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Abstract— In this paper, we study multi-hop wireless net-
works with general interference models, and describe a prac-
tical randomized routing-scheduling-congestion-control mecha-
nism that is guaranteed to fully utilize the network capacity, and
achieve fair allocation of the resources. Using the framework
described in this paper, low complexity distributed algorithms
can be developed for a large class of interference models and
fairness criteria (such as proportional and max-min fairness).
Earlier distributed algorithms proposed in this context have
been highly interference model dependent, and can guarantee
at most 50% utilization of the achievable throughput. This is
the first work that assures 100% utilization and also provides
fair allocation in multi-hop wireless networks.

I. INTRODUCTION

The control of data networks to achieve high throughput
and fair allocation of the resources among competing users
(or flows) is clearly one of the most important problems in
data communications. There has been considerable interest
and progress in the development of algorithms that address
the issues of efficiency and fairness for both wireline and
wireless networks.

In the case of fixed arrival rates (i.e. inelastic traffic),
Tassiulas and Ephremides provided in their seminal work
[25] a joint routing-scheduling algorithm that can achieve
the highest throughput without violating the stability of the
network. Such throughput-optimal policies make dynamic
routing and scheduling decisions to avoid highly congested
nodes. For wireline networks, these policies can be imple-
mented in a distributed fashion by using buffer occupancy
information of only the neighboring nodes. In contrast, in
wireless multi-hop networks, there is no known scheme for
low complexity implementation of throughput-optimal poli-
cies. Many other throughput-optimal algorithms developed
later share the same weakness [1, 21, 19, 9].

It is well-recognized that reducing the complexity of
the centralized computation is an essential requirement for
the development and implementation of throughput-optimal
policies. For the case of switches, Tassiulas has shown how
the use of randomized algorithms can reduce the complex-
ity of the centralized computation [24]. One of the main
contributions of our work is to extend the use of random-
ized algorithms for potential distributed implementation of
routing and scheduling in the context of multi-hop wireless
networks.

The issue of fair service of elastic traffic, where the rate
of an elastic flow is assumed to be controllable, is first
considered by Kelly et al. [11, 12] in the context of wireline
networks. The authors developed de-centralized algorithms
that have strong ties to notions in market economics. The
main idea behind these algorithms was for each source to
measure the congestion level it experiences and to adjust
its flow rate accordingly with its utility function in order to
fully utilize the resources. These ideas have been extended
to different scenarios and algorithms (e.g. [15], see [22] for
a review). However, all of these works were developed for
wireline networks, assumed fixed routes, and ignored the
stochastic nature of the traffic.

More recently, it has been realized that ideas of flow
control can be successfully utilized together with the dy-
namic routing and scheduling algorithm described above
[13, 23, 7, 18, 8]. It has been shown that mean rates
arbitrarily close to the fair allocation can be achieved with-
out violating stability. However, the routing and scheduling
part of the algorithm inherited the centralized optimization
problem of [25], which is impractical to solve for multi-hop
wireless networks.

The design and analysis of distributed implementations
of the above cross-layer approach attracted a lot of atten-
tion from the community. In particular, [14, 27] provided
algorithms that guarantee 50% utilization of the stability
region for node-exclusive-spectrum-sharing (NESS) interfer-
ence model, where each feasible allocation forms a match-
ing1 of the graph. It has been shown in [3] that 33% can
be guaranteed even when the algorithm operates in a totally
asynchronous manner (see [2] for a definition). Distributed
implementations exist for this particular interference model
if a significant portion of the capacity is sacrificed. For
other general interference models, it has been shown that
the amount of sacrifice is even greater. For example, [28]
and [4] consider the two-hop interference model2 and show
that the guaranteed fraction of the capacity region drops with
the increasing number of neighbors. In particular, for a grid
topology, only 12.5% of the capacity region is achieved,
which is very discouraging.

1In a matching, no two links that are incident on the same node can be
active simultaneously.

