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Abstract-We study optimal rate control for transmitting
deadline-constrained data over a time-varying channel. Specif-
ically, we consider a wireless transmitter where the channel
gain varies stochastically over time and the packets in the
queue have strict delay constraints. The transmitter can adapt
the rate over time by varying the power and the goal is to
obtain the rate-control policy that minimizes the expected energy
expenditure while meeting the deadline constraints. We first
consider the case of B bits of data that must be transmitted by a
deadline T and using a novel continuous-time stochastic control
formulation obtain the optimal policy. Based on a cumulative
curves methodology and a decomposition approach, we then
obtain the optimal policy when the queue has packets with
variable deadline constraints. Finally, we present a heuristic
policy for the case of arbitrary packet arrivals to the queue
and compare its performance using simulation results with a
non-adaptive scheme.

Index Terms- Energy efficiency, Delay constraints, Wireless
fading channel, Rate control, Quality of Service.

I. INTRODUCTION

Delay constraints and energy efficiency are important con-
cerns in the design of modem wireless systems. Data ser-
vices such as video and real-time multimedia streaming, high
throughput file transfers and Voice-over-IP require strict delay
constraints on data delivery. Similarly, in sensor networks time
critical sensing applications impose deadline constraints within
which the data must be transmitted back to a central processing
entity. Energy consumption is also an important concern and
minimizing this cost has numerous advantages in efficient
battery utilization of mobile devices, increased lifetime of
sensor and ad-hoc networks, and better utilization of limited
energy sources in satellites. Furthermore, since transmission
energy constitutes the bulk of the total energy expenditure,
it is imperative to minimize this cost to achieve significant
energy savings. Our focus in this work is to utilize dynamic
transmission rate control to address the above concerns.
Modem wireless devices are equipped with channel mea-

surement and rate adaptation capabilities [1]. Channel mea-
surement allows the transmitter-receiver pair to measure the
fade state using a pre-determined pilot signal while rate control
capability allows the transmitter to adjust the transmission rate
over time. Such a control can be achieved in various ways that
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include adjusting the power level, symbol rate, coding scheme,
constellation size or any combination of these approaches;
further, in some technologies the receiver can detect these
changes directly from the received data without the need for an
explicit rate change control information [2]. The transmission
rate can also be adapted very rapidly in time over millisecond
duration time-slots [1]. These capabilities, thus, provide ample
opportunity to utilize rate control algorithms to optimize
system performance.
The power-rate function defines the relationship that governs

the amount of transmission power required to reliably transmit
at a certain rate. Two fundamental aspects of this func-
tion, which are exhibited by most encoding/communication
schemes and hence are common assumptions in the literature
[4]-[6], [9]-[11], [15], are as follows. First, for a fixed bit
error probability and channel state, the required transmission
power is a convex function of the communication rate as
shown in Figure l(a). This implies, from Jensen's inequality,
that transmitting data at low rates over a longer duration is
more energy efficient as compared to high rate transmissions.
Second, the wireless channel is time-varying which shifts the
convex power-rate curves as a function of the channel state
as shown in Figure l(b). As good channel conditions require
less transmission power, exploiting this variability over time
by adapting the rate in response to the channel conditions leads
to reduced energy cost. Thus, by adapting the transmission rate
intelligently over time we can minimize the energy cost while
also ensuring that the delay constraints are met.

In this paper, we consider the following setup. The system
model consists of a wireless transmitter with packets having
strict delay constraints. The channel state varies stochastically
over time and is modelled as a general Markov process. The
transmitter can control the transmission rate over time and
the expended power depends on both the chosen rate and the
present channel condition. The objective is to obtain a rate-
control policy that serves the packets arriving to the queue
within the deadline constraints and minimizes the transmission
energy expenditure. Towards this end, we first consider a sim-
plified problem where the queue has only B bits of data that
must be transmitted by deadline T. Using a novel continuous-
time stochastic control formulation we obtain in explicit/closed
form the optimal transmission policy. We then consider a
cumulative curves methodology and a novel decomposition
approach to obtain the optimal policy with variable deadline
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Fig. 1. Transmission power as a function of the rate and the channel state;
(a) fixed channel state, (b) variable channel state.

constraints. Finally, we present a heuristic policy for the
case of arbitrary packet arrivals to the queue and compare
its performance using simulation results with a non-adaptive
scheme.

Transmission power/rate control is an active area of research
in communication networks in various different contexts.
Adaptive network control and scheduling has been studied in
the context of network stability [11], [13], average throughput
[12], [14], average delay [4], [15] and packet drop probability
[16]. This literature considers "average metrics" that are mea-
sured over an infinite time horizon and hence do not directly
apply for delay constrained/real-time data. Furthermore, for
strict deadline constraints rate-adaptation simply based on
steady state distributions does not suffice and one needs to take
into account the system dynamics over time; thus, introducing
new challenges and complexity into the problem. Recent work
in this direction includes [5]-[10]. The work in [5] studied
offline formulations under complete knowledge of the future
and devised heuristic policies using the offline solution. The
authors in [6] studied several data transmission problems using
Dynamic Programming (DP), however, the specific problem
that we consider in this work becomes intractable using this
methodology. This is due to the large state space in the DP-
formulation or the well-known "curse of dimensionality". The
works in [9], [10] studied formulations for energy efficient data
transmission over a static channel without fading. Similarly,
our earlier work in [7] for static non-fading channels used
a calculus approach to obtain minimum energy policies with
general QoS constraints. The work in this paper is an extension
of [8] where we considered a restricted scenario with only a
single deadline constraint.

