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Abstract

We consider optimal rate control for delay constrained data transmission, over time varying channels, with the
objective of minimizing the transmission energy expenditure. Energy efficiency is achieved by spreading the data
transmission over time to exploit the convexity of the power-rate functions and further, by opportunistically adapting
the transmission rate to the channel variations. Our system model consists of a buffer withB units of data that must
be transmitted by a finite deadlineT with minimum energy over a time-varying channel. Using a continuous-time
stochastic control formulation, we obtain simple closed form expressions for the optimal transmission rate that
minimizes the energy expenditure and meets the deadline constraint. Finally, simulation results compare the gains
achieved by the optimal rate adaptation with non-adaptive policies.

Index Terms
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I. I NTRODUCTION

Energy efficiency is an important concern in the design of wireless systems and is an active area of
research in wireless data, ad-hoc and sensor networks. As transmission energy constitutes a significant
part of the energy cost, minimizing this expenditure can lead to significant energy savings. Furthermore,
with maximum delay constraints on the data, a transmission policy must also ensure that these delay
requirements are satisfied. There are numerous practical scenarios that involve an optimization with the
above objectives. For example, in wireless data systems, applications such as Voice over IP (VoIP),
video and multimedia streaming, delay constrained file transfers etc. generate data that have strict delay
constraints and must be transmitted over a time-varying channel. As energy is limited on mobile devices,
this data must be transmitted in an energy efficient manner. Similarly, in sensor networks, time critical
sensing applications require that the collected data must be transmitted back to a central entity within
a specific time duration. Clearly, minimizing the energy cost here directly translates into an increased
lifetime of the sensor.

Our focus in this work is to employ adaptive rate control, subject to deadline constraints, to minimize
transmission energy costs. We consider a transmitter, such as those deployed in the 1xEV-DO system
[7], whose transmission rate can be controlled over time. With rate control energy efficiency can be
achieved in the following two ways. First, for many coding schemes its well known that transmitting data
at a low rate and over a longer duration has less energy cost as compared to a high rate transmission;
which means that spreading the data transmission over time is energy efficient. Mathematically, the above
observation translates into a convex dependence of power on the transmission rate and such a model has
been widely studied in the literature [1]–[3], [5]. Second, the wireless channel is time-varying and clearly
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its more energy efficient to transmit under good channel conditions. Using channel estimation, one can
opportunistically exploit these variations by adapting the transmission rate over the channel states.

Rate control has been studied earlier in various other contexts that involve average throughput [8],
[9], average delay [1], [10] and packet loss probability [11]. These metrics are measured over an infinite
time horizon and do not directly translate into any Quality of Service (QoS) guarantees over a finite
time interval. Incorporating strict deadlines on the data and considering a finite-time horizon optimization
makes the problem challenging. Recent work in this direction includes [2]–[6]. The work in [2] and its
various extensions studied offline formulations under non-causal knowledge of future channel states; they
presented an iterative algorithm that eventually converges to the offline optimal solution. The authors in [3]
considered a problem that involved a fixed amount of data to be transmitted by a deadline with minimum
energy and presented a numerical dynamic programming solution. The works in [4]–[6] considered a
time-invariant channel formulation and in particular our earlier work in [4] used a calculus approach to
obtain minimum energy transmission policies with general arrival curves and QoS constraints.

A common approach towards formulating dynamic control problems is based on applying discrete
dynamic programming (DP). However, it can be easily seen that the problem we consider is mathematically
intractable to solve in closed form using discrete DP. Any numerical solution would be computationally
intensive due to the large state space and would not provide much insights into the problem. Hence, we
adopt a different approach based on a continuous time formulation, the results of which are summarized
below.

Results Summary: We consider the problem of transmittingB units of data by deadlineT over a time-
varying channel. The channel state evolution is modelled as a general Markov stochastic process and the
power-rate functions are taken as the class of monomial functions. Using a continuous-time formulation,
we obtain closed form expressions for the optimal transmission rate as a function of the present time,
the data left in the queue and the present channel state. These results are presented in Theorems I and
II. As an example, we then consider the Gilbert-Elliott channel model and present simulation results that
provide comparisons of the energy costs and the gains achieved using optimal rate adaptation. Finally, in
Section V we conclude the paper pointing out various avenues for future extensions.