2In the two-hop interference model, a transmission over a link (n, m) is
successful if and only if all the neighbors of n and m are silent at the time.
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Our main contributions in this work are listed next.
• By extending the approach in [24] to the multi-hop wireless
network scenario, we prove that the capacity region of the
network can be fully utilized with a practical scheduling-
routing algorithm. Thus, no fraction of the throughput need
to be sacrificed for a practical implementation.
• In the case of elastic traffic, we propose a cross-layer
mechanism that is composed of a decentralized congestion
controller operating in parallel with the practical scheduling-
routing algorithm discussed in the previous item. We prove
that this mechanism asymptotically achieves fair division of
the resources across the flows.
• All of our analysis considers a generic interference model
that can be applied to a large set of graph theoretic collision
models considered in the literature.

It is important to note that the proposed mechanism can
be implemented with low complexity distributed algorithms
for specific interference models of practical interest (see [6]).

The rest of the paper is organized as follows. In Section II,
we describe the system model. Then, in Section III, we
describe the practical algorithm and show its throughput-
optimality. Section IV introduces the congestion control
mechanism for elastic traffic and establishes its fair charac-
teristics. We provide our concluding remarks in Section V,
and some of the proofs in the Appendix.

II. SYSTEM MODEL

Consider a fixed wireless network that is represented by a
graph G = (N ,L), where N denotes the set of fixed nodes
and L denotes the set of undirected links. We assume a
time slotted system with synchronized nodes, where each
slot is just long enough to accommodate a single packet
transmission. Suppose there is a set F of end-to-end flows
traversing the network, where each flow f ∈ F is given by
the node pair (s(f), d(f)). Here, s(f) denotes the source
node of flow f and d(f) denotes the destination node. We
allow for multiple routes between each source-destination
pair. We consider both the inelastic and elastic traffic cases.

Associated with each destination a buffer is maintained at
each node. We let qn,d[t] denote the length of the queue at
node n keeping packets destined for node d at the beginning
of slot t.

Definition 1 (Stability). A given queue is called stable if
E[qn,d[∞]] < ∞, where qn,d[∞] denotes the random variable
with distribution given by the steady-state distribution of
{qn,d[t]}. The network is stable if all queues are stable; and
unstable otherwise.

We consider a general interference model formulation that
contains all of the graph theoretic collision models consid-
ered in the context of scheduling (e.g. NESS [20, 14, 27, 3],
or two-hop interference models [28, 4]). We say that two
links interfere if their concurrent transmissions collide, and
assume that if two interfering links are activated in a slot,
both of the transmissions fail. We use I(l) ⊂ L to denote
the set of links that interfere with link l. Typically, this set
will contain links from the local neighborhood of l. As an

example, the matching constraint of the NESS model implies
that for link l = (n,m), I(l) := {l′ ∈ L : l′ ∈ i(n) or l′ ∈
i(m)}, where i(n) denotes the set of links that are incident
to node n. We will prove our results for the general model.

We use π =
{
π(n,m)

}
(n,m)∈L to denote a link activation

(or allocation) vector, and Π denote the feasible set of
allocations that complies with the interference constraints.
An allocation is feasible if and only if no two links in the
set interfere with each other. As an example, for the NESS
interference model, Π corresponds to the set of matchings of
G. We introduce the notation πd

(n,m) to distinguish packets
destined for different nodes: at any given slot, πd

(n,m)[t] ∈
{0, 1} is 1 if link (n,m) serves a packet destined for node
d in that slot, and 0 otherwise. Notice that π(n,m)[t] =∑

d∈N πd
(n,m)[t], for all t. Also note that it is sufficient to

restrict our attention to policies that sets πd
(n,m)[t] to zero

whenever qn,d[t] = 0, for all (n,m) ∈ L, because any
other policy that sets πd

(n,m)[t] = 1 when qn,d[t] = 0 can
be replaced by a policy with πd

(n,m)[t] = 0 without affecting
the evolution of the queue-lengths. Then, we can write the
evolution of a particular queue, say qn,d, as
qn,d[t + 1] =

(qn,d[t] − πd
out(n)[t] +

∑
f∈Sn,d

xf [t] + πd
into(n)[t]), (1)

where xf [t] is the number of exogenous flow-f arrivals to the
network in slot t, and Sn,d � {f ∈ F : s(f) = n, d(f) = d}
denotes the set of flows that start at node n and are destined
to node d. Also, πd

into(n)[t] �
∑

k:(k,n)∈L πd
(k,n)[t] is a

shorthand for the number of packets entering node n that
are destined for node d. Similarly, πd

out(n)[t] is the number
of packets leaving node n and are destined for node d. We
set qd,d[t] = 0 ∀t.