II. SYSTEM MODEL

We consider a continuous-time model of the system. Clearly,
such a model is an approximation of the actual system but the
assumption is justified since in practice, transmission rate can
be adapted over a communication-slot duration which is very
short, on the order of 1 msec [1]. In contrast the packet delay
requirements can be on the order of 100 msec, thus justifying
a continuous-time view of the system. A significant advantage
of such a model is that it makes the problem mathematically
tractable and yields simple solutions. The alternative discrete-
time dynamic programming setup is intractable and would
only yield numerical solutions without much insights. The

modulation bits/symbol SNR/symbol
2 PAM 1 0.25 d2

4 QAM 2 0.50 d2

16 QAM 4 1.25 d2

64 QAM 6 5.25 d2
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Fig. 2. Modulation scheme considered in [11] as given in the table. The
corresponding plot shows the least squares monomial fit, 0.043r2 67 to the
scaled piecewise linear power-rate curve.

results obtained using the continuous-time model can then be
applied to the discrete-time system in a very straightforward
manner by simply evaluating the solution at discrete times as
done for the simulation results in Section V-B.

A. Transmission Model
Let ht denote the channel gain, P(t) the transmitted signal

power and Prcd(t) the received signal power at time t. We
make the common assumption [4]-[6], [9]-[11], [15] that the
required received signal power for reliable communication,
with a certain low bit-error probability, is convex in the rate;
i.e. prcd(t) = g(r(t)), where g(r) is a non-negative convex
increasing function for r > 0. Since the received signal power
is given as prcd(t) = Iht 2P(t), the required transmission
power to achieve rate r(t) is given by,

P(t) = g( (t))P() c(t) (1)

where c(t) A ht 2. The quantity c(t) is referred to as the
channel state at time t. Its value at time t is assumed known
either through prediction or direct channel measurement but
evolves stochastically in the future. Some specific examples
of (1) can be found in [4], [5]. It is worth emphasizing that
while we defined c(t) as lht 2 to motivate the relationship
in (1), more generally, c(t) could include other stochastic
variations in the system and (uncontrollable) interference from
other transmitter-receiver pairs, as long as the power-rate
relationship is given by (1).

In this work, our primary focus will be on g(r) belonging
to the class of Monomial functions, namely, g(r) = krn, n >
1, k > 0 (n, k C JR). While this assumption restricts the
generality of the problem, it serves several purposes. First,
mathematically it leads to simple closed-form optimal solu-
tions that can be applied in practice. Second, most importantly,
for most practical transmission schemes g(.) is described
numerically and its exact analytical form is unknown. In
such situations, one can obtain the best approximation of that
function to the form krn by choosing the appropriate k, n and
then applying the results thus obtained. For example, consider
the modulation scheme considered in [11] and reproduced
here in Figure 2. The table gives the rate and the normalized
signal power per symbol, where d is the minimum distance
between signal points and the scheme is designed for error
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Fig. 3. Schematic description of the system for the BT-problem.

probabilities less than 10-6. The plot gives the least squares
monomial fit to the transmission scheme and one can see from
the plot that for this example the monomial approximation
is fairly close. Third, monomials form the first step towards
studying extensions to polynomial functions which would
then apply to a general g(.) function using the polynomial
expansion. Under a more restrictive setting in Section III-
C, we also study the class of Exponential functions, namely,
g(r) = k(ar -1), a > 1, k > 0 (a, k C R). Finally without
loss of generality, throughout the paper we take k = 1, since
any other value of k simply scales the energy cost without
affecting the policy results.

B. Channel Model
We consider a general continuous-time discrete state space

Markov model for the channel state process. Markov pro-
cesses constitute a large class of stochastic processes that
exhaustively model a wide set of fading scenarios and there
is substantial literature on these models [17], [18] and their
applications to communication networks [18], [19]. Denote
the channel state process as C(t) and the state space as C.
Let c C C denote a particular channel state and {c(t), t > 0}
denote a sample path. Starting from state c, let Jc be the set
of all states (# c) to which the channel can transition when
the state changes. Let Acc denote the channel transition rate
from state c to c, then, the sum transition rate at which the
channel jumps out of state c is, Ac ZEcCj ACc Clearly, the
expected time that C(t) spends in state c is 1/Ac and one can
view A as the coherence time of the channel in state c.
Now, define A A supc Ac and a random variable, Z(c), as,

Z(A f c/c, with prob. ACC/A, cC Jc (2)
Z(1,I with prob. 1 -Ac/A

With this definition, we obtain a compact and simple descrip-
tion of the process evolution as follows. Given a channel state
c, there is an Exponentially distributed time duration with rate
A after which the channel state changes. The new state is
a random variable which is given as C = Z(c)c. Clearly,
from (2) the transition rate to state c C .c is unchanged at
Acc, whereas with rate A -Ac there are indistinguishable self-
transitions. This is a standard Uniformization technique and
there is no process generality lost with the new description as
it yields a stochastically identical scenario.

