(Tj−t) . Now, to ensure that

none of the AjTj constraints is violated, i.e. no more than Aj

bits is transmitted by time Tj , a natural solution is to choose

the minimum rate among them. More precisely, let r̃(D, c, t)
denote the proposed policy we then have,

r̃(D, ci, t) = min
j:(Aj≥D,Tj≥t)

Aj − D

fi(Tj − t)
(15)

By construction all the causality constraints are satisfied since

at all times we choose the minimum rate among those needed

to meet the AjTj points. Also, for t > TM−1, r̃(·) reduces to

choosing a rate that meets the AMTM constraint, hence, the

deadline constraint is also satisfied. Thus, the policy in (15)

is admissible and further, as in the variable deadlines case, it

is also optimal for the constant drift channel model.

Theorem IV: (Arrivals with Single Deadline) Consider the

“arrivals with a single-deadline” problem with g(r) = rn,

n > 1, n ∈ R and a constant drift channel with drift β. The op-

timal rate, r∗(D, c, t), for Dmin(t) ≤ D ≤ A(t), t ∈ [0, TM )
is given as,

r∗(D, c, t) = min
j:(Aj≥D,Tj≥t)

Aj − D

f(Tj − t)
(16)
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where f(s) = (n−1)
λ(β−1) (1 − exp(−λ(β−1)

n−1 s)).
Proof: The proof is similar to that of Theorem III and is

omitted here for brevity. It can be found in [6].

V. GENERAL PACKET ARRIVALS WITH DEADLINES

The understanding gained in the last section provides a

useful tool for addressing the more general setup involving

arbitrary packet arrivals to the queue. In this section, we treat

such a setup and present a heuristic energy-efficient policy

based on the variable-deadlines solution. We call it the “BT-

Adaptive” (BTA) policy. We also present simulation results

comparing its performance with a non-adaptive scheme.

A. BT-Adaptive (BTA) Policy

Consider an arbitrary stream of packet arrivals to the queue

with each packet having a deadline by which it must depart.

Assuming that the arrivals occur at discrete times, clearly,

at the instant immediately following a packet arrival, the

transmitter queue consists of (a) earlier remaining packets with

their deadlines and (b) the new packet with its own deadline.

Re-arranging the data in the earliest-deadline-first order we

can view the queue as consisting of a total amount BM of

data with variable deadlines, identical to the case considered

in Section IV-B. Not assuming any knowledge of the future

arrivals and using (13), we have an energy-efficient policy to

empty the transmitter buffer. As this policy is followed, at the

next packet arrival instant the above procedure is then simply

repeated. Summarizing, the BTA policy is as follows:

Transmit the data in the queue with the rate as given in

(13); at every packet arrival instant re-arrange the data in the

earliest-deadline-first order to obtain a new set of BjTj values

by including the new packet and its deadline; re-initialize D
to zero and follow (13) thereafter.

Note that the BTA policy is not based on any specific

arrival process, hence, it is robust to changes in the arrival

statistics and can accommodate multiple deadline classes of

packet arrivals to the queue.

B. Simulation Results

In this section, we present simulation results to evaluate

the performance of the BT-Adapative policy. For comparison
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purposes we consider the “Head-of-Line Drain” (HLD) policy.

In HLD policy, the data in the queue is arranged and served

in the earliest-deadline-first order. At time t, let Ht be the

amount of data left in the head-of-the-line packet and TH be

the amount of time left until its deadline. The transmission rate

at t is chosen as rt = Ht

TH
. Thus, the transmitter serves the first

packet in queue at a rate to transmit it out by its deadline,

then moves to the next packet in line and so on. At every

packet arrival instant, the data in the queue is re-arranged in the

earliest-deadline-first order and the above policy is repeated.

The setup is as follows. The queue has Poisson packet

arrivals with each packet having 1 unit of data and a deadline

of 200 msec. The channel model is a two state model with

the two states denoted as the “good” (cg) and the “bad” (cb)

state. Let λ be the transition rate among the states; we take the

following parameter values, cg = 1, cb = 0.2, λ = 50. Thus,

the average time spent in a state before the channel transitions

is 1/50 seconds, or 20 msec. On each simulation run, the total

time over which the packets arrive and the system is operated

is taken as L = 10 seconds. This interval [0, 10] is partitioned

into 10, 000 slots, thus each slot is of duration dt = 1 msec.

We take g(r) = r2, hence the energy cost per slot is r2dt
c

. The

expected energy cost is obtained as an average of the total cost

over the sample runs.