Definition 2 (Capacity (Stability) Region). Let
G = (N ,L) be a given network and Π be the set of
feasible allocations. The capacity (or stability) region Λ of
the network is given by the set of vectors r = (rf )f∈F for
which there exists π

d(f)
(n,m) ≥ 0, for all (n,m) ∈ L and f ∈ F ,

such that both the flow conservation constraints at the nodes
and the feasibility constraints are satisfied, as given below:

(C1) For all n ∈ N and f ∈ F , we have3

rf1s(f)=n +
∑

k:(k,n)∈L
π

d(f)
(k,n) =

∑
m:(n,m)∈L

π
d(f)
(n,m),

(C2)
[
π(n,m)

]
(n,m)∈L ∈ Conv(Π). 4

It is shown in [25, 19] that Λ is the set of mean arrival rates
for which there exists a policy that stabilizes the network.

III. STABILITY FOR INELASTIC TRAFFIC

The focus of this section is throughput-optimality under
stability for the inelastic traffic scenario. We provide simple

3We use 1A as the indicator function of event A.
4Conv(A) denotes the convex hull of set A, which is the smallest convex

set that includes A. The convex hull is included due to the possibility of
timesharing between feasible allocations.
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routing-scheduling mechanisms that can support any mean
arrival rate in the capacity region without violating stability
(such mechanisms are said to be throughput-optimal [25,
21, 19, 7]). In earlier work [24], Tassiulas used randomized
schemes to provide a low complexity stabilizing algorithm
for switches using a centralized controller. In this section,
we will extend the use of randomized throughput-optimal
schemes for multi-hop networks with general interference
models. In particular, we show that practical algorithms sat-
isfying several simple conditions can be designed to achieve
full utilization of the capacity of multi-hop wireless networks
with general interference models.

To this end, we introduce the following notation for link
weights: w(n,m)[t] = w(m,n)[t] � maxd |qn,d[t] − qm,d[t]| .
This is also referred to as the differential backlog5 over link
(n,m) and can be interpreted as a measure of the importance
of the link. Consider the following allocation vector

�
πw [t] ∈ arg max

π∈Π

∑
l∈L

wl[t]πl ≡ arg max
π∈Π

(w[t] · π). (2)

This allocation rule is called the back-pressure policy. Once
the

�
πw is determined according to (2), only the commodity

that maximizes the differential backlog over link (n, m)
is served over that link at the chosen rate. If the back-
pressure policy is applied at every time slot, it is known
to be throughput-optimal. However, it requires a centralized
controller that knows w[t] at every time-slot, and also
communicates the allocation vector

�
πw [t] instantly to all

the nodes of the network. These requirements make the
implementation of this algorithm impractical for the multi-
hop wireless network scenario.

The idea is to use a random algorithm, instead of the op-
timal one described in (2), which yields a feasible allocation
π̃[t] ∈ Π at every time slot, which is not necessarily equal to
�
πw [t], but has a positive probability δ > 0 of being equal
to

�
πw [t]. Thus, we have

P (π̃[t] =
�
πw [t]) ≥ δ, for all w[t] and t. (3)

Once the allocation π̃[t] is chosen, the actual allocation π[t]
is determined according to the following evolution.

π[t + 1] =
{

π[t] if w[t] · π[t] ≥ w[t] · π̃[t]
π̃[t] otherwise

(4)

The above randomized algorithm was introduced in [24]
in the context of switches, where there exists a centralized
scheduler. A similar approach has been used in developing a
distributed implementation for networks restricted to single-
hop communication with matching constraints and Bernoulli
arrival processes [17]. As we will prove shortly, it turns out
that the two conditions (3) and (4) are sufficient to achieve
throughput-optimality in a more general setting.