II. SYSTEM MODEL

A. Transmission Model

As discussed in the introduction, we consider transmission schemes where the rate can be controlled
over time. Such control can be achieved in various ways by changing the channel encoding, the modulation
scheme or the symbol duration. Maintaining a constant bit error probability, changing the transmission rate
requires changing the transmission power over time. The exact power-rate relationship that we consider
in this work is given below in (1). To motivate such a dependence, we briefly describe the physical layer
assumptions in the context of the widely used block transmission model [1].

Consider a block transmission model with flat-fading and an additive white Gaussian noise channel.
Data is transmitted in block codes of sizeN , whereN is the number of channel symbols transmitted per
block. TakingN À 1, one can achieve reliable communication at some rater by varying the transmission
power over each such block. For many practical systems,N is of the order of a few1000 and the
transmission duration of a block is of the order of1 msec, [7]. In comparison, the delay requirements
on the arriving packets are usually of the order of100’s of msec; for example, VoIP packets have delay
requirements around150−200 msec. Under such scenarios, one can view the transmission block durations
as negligible in comparison to the time scales of interest, thus, making a continuous time rate control
model appropriate for the system.

To obtain the power-rate relationship we proceed as follows. Letht denote the channel gain,Pt the
transmitted signal power andP r

t the received signal power at timet. Now, with most encoding schemes
the reliable rate of communication,rt, is a concave function of the received signal power. Inverting this



relationship, it implies that the required received signal power to achieve a certain rate is convex in the
rate, i.e.P r

t = g(rt), whereg(.) is a non-negative convex increasing function forrt ≥ 0. Since the received
signal power is given asP r

t = |ht|2Pt, the required transmission power to achieve ratert is given by,

Pt =
g(rt)

c(t)
(1)

wherec(t)M
=|ht|2. The quantityc(t) will be referred to as thechannel stateat timet. Its value at timet is

assumed known either through prediction or direct measurement but evolves stochastically in the future.
Equation (1) represents a general power-rate relationship and has been widely studied earlier either in
generality or in a special form in [1], [2], [5], [6], [10]. Examples of schemes where (1) applies include
the optimal channel coding over the AWGN channel for whichPt = N0W (22r−1)

c(t)
(Shannon capacity

formula) and the variable rate trellis coded M-QAM scheme [1], for which the transmitted power can be
approximated asPt = σ2

c(t)

(
2

r+2χ
N

)
Kc (whereσ, χ,Kc, N are appropriate constants).

In this paper, we consider the class of monomial functions forg(r), namely,g(r) = krn, n > 1
(n ∈ R). Without loss of generality we take the constantk = 1, since, any other value ofk simply scales
the problem without affecting the results. The choice ofg(r) = rn is motivated by the fact that monomials
can be used as a first approximation to general functions. In fact, in the low to moderate signal-to-noise
regime,g(r) = r2 is a good approximation to many transmission schemes.

B. Channel Model

We consider a general continuous time Markov model for the channel state evolution. Channel models
based on Markov processes have been actively studied in the past and there is a substantial literature on
modelling various fading scenarios [12]. Denote the channel state process as,C(t), and letc(t) = c, be
a particular realization at timet. Starting from statec, let Jc be the set of all states (6= c) to which the
channel can transition when the state changes. The channel transition time from statec to c̃ is Exponentially
distributed with rateλcc̃. The sum transition rate at which the channel jumps out of statec is then,
λc =

∑
c̃∈Jc

λcc̃. Clearly, the expected timeC(t) spends in statec is 1/λc and one can view1/λc as the
coherence time of the channel in statec.