Example: Consider the standard Gilbert-Elliott channel
model [18] that has two states b and g denoting the "bad"
and the "good" channel conditions respectively. The two states

correspond to a two level quantization of the channel gain. If
the measured channel gain is below some value, the channel
is labelled as "bad" and c(t) is assigned an average value Cb,
otherwise c(t) = Cg for the good condition. Let the transition
rate from the good to the bad state be Agb and from the bad
to the good state be Abg. Let a cblcg, and using the earlier
notation we get, A = max(Abg, Agb). For state cg, we obtain
Z(cg) as,

Z(Cg) = {7, with prob. Agb/A
1, with prob. 1 - Agb/A

To obtain Z(cb), replace a with 1/-y and Agb with Abg in
equation (3) above.

III. BT- PROBLEM

We begin first with the following problem. The queue has
B units of data that must be transmitted by deadline T, with
minimum energy over a time-varying channel. We refer to
this as the "BT-problem" where the notation implies that the
amount of data under consideration is B, and the deadline is
T. The case with variable deadline constraints is treated in the
next section. We now describe in detail the control formulation
and the optimality conditions for the BT-problem.

A. Optimal Control Formulation

Consider the BT-problem and let x(t) denote the amount
of data left in the queue at time t. The system state can be
described as (x, c, t), where the notation means that at the
present time t, x(t) = x and c(t) = c. Let r(x, c, t) denote
the chosen transmission rate for the corresponding system state
(x, c, t). Since the underlying process is Markov, it is sufficient
to restrict attention to transmission policies that depend only
on the present system state [23]. Clearly then, (x, c, t) is
a Markov process. The system is schematically depicted in
Figure 3.

Given a policy r(x, c, t), the system evolves in time as
a Piecewise-Deterministic-Process (PDP) as follows. It starts
with x(0) = B and c(O) = co. Until Tl, where Ti is the
first time instant after t = 0 at which the channel changes,
the buffer is reduced at the rate r(x(t), co, t). Hence, over the
interval [0, Tj), X(t) satisfies the ordinary differential equation,

dx(t)
dt

-r(x(t), co, t) (4)

Equivalently, x(t) = x(0) - fo r(x(s), co, s)ds, t C [0, Tj].
Then, starting from the new state (X(Tj), c1, Ti), the above
procedure repeats until t = T is reached.
A transmission policy, r(x, c, t), is admissible, if it satisfies

the following,
(a) 0 < r(x, c, t) < oc, (non-negativity)
(b) r(x, c, t) = 0, if x = 0 (no data left to transmit) and,
(c) x(T) = 0, a.s. (deadline constraint)'.

1An additional technical requirement is that r (X, c, t) be continuous and
locally lipschitz in x (for x > 0) which ensures that x(t) is the unique
solution of (4).
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Consider now an admissible transmission policy r(.) and
define a cost-to-go function, Jr (x, c, t), as the expected energy
cost starting at time t < T in state (x, c, t). Then,

Jr(x,c, t) = [J c( s (r(x(s),c(s),s))ds1 (5)

where the term within the brackets is the total energy ex-
penditure obtained as the integral of the power cost over
time and the expectation is conditioned on the starting state
x(t) = x, c(t) = c. Define a minimum costfunction, J(x, c, t),
as the infimum of Jr(x, c, t) over the set of all admissible
transmission policies.

J(x, c, t) = inf Jr(x, c, t), r(x, c, t) admissible (6)
r(.)

Now, stated concisely, the optimization problem is to compute
the minimum cost function J(x, c, t) and obtain the optimal
policy r* (x, c, t) that achieves this minimum cost.

B. Optimality Conditions
A standard approach towards studying continuous time

problems is to investigate their behavior over a small time
interval. In the context of the BT-problem, this methodology
applies as follows. Suppose that the system is in state (x, c, t).
We first apply a transmission policy, r(.), in the small interval
[t, t+h] and thereafter, starting from (x(t + h), c(t + h), t+h)
we assume that the optimal policy is followed. By assumption,
the energy cost is optimal over [t + h, T], hence, investigating
the system over [t, t + h] would give conditions for the
optimality of the chosen rate at time t. Since t is arbitrary,
we obtain formal conditions for an optimal policy.