The algorithm updates its allocation vector only if the pro-
posed allocation of the randomized algorithm yields a better
objective function. Such an algorithm can be divided into two

5This definition of differential-backlog is slightly different from the ones
in the literature, which is due to the assumption of undirected links here.

parts: PICK and COMPARE, where PICK chooses a feasible
schedule π̃[t] satisfying (3), and COMPARE communicates
the relevant weight information to other nodes in the network
to perform (4). Distributed implementations of both PICK

and COMPARE can be developed for a given interference
model (see [6] for an example).

Theorem 1. Assume that xf [t] is independent and identi-
cally distributed (i.i.d.) 6 for all t and f with E[x2

f [1]] ≤ A <
∞. Then, for any mean arrival vector λ := (E[xf [1]])f ∈
interior(Λ), the above randomized policy is stabilizing.

Proof: We start by noting that y[t] � (q[t], π[t]) forms
a Markov Chain. Then, we study the mean drift of the
following Lyapunov function of the state y = (q, π) :

V (y) =
∑
n∈N

∑
d∈N

q2
n,d +

(∑
l∈L

wl((
�
πw)l − πl)

)2

= q · q︸︷︷︸
�V1(y)

+(w · (�
πw −π))2︸ ︷︷ ︸

�V2(y)

(5)

The proof uses the following two key lemmas the proofs of
which are moved to Appendix A and B.

Lemma 1. Let ∆1(y[t]) � E[V1(y[t + 1])− V1(y[t]) |y[t]],
then for some γ > 0 and c1 < ∞, we have

∆1(y[t]) ≤ −γ
√

V1(y[t]) + 2
√

V2(y[t]) + c1.

Lemma 2. Let ∆2(y[t]) � E[V2(y[t + 1])− V2(y[t]) | y[t]],
then for some δ > 0 and c2, c3 < ∞, we have

∆2(y[t]) ≤ −δV2(y[t]) + c2

√
V2(y[t]) + c3.

Proof of Theorem 1 (Continued): Combining these lemmas,
we upper-bound ∆(y[t]) � E[V (y[t + 1]) − V (y[t]) | y[t]]
by

−γ
√

V1(y[t]) − δV2(y[t]) + (2 + c2)
√

V2(y[t]) + c1 + c3.

Thus, if we consider the scenario where V (y[t]) ≥ B for a
sufficiently large B < ∞, then we can guarantee that

∆(y[t]) ≤ −ε
√

V1(y[t]) + B̂, (6)

for some ε > 0 and B̂ < ∞. This is true because in this
scenario, since we have V1(y[t]) ≥ B − V2(y[t]), we can
write

E[V (y[t + 1]) | y[t]] ≤ V (y[t]) − γ
2

√
V1(y[t])

−γ
2

√
B − V2(y[t]) − δV2(y[t])(7)

+(2 + c2)
√

V2(y[t]) + c1 + c3.(8)

Notice that the sum of the expressions in (7) and (8) can be
made negative by choosing B large enough. Hence (6) holds
when we let ε = γ/2 and choose B̂ large enough.

The proof of positive recurrence of the chain follows from
Foster’s Criteria (cf. [22] or [16]). Let us use y[∞] to denote
the random variable to which {y[t]}t converges. Due to
the f -ergodic theorem of [16], the drift condition of (6)

6The assumption of i.i.d. arrivals is not critical to the analysis. The same
results continue to hold for processes with mild ergodicity properties ([10]).
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is equivalent to E[
√

V1(y[∞]] < ∞. Invoking the definition
of V1(·) results in the intended stability result.

Theorem 1 shows that under very mild conditions, if a
randomized scheduler can be found that satisfies (3), and
the control in (4) can be performed, then the stability will
be achieved for any stabilizable incoming traffic.