For a general Markov model, the sum transition rateλc can vary over the states. To simplify the process
description, one can make the sum transition rate the same for all the states. This is done by speeding up
the process and introducing self-transitions to the same state such that the transition rate out of statec
remains unaltered while the remaining transitions are self-transitions. Such a simplification does not lose
any generality in the Markov process as it yields a stochastically identical scenario. Mathematically, let
us defineλM

= supc λc and a random variable,Z(c), as,

Z(c) =

{
c̃/c, with prob. λcc̃/λ, c̃ ∈ Jc

1, with prob. 1− λc/λ
(2)

The process can now be visualized to evolve in the following simple way. Given a channel statec, there is
an Exponentially distributed time duration with rateλ after which the channel state changes. The new state
including self-transitions is a random variable which is given asC = Z(c)c. Clearly, from (2) the transition
rate to statẽc ∈ Jc is unchanged atλcc̃, whereas with rateλ−λc there are indistinguishable self-transitions.
As such self-transitions have no meaning in a continuous-time process since they are indistinguishable
over any sample path. However, the above representation is used for notational convenience and does not
change the underlying process1. As an example, consider the Gilbert-Elliott channel model that further

1The technical assumptions in the model are as follows. The channel state space,C, is a countable space (it could be infinite), and
C ⊆ R+. The statesc = 0,∞ are excluded fromC since each of this state leads to a singularity in (1). The setJc,∀c, is a finite subset of
C. Transition rateλc, ∀c is bounded which ensures thatλ defined as the supremum is finite. For allc, the support ofZ(c) lies in [zl, zh],
where0 < zl ≤ zh < ∞. This ensures thatC(t) does not hit0 or ∞, a.s. (almost surely), over a finite time interval.
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Fig. 1. BT -problem;B units of data to be transmitted by deadlineT .

clarifies the notations used above.
Example:Consider the standard Gilbert-Elliott channel model [12] that has two statesb andg denoting

the bad and the good channel conditions respectively. Let the transition rate from the good to the bad
state beλgb and from the bad to the good state beλbg. Let the ratio of the bad to the good channel quality
be denoted asγ, i.e. γ = cb/cg. Using the earlier notations,λ = max(λbg, λgb). For statecg we have,

Z(cg) =

{
γ, with prob. λgb/λ

1, with prob. 1− λgb/λ
(3)

To obtainZ(cb) simply replaceγ with 1/γ andλgb with λbg in (3) above.

III. PROBLEM FORMULATION

We formulate the problem in the framework of continuous time optimal control theory. As mentioned
earlier, the queue hasB units of data that must be transmitted by deadlineT , with minimum energy over
a time varying channel. We refer to this as the “BT -problem” where the notation implies that the amount
of data under consideration isB, and the deadline isT . The system is depicted in Figure 1.

A. Optimal Control Formulation

Consider theBT -problem and letx(t) denote the amount of data left in the queue at timet. The
system state can be described as(x, c, t), where the notation means that at timet, we havex(t) = x and
c(t) = c. The state space for the process(x, c, t) is Ω = [0, B]×C× [0, T ]. Let r(x, c, t) denote the chosen
transmission rate for the corresponding system state(x, c, t). Since the underlying process is Markovian,
it is sufficient to restrict attention to transmission policies that depend only on the present system state
[15]. Clearly then,(x, c, t) is a Markov process.

Given a policyr(x, c, t), let us now see how the system evolves over a particular sample path of the
channel process. We are givenx(0) = B and c(0) = c0. Until τ1, whereτ1 is the first time instant after
t = 0 at which the channel changes, the buffer is reduced at the rater(x(t), c0, t). Hence, over the interval
[0, τ1], x(t) satisfies the ordinary differential equation (ODE),dx(t)

dt
= −r(x(t), c0, t). Equivalently,

x(t) = x(0)−
∫ t

0

r(x(s), c0, s)ds , t ∈ [0, τ1] (4)

Now, starting from the new state(x(τ1), c1, τ1), the above procedure repeats untilt = T is reached.
A transmission policy,r(x, c, t), is admissible, if it satisfies the following,
(a) 0 ≤ r(x, c, t) < ∞, (non-negativity)
(b) r(x, c, t) = 0, if x = 0 (no data left to transmit) and,
(c) x(T ) = 0, a.s. (deadline constraint)

An additional technical requirement is thatr(x, c, t) be continuous and locally lipschitz inx (for x > 0)
which ensures thatx(t) is the unique solution of the ODE presented earlier [16].