Following the above approach, we now present the details of
the analysis. Consider t C [0, T) and a small interval [t, t + h],
where t + h < T. From Bellman's principle [21] we get,

t+hJ(x, c,t) =m E{J
,r(.) J g(r(x(s), c(s), s))ds

+EJ(Xt+h, Ct+h, t + h)} (7)

where Xt+h, Ct+h is a short-hand notation for x (t + h) and
c(t + h) respectively. The expression within the minimization
bracket in (7) denotes the total cost with policy r(.) being
followed over [t, t + h] and the optimal policy thereafter. This
cost must be greater than the cost of applying the optimal
policy directly from the starting state (x, c, t). Thus, we get,

I t±h 1
J(x, c, t) < E

i

g(r(x(s), c(s), s))dsc(s)
+ E [J(Xt+h, Ct+h, t + h)] (8)

E[J(Xt+h,ct+h, t + h)] -J(x, c, t)
rt+h I

+E 1 g(r(x(s),c(s),s))ds > 0 (9)
it c(s)

Divide (9) by h and take the limit h { 0. In the limit we have,

ft+h (g(r(x,c ,s)) ) ds

h
g(r)
c

where r is the transmission rate at time t, i.e. r = r(x, c, t).
Define liMhr1 EJ(Xt+h,Ct+h,t+h)-J(x,c,t) = ArJ(x, c, t), thenh
in the limit, (9) simplifies to,

ArJ(x, c, t) + Ig(r) > 0
C

(1 1)

The quantity A J(x, c, t) is called the differential generator
of the Markov process (x(t), c(t)) for policy r(.). Intuitively, it
can be viewed as a natural generalization of the ordinary time
derivative for a function that depends on a stochastic process.
An elaborate discussion on this topic can be found in [21]-
[23]. For the process (x(t), c(t)), using the time evolution in
(4), the quantity ArJ(x, c, t) can be evaluated as [21],

+a(Et [ Z(c'c'(x
+A(E,, [J(x, Z(c)c, t)] -J(x, c, t)) (12)

where E is the expectation with respect to the Z variable as
defined in (2).
Now, in the above steps from (8)-(1 1) if policy r(.)

is replaced with the optimal policy r*(.) there is equality
throughout and we get,

Ar J(x, c, t) + Ig(r ) = 0 (13)

Thus, for a given system state (x, c, t), the optimal transmis-
sion rate r* is that value of r that minimizes (11) and the
minimum value of this expression equals zero. This gives,

(14)rn [(r) + ArJ(x, c, t)] 0

Substituting A'J from (12), we get a partial differential
equation (PDE) in J(x,c,t) which is also referred as the
Hamilton-Jacobi-Bellman (HJB) equation. This is the Opti-
mality Equation for the BT-problem.

min {g(r) + &J(x,c,t)
re [0,+o() c At

+A(E,, [J(x, Z(c)c, t)]

J(x,c, t)

J(c, c, t)) } 0 (15)

The boundary conditions for the above PDE are, J(0, c, t) = O,
and J(x, c, T) = oc, if x > 0. The last condition follows due
to the deadline constraint of T on the data.

C. Optimal Transmission Policy
We have, so far, presented general results on the optimality

condition for the BT-problem. We, now, give specific
analytical results for the optimal policy and discuss some
of the insights that can be drawn from it. However, before
proceeding further, a few additional notations regarding the
channel process are required. Let there be total m channel
states in the Markov model and denote the various states
c C C as c1,. cm. Given a channel state ci, the values
taken by the random variable Z(ct) (defined in (2)) are
denoted as {zij}, where zij = ci/ci. The probability that
Z(ct) = zij is denoted as Pij. Clearly, if there is no transition
from state ct to c2, Pij = 0. Also, as pointed out earlier,
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25r
without loss of generality we take the multiplicative constant
k = 1 in the power-rate function.

Theorem I. Consider the BT-problem with g(r) rn,
n > 1, n C R and a Markov channel model. The optimal
policy, r* (x, c, t), and the function, J(x, c, t), are,

r*(x,ct,t)

J(x, ci, t)

x
r(T -tf (T t)' =,.m

20

t 15

1 0

5

(16)

The functions {f i(s)}I 1 are the solution of the following
ODE with the boundary conditions fi (0) = 0, fi'(0) = 1, Vi2,

fl (s)

f' (s)

1A+fi(s) A E Pik (f(S)) (18)
n1 1 n2 1(= Z_k (fk (S))' 1

Afm(s) A m
mk fm()nI1+ 12 1 1 -Pn fQ)~ (19)

k=l Zmk (kS)

Proof: It can be shown that the functions in (16)-(17)
satisfy the optimality equation in (15). The proof is omitted
for brevity and can be found in [3]. U

The results in the above theorem can be interpreted as
follows. From (16), the optimal rate given x amounts of data
left, channel state ci and time t, is xf t)' where the function
fi(s) is associated with the channel state ci. The correspond-
ing minimum expected cost starting from state (x, ct, t) is

cifj(T-t)n-1 The boundary condition fi(0) = 0 is due to
the deadline constraint, since at the deadline, (T -t) = 0 and
we require J(x, ci, T) = oc, if x :t 0. The system of ODE
above can be easily solved offline numerically using standard
techniques (eg. ODE solvers in MATLAB). Furthermore, this
computation needs to be done only once before the system
starts operating. In fact, {fi(s)} can be pre-determined and
stored in a table in the transmitter memory. Once {f i(s)} are
known, the closed form structure of the optimal policy in (16)
warrants no further computation. At time t, the transmitter
simply looks at the amount of data left in the queue, x, the
channel state, ci, and then using the appropriate fi (.) function
it computes the transmission rate x

fi (T-t)
The solution in (16) provides several interesting observa-

tions and insights as follows. At time t, the optimal rate
depends on the channel state ct through the function fi(T -t)
and this rate is linear in x with slope f(T t) We can view
the quantity fi (T-t) as the "urgency" of transmission at time
t under the channel state ci and with (T -t) time left until
the deadline. This view gives a nice separation form for the
optimal rate:

rate = amount of data left * urgency of transmission

2For numerical evaluation ofthe ODE solution, the two boundary conditions
can be combined by taking a small c > 0, letting fi (c) = c, Vi and then using
an initial-value ODE solver to obtain {f i(s)}, s > e.