IV. FAIR SERVICE OF ELASTIC TRAFFIC

In the previous section, we proved the throughput opti-
mality of a randomized scheme for inelastic traffic, provided
that the exogenous arrival rates are stabilizable. Thus, with
that scheme, even if stability is achieved for a given mean
arrival vector, the system may be seriously underutilized.
Ideally, it would be desired to know the stability region of
the network and choose the arrival rates to fully utilize the
network resources. However, as noted in [26], the task of
determining whether a given set of arrival rates is in the
characterized stability region becomes an intractable problem
as the network size grows.

In this section, we extend the throughput-optimal algo-
rithm so that the available capacity of the network is fully
utilized and fairly shared among the flows in a completely
decentralized and dynamic fashion without the need to
explicitly characterize the stability region. To that end, we
change the considered traffic model from inelastic to elastic,
where in the latter case the mean arrival rates of the sources
can be modified.

To define fairness, as is standard in the recent literature
(e.g. [11, 12, 15, 22, 7, 18, 13]), we use a utility function,
Uf (·), of mean arrival rates that is a measure of flow f ’s
preferences. Throughout, we will assume that this function
is concave and non-decreasing. We call the allocation, x�,
that satisfies

x� ∈ arg max
x∈Λ

∑
f∈F

Uf (xf ) (9)

the fair allocation. Notice that this is the allocation that
maximizes the aggregate utility of the network. It is known
that by defining Uf (·) appropriately different fairness criteria
of interest, such as proportional or max-min fairness, can be
achieved (see [22] for an extensive review).

Next, we describe the so called Dual Congestion Control
mechanism that is implemented at the source of each flow in
a completely decentralized fashion. Variations of this mech-
anism are studied recently in the literature [7, 18, 14, 23].

DUAL CONGESTION CONTROL MECHANISM: Assume
that every flow has access to the its entry point queue-length
information, i.e. flow f knows qb(f),e(f)[t] for all t. Then,
at the beginning of each time slot t, flow f generates xf [t]
packets satisfying

xf [t] = min
{

U ′−1
f

(
qb(f),e(f)[t]

K

)
,M

}
, (10)

where M and K are positive scalars. �
The policy is easy to implement at each source because

it only requires the queue length of the buffer at the source,
and the individual utility function of the flow. Note that

the only common information required at all the sources
is K. Once K is determined, the flow control mechanism
can operate in a completely decentralized fashion in parallel
with the randomized routing-scheduling algorithm described
in Section III.

Theorem 2. For some finite constants C1, C2 we have∑
n∈N

∑
d∈N

qn,d ≤ C1K (11)

∑
f∈F

Uf (x̄f ) ≥
∑
f∈F

Uf (x�
f ) − C2

K
(12)

where x̄f � lim
T→∞

1
T

T−1∑
t=0

E[xf [t]], and similarly for qn,d.

Proof: We start by introducing a relaxed version of the
optimization problem (9): for any ε > 0, let

x�(ε) ∈ arg max
x∈Λ(ε)

∑
f

Uf (xf ),

where Λ(ε) = {x ∈ Λ : [xf + ε]f ∈ Λ}. Λ(ε) is a subset of
the capacity region Λ with an ε-strip of its positive surface is
deleted. It is not difficult to see that x�(ε) → x� as ε → 0.

We use the same Lyapunov functions V (y), V1(y) and
V2(y) introduced in Section III (c.f. (5)) to prove the theo-
rem. The following theorem studies the single-step mean drift
of V1(y). The proof of this lemma is provided in Appendix
C.

Lemma 3. For some constants ε > 0, c1 < ∞,

∆1(y[t]) ≤ −ε
∑
n,d

qn,d[t] + 2K
∑

f

E[Uf (xf [t]) | y[t]]

−2K
∑

f

Uf (x�
f (ε)) − ε

|N |2
√

V1(y[t]) + 2
√

V2(y[t]) + c1

Proof of Theorem 2 (Continued): In what follows, we
will omit [t] for convenience. By combining the result of
Lemma 3 with that of Lemma 2, we can write: ∆(y[t])

≤ −ε
∑
n,d

qn,d + 2K
∑

f

Uf (xf )

−2KE[
∑

f

Uf (x�
f (ε)) | y] + c1 + c3

−ε

√
V1(y)
|N |2 − δV2(y) + (2 + c2)

√
V2(y) (13)

(a)

≤ c4 − ε
∑
n,d

qn,d + 2K{
∑

f

E[Uf (xf )|y] −
∑

f

Uf (x�
f (ε))}

where the inequality (a) follows from the fact that (13) is
upper-bounded as argued in the proof of Theorem 1.