We now obtain the expected energy expenditure for an admissible transmission policy. Define a cost-
to-go function,Jr(x, c, t), as the expected energy cost under an admissible policyr(·) starting at time
t < T with the system state being(x, c, t). Then,

Jr(x, c, t) = E

[∫ T

t

1

c(s)
g(r(x(s), c(s), s))ds

]
(5)

where the above expectation is conditioned onx(t) = x, c(t) = c. Define avalue function, J(x, c, t), as
the infimum ofJr(x, c, t) over the set of admissible transmission policies.

J(x, c, t) = inf
r

Jr(x, c, t), r(x, c, t) admissible (6)

The optimization problem, then, is to computeJ(x, c, t) and obtain a policyr∗(x, c, t), that achieves it.
In particular, the least expected energy expenditure over the entire interval,[0, T ], is given as,J(B, c0, 0).

B. Optimality Conditions

A standard approach towards studying continuous time problems is to investigate their behavior over a
small time interval. In the context of theBT -problem, this methodology applies as follows. Suppose that
the system is in state(x, c, t). We first apply a transmission policy,r(·), in the small interval[t, t + h]
and thereafter, starting from(x(t + h), c(t + h), t + h) we assume that the optimal policy is followed.
By assumption, the energy cost is optimal over[t + h, T ], hence, investigating the system over[t, t + h]
would give conditions for the optimality of the chosen rate at timet. Sincet is arbitrary, we obtain formal
conditions for an optimal policy.

Following the above approach, considert ∈ [0, T ) and a small interval[t, t + h], wheret + h < T .
Then, clearly, the value functionJ(x, c, t) satisfies,

J(x, c, t) = min
r(·)

{
E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds + EJ(xt+h, ct+h, t + h)

}
(7)

wherext+h is a short-hand notation forx(t + h). The expression within the minimization bracket in (7)
denotes the total cost with policyr(·) being followed over[t, t+h] and the optimal policy thereafter. This
cost must be clearly no more than the cost of applying the optimal policy from the starting state(x, c, t).
Thus for an admissible policyr(·) we get,

J(x, c, t) ≤ E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds + E [J(xt+h, ct+h, t + h)] (8)

E[J(xt+h, ct+h, t + h)]− J(x, c, t) + E

∫ t+h

t

1

c(s)
g(r(x(s), c(s), s))ds ≥ 0 (9)

Now, divide (9) byh and take the limith ↓ 0. In the limit we have,

E
∫ t+h

t

(
g(r(xs,cs,s))

cs

)
ds

h
→ g(r)/c (10)

where r is the transmission rate at timet, i.e. r = r(x, c, t). Define limh↓0
EJ(xt+h,ct+h,t+h)−J(x,c,t)

h
=

ArJ(x, c, t), then in the limit (9) simplifies to,

ArJ(x, c, t) +
1

c
g(r) ≥ 0 (11)

The quantityArJ(x, c, t) is called the differential generator of the Markov process(x(t), c(t)) for policy
r(·). Intuitively, the differential generator is a natural generalization of the ordinary time derivative for



a function that depends on a stochastic process. An elaborate discussion on this topic can be found in
[13]–[15]. For the process(x(t), c(t)), using the time evolution as in (4), the quantityArJ(x, c, t) can be
evaluated as,

ArJ(x, c, t) =
∂J(x, c, t)

∂t
− r

∂J(x, c, t)

∂x
+

∑
c̃∈Jc

λcc̃[J(x, c̃, t)− J(x, c, t)] (12)

Furthermore, using the definition ofZ(c) as in (2) it can be simplified to,

ArJ(x, c, t) =
∂J(x, c, t)