0-

b(-t)
I", f (T-t)

1, -t

2 4 6 8 10
time, t

Fig. 4. fb (T -t) and fg (T -t) plot for the bad and the good channel
respectively. Other parameters include, g(r) = r2, T = 10, A = 5,'y 0.3.

Due to the boundary condition, as t approaches T, fi(T -t)
goes to zero; thus, as expected the urgency of transmission,

1 increases as t approaches the deadline. Finally, onefi (T-t)'I
last observation is that if we set A = 0 (no channel variations),
fi (T -t) = t,Vli and r* (x, c, t) = Tx t. Thus, with no
channel variations the optimal policy is to transmit at a rate
that just empties the buffer by the deadline. This observation
is consistent with the earlier results in the literature for non-
fading/time-invariant channels [5], [7], [9]. We refer to this
policy as the "Direct Drain" (DD) policy.

Numerical Example: Consider the Gilbert-Elliott (GE)
channel model with two states "bad" and "good" as described
in Section II-B. Let g(r) = r2 and for simplicity take Abg =
Agb = A. Denoting = Cb/cg, we have, Z(cg) = -, W.P. 1,
and Z(Cb) = 1/-, w.p. 1. Denoting fb(s), fg(s) as the
respective functions in the bad and the good states, we have,

fb (S)

fg (s)

1 + Afb(s) 'YA(fb(s))2
fg (s)

(20)

(21)1 + Afg(s) _A(fg(s))2
-~fb(S)

Figure 4 plots these functions, evaluated using MATLAB, for
T = 10,A = 5,-= 0.3. First, as expected fg(T -t) <
fb (T -t), Vt, which implies that given x units of data in the
buffer and time t, the rate is higher under the goodfg T-t)
state than the bad state. Second, fg(T -t) < T -t < fb(T -t),
where the function, T -t, gives the rate, T t, corresponding
to the direct drain (DD) policy. Thus, the optimal policy both
spreads the data over time and adapts the rate in response
to the time-varying channel condition and this adaptation is
governed by the respective functions {fi (.) }.

The following simulation results compare the performance
of the optimal policy with the direct drain (DD) policy. For the
simulations, we consider the GE channel model with cg = 1,
Cb = and take g(r) = r2. We let, T 10 and partition the
interval [0,10] into slots of length dt 10-3, thus, having
10, 000 time slots. The transmission rate chosen in each slot
is obtained by evaluating the respective policies at the time
corresponding to the start of that slot. A channel sample path
is simulated using a Bernoulli process, where in a slot the
channel transitions with probability Adt and with probability
1-Adt there is no transition. At each transition, the new state is
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Fig. 5. Expected energy cost for the optimal and the DD policy.

c Z(c)c which for the GE model amounts to jumps between
the two states. Expected energy cost is computed by taking an
average over 104 sample paths. Figure 5(a) plots the energy
costs of the two policies as A is varied with a = 0.3, B = 10.
When A is small the channel is essentially time-invariant over
the deadline interval and the two policies are comparable. As
A increases, the optimal cost substantially decreases due to
the channel adaptation. In Figure 5(b), a is varied with A = 5,
B = 10. As ai decreases the good and bad channel quality
differ significantly and the optimal rate adaptation leads to a
much lower energy cost in terms of an order of magnitude as
compared to the DD policy.

Constant Drift Channel: Theorem I gives the optimal
policy for a general Markov channel model. By considering
a special structure on the channel model which we refer to
as the Constant Drift channel, two specialized results can be
obtained. First, we obtain the f(K) function in closed form for
the Monomial class (g(r) = rn), and second, we obtain the
optimal policy for the Exponential class (g(r) = ar 1).

In the constant drift channel model, we assume that the
expected value of the random variable 1/Z(c) is independent
of the channel state, i.e. E[I/Z(c)] = 3, a constant. Thus,
starting in state c, if c denotes the next transition state we
have E [F'=[Z=c)] c = j. This means that if we look
at the process 1/c(t), the expected value of the next state is
a constant multiple of the present state. We refer to /3 as the
"drift" parameter of the channel process. If B > 1, the process
1/c(t) has an upward drift; if 3 = 1, there is no drift and if
/3 < 1, the drift is downwards. There are various situations
where the above model is applicable over the time scale of
the deadline interval. For example, when a mobile device
is moving in the direction of the base station, the channel
has an expected drift towards improving conditions and vice-
versa. Similarly, in case of satellite channels, changing weather
conditions such as cloud cover makes the channel drift towards
worsening conditions and vice-versa. In cases when the time
scale of these drift changes is longer than the packet deadlines,
the constant drift channel serves as an appropriate model.

The next theorem, Theorem II, gives the optimal policy
result for the monomial class of functions while Theorem III
gives the result for the exponential class.