Figure 5(a) is a plot of the expected energy cost, plotted on a

log scale, versus the packet arrival rate. As is evident from the

plot, the BTA policy has a much lower energy cost compared

to the HLD policy and as the arrival rate increases the two

costs are roughly an order of magnitude apart. This can be

intuitively explained as follows. When the arrival rate is low,

most of the time the queue has at most a single packet. Hence,

both policies choose a rate based on the head-of-line packet

with the BTA policy also adapting the rate with the channel

state. As the arrival rate increases and due to the bursty nature

of the Poisson process, the queue tends to have more packets.

The BTA policy then adapts based on the channel and the

deadlines of all the packets in the queue, whereas, the HLD

policy chooses a rate based solely on the head-of-line packet.

BTA policy has energy gains not just in an average sense but

even on individual sample paths. This is shown in Figure 5(b)

for 50 sample paths for arrival rate 10 packets/sec.

VI. CONCLUSION

We considered transmission of delay-constrained data over

time-varying channels with the objective of minimizing the

total transmission energy expenditure. We adopted a novel

approach based on cumulative curves and stochastic control

theory to obtain specific optimal solutions for an otherwise

difficult set of problems. We first obtained the optimal policy

for transmitting B bits of data by deadline T . Using this

solution and a graphical decomposition approach, we obtained

the optimal solution for the “variable deadlines” and the

“arrivals with a single deadline” case for the constant drift

channel model. Finally, based on the intuition developed in

the above, we devised an energy-efficient policy for arbitrary

packet arrivals and deadline constraints, and evaluated its

performance through simulations. Various extensions to be

explored include a network model with multiple transmitter-

receiver pairs and multi-hop transmissions with end-to-end

delay constraints.
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APPENDIX A

PROOF OF THEOREM III – Variable Deadlines Setup

The proof outline is as follows. We start with the functional

form for r∗(D, c, t) as given in (14), obtain the minimum

cost function J(D, c, t) and check that these satisfy the PDE

equation in (6). The admissibility of r∗(·) has already been

discussed in Section IV-B. For brevity and simplicity, we only

treat the two-packet case M = 2; full details of the proof can

be found in [6].
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Two Packet Case: Consider the rate function in (14); if this

is the optimal policy then for every admissible system state

(D, c, t) we must have r∗(D, c, t) as the minimizing value of

r in (6). Using the first-order condition for the minimization,

this gives,
∂J(D,c,t)

∂D
= − g′(r∗(D,c,t))

c
, which by integrating

with respect to D gives the J(·) function. After obtaining the

J(·) function, we verify optimality by proving that r∗(·) and

J(·) satisfy the PDE equation, i.e.,

{g(r∗(D, c, t))

c
+

∂J(D, c, t)

∂t
+ r∗(D, c, t)

∂J(D, c, t)

∂D

+λ(Ez[J(D,Z(c)c, t)] − J(D, c, t))
}

= 0 (17)

To proceed, first consider the state space (D, c, t) ∈
[B1, B2]×C× [T1, T2) – that is, we are looking at time t ≥ T1

and all admissible D values over this time. Starting from

(D, c, t) in this state space, clearly, the problem is identical to

the BT -problem with B = (B2−D) and T = (T2− t). From

(11), the optimal rate function must be r∗(D, c, t) = B2−D
f(T2−t) .

In conformation, the rate function in (14) over this state space

also reduces to the same form. Thus, over this state space,

(14) is trivially the optimal policy.

Next consider the state space (D, c, t) ∈ [0, B2]×C×[0, T1);
thus now we are considering 0 ≤ t < T1 and all admissible

D values over this time which are [0, B2]. Fix a value of t
and c, then, as a function of D the rate r∗(·) in (14) has the

following two possibilities.

Case 1: Suppose B2

f(T2−t) > B1

f(T1−t) . For a fixed t, we see

that both B1−D
f(T1−t) and B2−D

f(T2−t) are linear in D. Figure 6(a) gives

a schematic picture of the two curves and from the figure it

is clear that since B2 > B1, the two curves do not intersect

over D ∈ [0, B1]. Thus, in this case the maximizing function

for all D ∈ [0, B2] is B2−D
f(T2−t) and so, r∗(D, c, t) = B2−D

f(T2−t) .

Case 2: Suppose B2

f(T2−t) ≤ B1

f(T1−t) . In this case, the two

functions B1−D
f(T1−t) and B2−D

f(T2−t) are plotted in Figure 6(b). From

the figure it is clear that since B1 < B2 the two curves must in-

tersect at some B̃ ∈ [0, B1] which satisfies B1−B̃
f(T1−t) = B2−B̃

f(T2−t) .