∂t
− r

∂J(x, c, t)

∂x
+ λ(Ez[J(x, Z(c)c, t)]− J(x, c, t)) (13)

whereEz is the expectation with respect to theZ variable.
In the above steps from (8)-(11) if policyr(·) is replaced with the optimal policyr∗(·), there is equality

throughout and we get,

Ar∗J(x, c, t) +
1

c
g(r∗) = 0 (14)

Hence, for a given system state(x, c, t), the optimal transmission rate,r∗, is the value that minimizes
(11) and the minimum value of the expression equals zero. Thus, we get,

min
r∈[0,∞)

[
g(r)

c
+ ArJ(x, c, t)

]
= 0 (15)

SubstitutingArJ(·) from (13), we get a partial differential equation (PDE) inJ(x, c, t)2 which is also
referred as the Hamilton-Jacobi-Bellman (HJB) equation.

min
r∈[0,∞)

{g(r)

c
+

∂J(x, c, t)

∂t
− r

∂J(x, c, t)

∂x
+ λ(Ez[J(x, Z(c)c, t)]− J(x, c, t))

}
= 0 (16)

The boundary conditions for the above PDE are,J(0, c, t) = 0, andJ(x, c, T ) = ∞, if x > 0. The last
condition follows due to the deadline constraint ofT on the data. Now, given any smooth solution of the
HJB equation in (16), we need to verify that such a solution actually represents the value function. This
is indeed the case, however, the verification theorems are omitted for brevity.

IV. OPTIMAL TRANSMISSIONPOLICY

The optimality conditions, derived in the last section, apply to general channel models and power-rate
functions. We now specialize to the class of monomial functions,g(r) = rn.

A. Constant Drift Channel

We, first, consider a simplified channel model referred to as theconstant drift channeland then extend
the results to the general Markov channel case. As mentioned earlier, there are two mechanisms that
affect the minimization of the energy cost. First, the channel variations,c(t), which the optimal policy
can exploit by increasing the transmission rate under good states. Second, the convexity ofg(r), which
dictates that high rate transmissions are energy costly. Hence, the data transmission must also be spread
over time.

Constant Drift Channel: The channel process evolves as described in Section II-B with the additional
assumption that the expected value of the random variable,1/Z(c), is independent of the channel state, i.e.

E[1/Z(c)] = β (a constant). Sincẽc = Z(c)c, at the next transition we haveE
[

1
c̃

]
= E

[
1

Z(c)

]
1
c

= β/c. If

we look at the process1/c(t), the above assumption means that over the interval of interest, the expected
value of the next state (given the present state1/c) is a constant multiple of the present state. We refer toβ

2Note, the minimization on the left eliminates the variabler and gives an equation in a single functionJ(x, c, t).
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as the “drift” parameter of the channel process. Ifβ > 1, the process1/c(t) drifts upwards in an expected
sense, ifβ = 1, there is no expected drift and ifβ < 1, the drift is downwards. As an example, suppose
that the channel transition either improves the channel by a factoru with probability pu or worsens it by
a factord. This gives,Z(c) = u or d with the respective probabilities andβ = pu

u
+ 1−pu

d
, independent

of c.
In practice, one observes that the wireless channel fluctuates between intervals of upward and downward

drifts. For example, when a mobile device is moving in the direction of the base station, the channel has
an expected drift towards improving conditions (equivalently1/c(t) is drifting downwards orβ < 1) and
vice-versa for movement away from the base station. Similarly, in case of satellite channels, changing
weather conditions (such as cloud cover) makes the channel drift on average towards worsening conditions
and vice-versa. For slow fading channels, the time scale of these drift changes is usually longer than the
packet deadlines in which case over the time interval of interest a constant drift channel is an appropriate
model.