Theorem II. Consider the BT-problem with g(r) = n,
n > 1, n C R and a constant drift channel with drift /3. The
optimal policy, r* (x, c, t), and the function, J(x, c, t), are,

r* (x, c, t) =

J(x,c,t) =

where f(T -t) (MB- 1) (1

x

f(T -t)
,gn

c(f(T -t))n-

-exp(- A(0 1) (T

(22)

(23)

Proof: For the constant drift channel model, the functions
fi (s) are the same for all the channel states. Denoting this
common function as f(s) the ODE equation from Theorem I
becomes f'(s) = I 43 1) f(s). Evaluating this for the
boundary conditions in Theorem I gives the above result. The
details of the proof are omitted for brevity and can be found
in [3]. d

The closed-form expression of f(.) above provides an
interesting intuitive observation related to the parameter /3.
Suppose that the present channel state is c, then for a fixed
r the expected power cost for the next channel state is
(E [z9<] = g(r<3 which is /3 times the present cost, g(r)
This means that for igher values of parameter /3, the channel
on every transition drifts in an expected sense towards higher
expected power cost or worsening conditions and vice-versa as
/3 decreases. Hence, as expected, the urgency of transmission
l/f(t) is an increasing function with respect to /3 since for
large /3 values it becomes more energy efficient to utilize the
present channel conditions. Interestingly, when /3 = 1, the
expected future power cost does not change and in this case
the optimal policy reduces to the direct drain (DD) policy
r* (x, c, t) =Txt. Thus, we see that the direct drain policy is
optimal both under no channel variations and under a constant
drift channel model with /3 = 1.

Theorem III: Consider the BT-problem with g(r) = ar_
1, a > 1 and a constant drift channel with drift /3. The optimal
policy, r* (x, c, t), is the following,

Case 1: /3 > 1,

2xA(0-1)
(r(, c, t) = It +a2ln

T-C0t 21n 1

Case 2: 0 < /3 < 1,

r*(X,c,t)= '
T-t

0 < x
< A(O-1)(T-t)2

21na° (24)

x> X(-1)(T_t)2- 21noa

<x< A(1 3)(T-t)2
21na (25)

A(1-3)(T-t) > A(1-3)(T-t)2 25

21nca x > 21nca

Proof: To obtain the above functions we consider a
discrete approximation of the time interval [0,T] with step
size dt. Using discrete dynamic programming (DP), we obtain
the optimal functions for the discrete system and then take
the limit dt -> 0; the limiting functions given above can be
shown to satisfy the optimality equation in (15). The details
are omitted for brevity and can be found in [3]. U
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Fig. 6. Cumulative curves for (a) BT-problem, (b) Variable deadlines case.

From above, we see that the optimal rate function has all the
properties discussed earlier - it is monotonically increasing in
x, increasing as t approaches the deadline and also increasing
in the drift parameter Q.

IV. VARIABLE DEADLINES SETUP
In the last section, we dealt with a specific case of the energy

minimization problem involving B bits of data and a single
deadline T. We now extend the results to a more general
setup where the data in the queue has variable deadlines.
We adopt a cumulative curves methodology [20] and using
a decomposition of the problem in terms of the BT-problem,
obtain the optimal policy for this setup. As will be evident, the
novel cumulative curves formulation provides a very appealing
and simple visualization of the problem.

A. Problem Setup
Let us first define the following cumulative curves. Define

the Arrival Curve, A(t), as the total number of bits that have
arrived to the queue in time [0, t]; the Departure Curve, D(t),
as the total number of bits that have departed (served) in time
interval [0, t] and the Minimum Departure Curve, Dmin(t),
as the minimum number of bits that must depart by time t
to satisfy the deadline constraints. For example, in the BT-
problem case, we have A(t) = B, t C [0, T] since the queue
has B bits to begin with at time 0 and no more data is
added. We have Dmin(t) = 0, t C [0,T),Dmin(T) = B
since until the deadline t < T there is no minimum data
transmission requirement while at T the entire B bits must
have been transmitted. Finally, the curve D(t) represents
the data departure over time which depends on the chosen
transmission policy. A schematic diagram of this is given in
Figure 6(a).

Consider now the variable deadlines problem. Here, the
queue has M packets that are arranged and served in the
earliest-deadline-first order. Let bj be the number of bits in
the jth packet and Tj be the deadline for this packet; assume
0 < T1 < T2 < ... < TM. There are no new arrivals and the
objective is to obtain a transmission policy that serves this data
over the time-varying channel with minimum expected energy
cost while meeting the deadline constraints. In terms of the
cumulative curves, the setup can be visualized as depicted in
Figure 6(b). Let Bj = 1j b1; where B; is the cumulative

amount of data of the first j packets. Then, A(t) = BM, Vt,
since a total BM bits are in the queue at time 0 and no more
data is added. And, Dmin (t) is a piecewise-constant curve
with jumps at times Tj, i.e. at time Tj, Dmin(§1Tj) = Bj since
the first Bj bits must be transmitted by Tj. Finally, we require
that for admissibility a transmission policy must be such that
the departure curve, D(t), satisfy Dmin(t) < D(t) < A(t);
in other words, data must be served such that the cumulative
amount lies above the minimum departure curve (to satisfy the
deadline constraints) and below the arrival curve (to satisfy the
causality constraints).