By taking expectations of both sides of the last inequality
and summing over t = 0, 1, · · · , T − 1, we get

E[V (y[T ]) − V (y[0])] ≤ Tc4 − ε
T−1∑
t=0

∑
n,d

E[qn,d[t]]

+2K
T−1∑
t=0

∑
f

E[Uf (xf [t])] − 2KT
∑

f

Uf (x�
f (ε)). (14)
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Since V (y) ≥ 0 for all y, we can re-arrange the terms in
(14) to obtain the following inequality.

1
T

T−1∑
t=0

∑
n,d

E[qn,d[t]] ≤ V (y[0])
εT

+
c4 + 2M |F|K

ε
.

The proof of (11) is complete when we let T → ∞, and
define C1 � 2M |F|

ε .
If, on the other hand, we re-arrange the terms in (14)

differently, we can get

1
T

T−1∑
t=0

∑
f

E[Uf (xf [t])] ≥
∑

f

Uf (x�
f (ε)) − V (y[0])

2KT
− c4

2K
.

Hence, the proof of (12) is complete when we use Jensen’s
inequality to write Uf (x̄f ) ≥ 1

T

∑T−1
t=0 E[Uf (xf [t])], and

define C2 � c4
2 .

V. CONCLUSIONS

In this work, we provided a framework for the design
of practical cross-layer algorithms for multi-hop wireless
networks that are throughput-optimal and fair. Previously
proposed low complexity implementations for multi-hop
wireless networks have been greedy in nature. Despite their
ease of implementation, such policies have been shown in
recent works to have poor throughput performance. The
greatest weakness of greedy policies is their lack of memory.
In this work, we considered the generalization of a practical
randomized policy first introduced in [24] for switches to
multi-hop networks. We proved that with the use of a small
memory unit at the nodes, this policy achieves 100% of the
available capacity of the network. We also considered the
case of elastic flows and provided a decentralized congestion
control algorithm that works in parallel with the randomized
algorithm. We showed that the resulting cross-layer algo-
rithm allocates resources fairly across users.

We note that the extra overhead that will appear in our
randomized algorithm can be reduced at the expense of
larger delay, but without sacrificing from throughput. Also,
our initial findings suggest that the additional complexity is
comparable to the complexity of the greedy policies. In our
companion paper [6], we show that the development and
analysis of low complexity, distributed PICK and COMPARE

algorithms (as described in Section III) for the two-hop
interference model.

APPENDIX

A. Proof of Lemma 1:

Proof: We start by arranging the terms of ∆1(y[t]).

∆1(y[t]) = E[(q[t + 1] − q[t]) · (q[t + 1] + q[t]) | y[t]]
(a)

≤ c1 + 2
∑
n,d

qn,d[t](λn,d+
�
π

d

into(n) [t]− �
π

d

out(n) [t]) (15)

+2
∑
n,d

qn,d[t](πd
into(n)[t] − πd

out(n)[t]

− �
π

d

into(n) [t]+
�
π

d

out(n) [t]), (16)

where inequality (a) is due to the fact that E[x2
f [t]] ≤ A, and

that πd
into(n)[t] and πd

out(n)[t] are both upper-bounded by the
maximum degree of G. In (15) and (16), the optimal alloca-
tion

�
πw is added and subtracted. For notational convenience,

we use λn,d �
∑

f∈Sn,d
λf . Also,

�
π

d

into(n) and
�
π

d

out(n) are
defined similarly to πd

into(n) and πd
out(n).

Since the arrival rate vector λ is known to be within the
stability region Λ, we can upper-bound the second expression
in (15) by −γ

√
V1(y[t] (e.g. see [5]). Next, notice that

(16) = 2w[t] · (�
πw [t] − π[t]) ≤ 2

√
V2(y[t]).

Combination of these results yields the proof.