Thus, in this case we get r∗(D, c, t) = B1−D
f(T1−t) for D ∈ [0, B̃]

and r∗(D, c, t) = B2−D
f(T2−t) for D ∈ [B̃, B2]. Define,

B̃(t) △

=







0, if B1

f(T1−t) < B2

f(T2−t)
B1

f(T1−t)
−

B2
f(T2−t)

1
f(T1−t)

− 1
f(T2−t)

, otherwise
(18)

Using (18), r∗(·) can be written in a more compact form as,

r∗(D, c, t) =

{

B2−D
f(T2−t) , B̃(t) ≤ D ≤ B2

B1−D
f(T1−t) , 0 ≤ D < B̃(t)

(19)

Using
∂J(D,c,t)

∂D
= − g′(r∗(D,c,t))

c
(note g(r) = rn) and

integrating with respect to D with the boundary condition

J(B2, c, t) = 0, we obtain,

J(D, c, t) =















(B2−D)n

c(f(T2−t))n−1 , B̃(t) ≤ D ≤ B2

(B1−D)n

c(f(T1−t))n−1 + (B2−B̃(t))n

c(f(T2−t))n−1

− (B1−B̃(t))n

c(f(T1−t))n−1 , 0 ≤ D < B̃(t)

(20)

(a) (b)

B2

f(T2−t)

B1

f(T1−t)

B1

f(T1−t)

B2

f(T2−t)

B̃ B1B1 B2B2 00 DD

Fig. 6. Proof of Theorem III for the two packet case, (a) case
B2

f(T2−t)
>

B1
f(T1−t)

and (b) case
B2

f(T2−t)
≤ B1

f(T1−t)
.

We now show that (19) and (20) satisfy the optimality PDE

equation in (17). Consider first D ∈ [B̃(t), B2], then, from

(20) we have J(D, c, t) = (B2−D)n

c(f(T2−t))n−1 and from (19) we

have r∗(D, c, t) = B2−D
f(T2−t) . Substituting in the left hand side

(LHS) of (17) gives (let s = T2 − t),

LHS =
(n − 1)(B2 − D)n

c(f(s))n

(

f ′(s) − 1 +
λ(β − 1)

n − 1
f(s)

)

= 0, (since, f ′(s) = 1 − λ(β−1)
n−1 f(s)) (21)

Thus from above, (17) is satisfied over D ∈ [B̃(t), B2]. If

B̃(t) = 0, we are done. So, now suppose B̃(t) > 0.

Consider D ∈ [0, B̃(t)), then, from (19) we have

r∗(D, c, t) = B1−D
f(T1−t) and from (20) we have J(D, c, t) =

Q(c, t) + H(D, c, t), where for simplicity of exposi-

tion we define Q(c, t)△

=
(

(B2−B̃(t))n

c(f(T2−t))n−1 − (B1−B̃(t))n

c(f(T1−t))n−1

)

and

H(D, c, t) = (B1−D)n

c(f(T1−t))n−1 . Substituting in (17) gives,

LHS =

(

∂Q(c, t)

∂t
+ λ(Ez[Q(Z(c)c, t)] − Q(c, t))

)

+

{g(r∗(D, c, t))

c
+

∂H(D, c, t)

∂t
+ r∗(D, c, t)

∂H(D, c, t)

∂D

+λ(Ez[H(D,Z(c)c, t)] − H(D, c, t))
}

Using identical steps that lead to (21), it can be shown that the

terms within the curly bracket above equal zero. Now consider

the first-bracket terms. Let Q(c, t) = Q2(c, t)−Q1(c, t), where

Q2(c, t) = (B2−B̃(t))n

c(f(T2−t))n−1 and Q1(c, t) = (B1−B̃(t))n

c(f(T1−t))n−1 . We

have,

∂Q2(c, t)

∂t
+ λ(Ez[Q2(Z(c)c, t)] − Q2(c, t)) =

=
(n − 1)(B2 − B̃(t))n

c(f(T2 − t))n

(

−
B̃′(t)f(T2 − t)n

(B2 − B̃(t))(n − 1)
+ 1

)

A similar expression as above is obtained for the term Q1(c, t).

Combining the two and using
B1−B̃(t)
f(T1−t) = B2−B̃(t)

f(T2−t) , gives,

∂Q(c, t)

∂t
+ λ(Ez[Q(Z(c)c, t)] − Q(c, t)) = 0

This completes the verification that the functions in (19) and

(20) satisfy the PDE equation in (17), and, thus proves that

they form the optimal solution.
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