B. Optimal Policy

It is evident that a direct solution of the variable deadlines
problem stated in the previous section is fairly difficult due to
the complexity of the multiple deadline constraints involved.
Interestingly, however, the cumulative curves formulation with
its graphical visualization provides an intuitive and natural de-
composition of the problem in terms of multiple BT-problems
which then yields the optimal solution. A visual comparison of
the two diagrams in Figure 6 suggests the following approach.
First, we can visualize the deadline constraints in terms of the
cumulative amounts as {BjTj}m 1 constraints, that is, a total
of Bi bits must be transmitted by deadline Tj (j =1,..., M).
Clearly, each BjTj constraint is like a BT-problem except
that now there are multiple such constraints that all need to
be satisfied. For every time t and channel state c, we know the
optimal transmission rate to meet each of the BjTj constraint
individually (assuming only this constraint existed), thus, to
meet all the constraints a natural solution is to simply choose
the maximum value among the transmission rates evaluated
for all of the BjTj constraints.
More precisely, the transmission policy is described as

follows. Let the system state be denoted as (D, c, t), where
D is the cumulative data that has been transmitted by time
t and c is the corresponding channel state. Using the optimal
rate function in (16), the rate for an individual BjTj constraint
for channel state c, is (T t), since (Bj-D) is the amount
of data left and (Tj -t) is the time left until the deadline Tj.
Let r*(D, c, t) denote the transmission rate, then r* (.) is the
maximum value among the rates for all BjTj constraints for
which (Bj > D,Tj> t).

r* (D, ci,t) max r *(Bj -D,ci,t) (26)
j:(Bj >D,Tj >t)

B;-D
max Bj -t) (27)

Clearly, by construction all the BjTj constraints are satisfied
since at all times we choose the maximum rate among
those needed to meet each of the remaining constraints.
Hence, the policy in (26) is admissible and starting with
D(O) = 0 the departure curve obtained using (26) satisfies
Dmin(t) < D(t) < A(t), t C [0,TM]. Furthermore, the
following theorem also shows that the above policy is in fact
optimal.
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Theorem IV: (Variable Deadlines Case) Consider the vari-
able deadlines problem with g(r) = rn, n > 1,n C R and
the Markov channel model. The optimal policy, r* (D, c, t) for
Dmin(t) < D < A(t), t C [0, TM) is given as,

Bjr* (D, ct,t) max t)D 1,..., (28)
j: (Bj >D,Tj >t) fti( ;t )

The functions {fi (s) }Im 1 are the solution of the ODE system
in (18)-(19) with the boundary conditions fi(0) = 0, f'(0)
1, Vi

Proof: The proof is based on a direct verification that
the above functional form satisfies the HJB equation and the
boundary conditions. It is omitted here for brevity and can be
found in [3]. V

The optimal solution in (28) is based on the BT-solution,
therefore clearly it inherits all the properties of that solu-
tion. As before the functions {ff(s)}}=1 can be obtained
numerically using a standard ODE solver. Furthermore, this
computation needs to be done only once before the system
starts operating and {f i(s)} can be pre-determined and stored
in a table in the transmitter memory. Once {f i(s)} are known,
the online computation is minimal. At time t, the transmitter
simply looks at the cumulative amount of data transmitted
D, the channel state, ci, and then using the appropriate fi(.)
function it computes the maximum among a set of values as
given in (28).

V. PACKET ARRIVALS WITH DEADLINES

The optimal solution to the variable deadlines problem
provides a simple heuristic way to extend the results to a more
general setup involving packet arrivals to the queue. Consider
now an arbitrary stream of packet arrivals to the queue with
each packet having a deadline by which it must depart.
Regardless of the underlying stochastic process generating the
packets, we next present a heuristic energy-efficient policy
based on the variable deadlines solution. We call it the "BT-
Adaptive" (BTA) policy. Later, we present simulation results
comparing the BTA policy with a non-adaptive scheme.

A. BT-Adaptive (BTA) Policy

Consider packet arrivals to the queue and assume that the
arrivals occur at discrete times with each packet having a
deadline associated with it. Clearly, at the instant immediately
following a packet arrival the transmitter queue consists of,
(a) earlier remaining packets with their deadlines and (b) the
new packet with its own deadline. Re-arranging the data in
the queue in the earliest-deadline-first order we can view
the queue as consisting of some amount BM of data with
variable deadlines, identical to the case considered in the last
section. Neglecting the future arrivals and using (28), we have
the optimal policy to empty the transmitter buffer. As this
policy is followed, at the next packet arrival instance the above
procedure is repeated by updating the data amount taking into
account the new packet. Summarizing, the BTA policy is as
follows:

C-o
2co

co)

Q1
7C:

CD
Cl) 1 .

LLi

0 10 25 50
(a) Packet arrival rate

o 20 40
(b) Sample path index

Fig. 7. Energy cost comparison for Poisson arrival process for (a) different
arrival rate, (b) different sample paths.