B. Proof of Lemma 2:

Proof: We start by analyzing the conditional expecta-
tion

E[V2(y[t + 1]) | y[t]] ≤ (1 − δ)E[(w[t + 1]

·(�
πw [t + 1] − π[t + 1]))2 | y[t], π[t + 1] 
=�

πw [t + 1]].

Next, we write the evolution of the weight vector w[t] as
w[t + 1] = w[t] + r[t] − z[t], where r[t] denotes the vector
of packets entering the queues and z[t] is the vector of
packets leaving the queues. We can describe these vectors
more precisely, but this is not necessary for the proof. The
only important factor is the boundedness of them. Now, we
can write E[V2(y[t + 1]) | y[t]]

≤ (1 − δ)E[(w[t] · (�
πw [t + 1] − π[t + 1]) (17)

+(
�
πw [t + 1] − π[t + 1])

·(r[t] − z[t]))2 | y[t], π[t + 1] 
=�
πw [t + 1]](18)

It is not difficult to upper-bound the expression in (18) with
a finite constant. To bound (17), we make two observations:

(i) w[t]· �
πw [t + 1] ≤ w[t]· �

πw [t] due to the definition
of the optimal allocation vector

�
πw in (2).

(ii) w[t] · π[t + 1] ≥ w[t] · π[t] due to the update rule (3)
of the randomized algorithm.

By combining these observations, we can find constants
c2, c3 < ∞ that satisfy

E[V2(y[t + 1]) | y[t]] ≤ (1 − δ)V2(y[t]) + c2

√
V2(y[t]) + c3,

which completes the proof.

C. Proof of Lemma 3:

Proof: The proof starts with the following upper bound
on ∆1(y[t]) (cf. (15) and (16)):
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∆1(y[t])

≤ c1 + 2
√

V2(y[t]) + 2
∑
n,d

E[qn,d[t]
∑

f∈Sn,d

xf [t] | y[t]]

−2
∑

(n,m)∈L

∑
d

πd
(n,m)[t](qn,d[t] − qm,d[t])

= c1 + 2
√

V2(y[t]) + 2
∑

f

KE[Uf (xf [t]) | y[t]]

−2
∑

f

E[KUf (xf [t]) − qb(f),e(f)xf [t] | y[t]] (19)

−2
∑

(n,m)∈L

∑
d

πd
(n,m)[t](qn,d[t] − qm,d[t]), (20)

where we get the last equality by adding and subtracting
2K

∑
f E[Uf (xf [t]) | y[t]], and by noting that∑
n,d

qn,d[t](
∑

f∈Sn,d

xf [t]) =
∑

f

qb(f),e(f)[t]xf [t].

Notice that the Dual Congestion Control mechanism is
designed to optimize the expression in (19), and the Back-
pressure Policy is designed to optimize (20). Bounds to
these expressions are obtained in [18], which are reproduced
below.∑

f

E[KUf (xf [t]) − qb(f),e(f)xf [t] | y[t]]

≥ K
∑

f

Uf (x�
f (ε)) −

∑
f

qb(f),e(f)[t]x�
f (ε)

∑
(n,m)∈L

∑
d

πd
(n,m)[t](qn,d[t] − qm,d[t]) ≥

∑
n,d

qn,d[t](x�
f (ε) + ε).

The first inequality is straight-forward since x�(ε) is an
element of the set of feasible rate vectors (i.e. vectors in
[0,M ]|F|) over which the Congestion Controller of (10) max-
imizes the the expression on the left. The second inequality
follows from the fact that x�(ε) = (xf (ε))f is at least ε
away from the boundary of Λ for all f .

By canceling common terms, we obtain

∆1(y[t]) ≤ −2ε
∑
n,d

qn,d[t] + 2K
∑

f

E[Uf (xf [t]) | y[t]]

−2K
∑

f

Uf (x�
f (ε)) + 2

√
V2(y[t]) + c1.

Finally, we use the following lower bound
∑

n,d qn,d[t] ≥√
V1(y[t])

|N |2 , which, when substituted into the previous expres-
sion, yields the statement of the lemma.
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