Theorem I: Consider theBT -problem withg(r) = rn, n > 1, n ∈ R and a constant drift channel with
parameterβ. The optimal policy,r∗(x, c, t), and the value function,J(x, c, t), ∀(x, c, t) ∈ Ω, t < T are,

r∗(x, c, t) =
x

f(t)
(17)

J(x, c, t) =
xn

c(f(t))n−1
(18)

wheref(t) = (n−1)
λ(β−1)

(1− exp(−λ(β−1)
n−1

(T − t))).

Figure 2 plots the optimal rate function versusx for differentt values and the functionf(t) for different
β values. The various features of the optimal policy can be observed as follows. First, the rate function in
(17) increases linearly inx; thus, with more data left in the queue the transmission rate is proportionally
higher. Second, for any fixedt, we can view the slope1/f(t) as the “urgency” of transmission since a
higher1/f(t) implies a steeper rate function. It can be easily verified both analytically and from the plot
that 1/f(t) increases (or equivalentlyf(t) decreases) ast gets closer to the deadline. Third, to quantify

the dependence onβ, observe that the expected future cost
(
E

[
g(r)
Z(c)c

]
= g(r)

c
β
)

is β times the present

cost, g(r)
c

. For β > 1, the channel is drifting towards higher expected cost or worsening conditions and
vice-versa. Thus, asβ increases it becomes more energy efficient to utilize the present conditions and
hence the urgency of transmission1/f(t) increases withβ. Again, this can be verified both analytically



and from the plot. Interestingly, whenβ = 1, the expected future energy cost does not change and in this
case the optimal policy reduces tor∗(x, c, t) = x

T−t
. This is simply emptying thex units in timeT − t

by spreading the data transmission over the time left without adjusting for the channel variations. Such
a policy will be referred to as theSimple Drainpolicy. Similarly, whenλ = 03, there are no channel
fluctuations and, as expected, the optimal policy is again simple drain, i.e.r∗(x, c, t) = x

T−t
.

Another interesting feature of the optimal rate is that it depends on the channel process through the
parameterβ but does not depend on the present channel statec(t). To understand such a behavior, first
note that the optimal rate should depend only on the relative future channel evolution starting from the
present state and not on the present channel value. For the constant drift channel, the relative future
statistics in terms of the channel drift does not depend on the present channel state; hence the observed
result. A practical advantage of this feature is that the average parameterβ is easy to measure in real
time by time averaging.

B. General Markov Channel Model

The results for the constant drift channel motivate much of the discussion in this section where we
consider general Markov channel models. Before proceeding further, we present additional notations
regarding the channel process. The channel state space is assumed to be finite and the various statesc ∈ C
are denoted asc1, c2, . . . , cm. Given a channel stateci, the values taken by the random variableZ(ci) are
denoted as{zij}, wherezij = cj/ci. The probability thatZ(ci) = zij is denoted aspij. Clearly, if there is
no transition from stateci to cj, pij = 0.

We know from the last section that the optimal rate for the constant drift channel is given as,r∗(x, c, t) =
x

f(t)
. As a first guess for the general case, one might consider a similar functional form of the optimal rate

and check if the HJB equation is satisfied. Towards this end, letr∗(x, ci, t) = x
fi(t)

, where the function
fi(t) is associated with the channel stateci. Unlike the constant drift channel, the rate functionr∗(·) now
depends on the channel state through the different functions{fi(t)}m

i=1 and over an interval when the
channel state isci, policy x

fi(t)
is followed. The following theorem proves the optimality of such a policy

and obtains the functions{fi(t)}m
i=1 as the solution of a set of ODE’s, that satisfy the HJB equation.

This system of ODE’s can be easily solved offline numerically using standard techniques and no further
computation is required during the system operation.