Transmit the data in the queue with the rate as given in
(28); at every packet arrival instant re-arrange the data in
the earliest-deadline-first order to obtain a new set of BiTi
values including the new packet and its deadline; re-initialize
D to zero andfollow (28) thereafter.

Note that since this policy is not based on a specific arrival
process, an interesting feature of it is that it is robust to
changes in the arrival statistics and can accommodate multiple
deadline classes of packet arrivals to the queue.

B. Simulation Results

In this section, we present simulation results to evaluate
the performance of the BT-Adapative policy. For comparison
purposes we consider a policy that can be easily implemented
in practice and refer to it as the "Head-of-Line Drain" (HLD)
policy. In HLD policy, the data in the queue is arranged in
the earliest-deadline-first order and the packets are served in
that order. At time t, let Ht be the amount of data left in the
head-of-the-line packet and TH be its deadline, then the rate
chosen is rt TH Thus, the transmitter serves the first packet
in queue at a rate to transmit it out by its deadline, then moves
to the next packet in line and so on. At every packet arrival
instant, the data in the queue is re-arranged in the earliest-
deadline-first order and the above policy is repeated with the
new packet taken into account.

The setup is as follows. The queue has packet arrivals
and each packet has a deadline associated with it. On each
simulation run, the total time over which the packets arrive
and the system is operated is taken as L = 10 seconds. This
interval [0, 10] is partitioned into 10, 000 slots, thus each slot
is of duration dt = 1 msec. The channel model is the two
state model, described in Section II-B, with the parameters,
Cg = 1, Cb = 0.2, Abg = Agb = A = 50. Thus, the average
time spent in a state before the channel transitions is 1/50
seconds, or 20 msec. A channel sample path is simulated using
a Bernoulli process where in a slot the channel transitions with
probability Adt; otherwise there is no transition. For simplicity,
the packet arrival and the channel state transitions occur only
at the slot boundaries. For both the BTA and the HLD policies,
the rate chosen in a slot is obtained by evaluating the respective
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Fig. 8. Energy cost versus packet deadline for Poisson arrival process.

policies at the time corresponding to the start of that slot. We
take g(r) = r2, with appropriate units that have been omitted.
Energy cost per slot is r dt and the total expected energy cost
is obtained as an average of the total cost over sample runs.
We first consider a Poisson packet arrival process with each

packet having 1 unit of data and a deadline of 200 msec.
Figure 7(a) is a plot of the expected energy cost, plotted on
a log scale, versus the packet arrival rate. Note that a packet
arrival rate of 10 implies that the average inter-arrival time of
a packet is 1/10 sec. or 100 msec. As is evident from the plot,
the BTA policy has a much lower energy cost compared to the
HLD policy and as the arrival rate increases the two costs are
roughly an order of magnitude apart. This can be intuitively
explained as follows. When the arrival rate is low, most of
the time the queue has at most a single packet. Hence, both
policies choose a rate based on the head-of-line packet with
the BTA policy also adapting the rate with the channel state.
As the arrival rate increases and due to the bursty nature of
the Poisson process, the queue tends to have more packets.
The BTA policy then adapts based on the channel and the
deadlines of all the packets in the queue, whereas, the HLD
policy chooses a rate based solely on the head-of-line packet.
The energy efficiency of the BTA policy is not just in an
average sense but even on individual sample paths. This is
shown in Figure 7(b) for 50 sample paths for arrival rate 10.

In Figure 8, the packet arrival process is Poisson with rate
10 but now the packet deadline is varied. Clearly, as seen in
the figure, the energy cost decreases as the packet deadline
increases since lower transmission rates are required to meet
the deadlines. Also, as the deadline increases the energy cost
difference between the BTA and the HLD policy increases.
This is because with a larger delay constraint there is more
room for the adaptive techniques employed in the BTA policy
to have a larger effect.

In Figure 9, we consider a Uniform packet arrival process
where now the inter-arrival time between packets is uniformly
distributed between 50 and 150 msec. The deadline for each
packet is taken as 200 msec while the packet size is varied.
First, as expected the energy cost for both the policies in-
creases with packet size and second, as before the BTA policy
has a much less energy cost compared with the HLD policy
even when the arrival process is less bursty as compared to

Fig. 9. Energy cost versus packet size for Uniform arrival process.

the Poisson process.

VI. CONCLUSION

We considered transmission of delay-constrained data over
time-varying channels with the objective of minimizing the
total transmission energy expenditure. We adopted a novel ap-
proach based on a continuous-time formulation and stochastic
control theory to obtain optimal solutions for an otherwise
difficult set of problems. We first considered the problem
of transmitting B bits of data by deadline T and obtained
the optimal rate adaptation policy. Using a cumulative curves
methodology and a decomposition approach, we then obtained
the optimal solution when the data in the queue has variable
deadline constraints. Finally, we presented an energy-efficient
transmission policy for arbitrary packet arrival process and
compared its performance through simulations. We believe
that the framework of this paper holds promise for various
extensions addressing QoS-constrained data transmission in
wireless systems. Some of the natural extensions include a
network model with multiple transmitter-receiver pairs and
multi-hop transmissions with end-to-end delay constraints.
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