Theorem II: Consider theBT -problem withg(r) = rn, n > 1, n ∈ R and the Markov channel model.
The optimal policy,r∗(x, c, t), and the value function,J(x, c, t), for all (x, c, t) ∈ Ω, t < T are,

r∗(x, ci, t) =
x

fi(t)
, i = 1, . . . ,m (19)

J(x, ci, t) =
xn

ci(fi(t))n−1
, i = 1, . . . , m (20)

where{fi(t)}m
i=1 is the solution of the following ODE with the boundary conditionsfi(T ) = 0, f ′i(T ) =

−1, ∀i 4,

f ′1(t)=−1− λf1(t)

n− 1
+

λ

n− 1

m∑

k=1

p1k

z1k

(f1(t))
n

(fk(t))n−1
(21)

...

f ′m(t)=−1− λfm(t)

n− 1
+

λ

n− 1

m∑

k=1

pmk

zmk

(fm(t))n

(fk(t))n−1
(22)

3For bothλ = 0 andβ = 1, f(t) is evaluated by taking appropriate limit.
4For numerical purposes, these two conditions can be incorporated by taking a smallε > 0, letting fi(T − ε) = ε, ∀i and solving the

ODE as an Initial Value problem over[0, T − ε].
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As an example, consider the Gilbert-Elliott (GE) channel model referred to in Section II-B. Letg(r) = r2

and for simplicity takeλbg = λgb = λ. Denotingγ = cb/cg, we have,Z(cg) = γ, andZ(cb) = 1/γ. As
the Z representation does not have any self-transitions, we havepgg = pbb = 0. Denotingfb(t), fg(t) as
the respective functions in the bad and the good states, the ODE becomes,

f ′b(t)=−1− λfb(t) +
γλ(fb(t))

2

fg(t)
(23)

f ′g(t)=−1− λfg(t) +
λ(fg(t))

2

γfb(t)
(24)

Figure 3 plots these functions forT = 10, λ = 5, γ = 0.3. First, as expectedfg(t) ≤ fb(t),∀t, which
implies that givenx units of data in the buffer and timet, the rate x

fg(t)
is higher under the good channel

state. Second, it can be shown that,fg(t) ≤ T −t ≤ fb(t), where the function,f(t) = T −t, gives the rate,
x

T−t
, corresponding to the simple drain (SD) policy. Thus, compared to SD policy, the optimal policy, as

expected, increases the transmission rate under the good state and reduces the rate when the channel is
bad. The optimal adaptation, however, is governed by the respectivefi(t).

As a comparison, we now present simulation results for the optimal and the SD policy. The transmission
rate for the SD policy is given as,r∗(x, c, t) = x

T−t
and such a policy is optimal when the channel is

time-invariant. In the simulations, we considerg(r) = r2 and the GE channel model as described above.
We takeT = 10 and partition the interval[0, 10] into slots of lengthdt = 10−3, thus, having10, 000 time
slots. A channel sample path is simulated using a Bernoulli process as follows. In a time slot, the channel
transitions with probabilityλdt and with probability1 − λdt there is no transition. At each transition,
the new state is̃c = Z(c)c which for the GE model amounts to jumps between the two states. Expected
energy cost is computed by taking an average over104 sample paths.

Figure 4(a) plots the energy costs of the two policies asλ is varied withγ = 0.3, B = 10. When
λ is small the channel is essentially time-invariant over the deadline interval and the two policies are
comparable. Asλ increases, the optimal cost substantially decreases due to the channel adaptation. In
Figure 4(b),γ is varied withλ = 5, B = 10. As γ decreases the good and the bad channel quality differ
significantly and the optimal rate adaptation leads to a substantially lower energy cost as compared to SD
policy.

V. CONCLUSION

We considered optimal rate control for delay constrained data transmission over time-varying channels.
Specifically, we looked at the problem of transmittingB units of data by deadlineT over a general time-
varying Markov channel. Using a novel approach based on a continuous-time formulation and stochastic
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Fig. 4. Expected energy cost for the optimal and SD policies.

control theory we obtained closed form expressions for the optimal rate that minimizes the transmission
energy expenditure. We believe that the continuous-time framework holds promise for various extensions
addressing quality of service constrained data transmission in wireless systems. Some of the natural
extensions include incorporating a stochastic model for the arrival process, down-link scenarios in cellular
networks with multiple mobile devices and multi-hop transmissions with end to end constraints.
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