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Abstract— We consider routing and wavelength assignment in
ring, torus, and tree topologies with the twin objectives of mini-
mizing wavelength nsage and maximizing optical bypass. The P-
port tralfic assumption is used, which allows each node to send
and receive at most P calls. For rings we show that [ PN/4] wave-
lengths are necessary and sufficient, and provide a 4-hub ring ar-
chilecture that requires only half of these wavelengths to be lo-
cally processed. We extend this approach to a torus by embedding
virtual rings within the topology. For an R x C torus, we em-
bed R + C rings onto the torus and provide an approach to RWA
and banding based on solving disjoint RWA/banding problems for
each ring, Our RWA algorithm is more wavelength-efficient than
any currently known algorithm and uses the minimum number of
wavelengths for B > 2C. Finally, we give a RWA for trees that
embeds a single virtual ring and uses the ring to obtain a RWA
that requires no more than [ PN/2] total wavelengths; this figure
is shown to be optimal for balanced binary trees, Banding can be
used for both the torus and the tree te further allow half the wave-
lengths to bypass all non-hub nodes.

I. INTRODUCTION AND SYSTEM MODEL

AVELENGTH division multiplexing (WDM) allows

many connections to share the same fiber resources.
The routing and wavelength assignment (RWA) problem be-
comes one of assighing routes and wavelengths to each call
such that no two calls share the same wavelength on the same
link. Calls are additionally subject to the wavelength continuity
constraint, which requires that a call use the same wavelength
on all hops unless wavelength conversion is available at inter-
mediate nodes. If full conversion is available at all nodes, the
WDM network is equivalent to the well-known circuit-switched
network; however, the high cost of wavelength converters often
makes it desirable to keep the amount of conversion used in the
network to a minimum.

There has been considerable work done in the area of finding
efficient algorithms for the RWA problem. One way to catego-
rize the existing literature is according to the traffic assumptions
made, Two broad categories for traffic models are staric traffic
and dynamic traffic. In the static traffic mode!, the set of calls
that needs to be supported by the network is fixed and does not
change [1], [2]. In the dynamic model, calls are allowed to ar-
rive and depart over time, requiring the RWA to change with the
traffic, A variety of different models can be adopted for these
dynamics. One method is to assume a statistical characteriza-
tion of call arrival rates and holding times and design algorithms
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to minimize the call blocking probability [3], [4]. However, due
to the large state-space size of the problem, the blocking prob-
ability of a WDM network is extremely difficult to analyze. An
alternative approach, the non-blocking model, considers design-
ing the network to accommodate any traffic matrix from an ad-
missible set [5], [6]. Call arrivals or departures are equivalent to
transitions from one traffic matrix to another. If the transitions
can be accommodated without rearranging any calls, the RWA
algorithm is called wide-sense non-blocking; otherwise, it is re-
arrangeably non-blocking. We adopt in this paper the P-port
model used by [7], which defines the admissible set to be any
traffic set where each node sends and receives at most P cails,
The P-port model is very practical since the admissible set is
based on actual device limitations in the network. In this paper,
we investigate new rearrangeably non-blocking RWA schemes
for P-port traffic for ring and torus networks with and without
wavelength conversion. We consider two approaches to design-
ing RWA algorithms: minimizing the number of wavelengths
in the network, and maximizing the amount of bypass at each
node using banding.

The approach of minimizing the total number of wavelengths
is common in the literature for nonblocking networks. Mini-
mizing wavelengths is sensible for two reasons. First, adding
additional ‘wavelengths to a network is costly, so wavelengths
should be used efficiently. Second, if each wavelength needs to
be switched at each node, then optimizing the number of wave-
lengths is also equivalent to optimizing the number of switch
ports at each node, an important property since switching is
expensive and switching costs can rapidly dominate in the net-
waork as switch size increases.

The second approach is to use banding to reduce the num-
ber of wavelengths dropped at each node. Banding refers to
the grouping of wavelengths into frequency bands; each band
contains multiple adjacent wavelengths. Node complexity can
be significantly reduced by allowing some bands to completely
bypass each node. This is permissible if the RWA algorithm
can guarantee that wavelengths within the bypassing bands are
never dropped at those nodes.

For the purposes of the RWA problem, we can group the
wavelengths into two bands: a local band, consisting of wave-
lengths that can be accessed by all nodes, and a bypass band,
consisting of wavelengths that can be accessed only by a few
designated hub nodes. The bypass band can therefore bypass
the majority of the nodes in the network. There are several ad-
vantages to a banding approach. One is cost savings. Figure
1 shows an optical add-drop multiplexer (OADM) in a system
where the total number of wavelengths W are divided into a
local band of k wavelengths and a bypass band of W — k wave-

119



Coarse DMUX
Ay A I\

£\ oulput

{k+P) % {k+F)
optical swikch

Fine DMUX
: 1/0 ports
| P

Fig. 1. An OADM architecture with bypass. Note that the switch size depends
only on the number of wavelengths & entering the node, not the total number

lengths. With banding, only the smaller local band of k wave-
lengths is switched, Without banding, the switch would have to
process all W wavelengths. Another benefit is that the wave-
length demultiplexers can be simpler; the first, coarse DMUX
need only separate out two large bands, while the second, finer
DMUX has a smaller band to work with (only the local wave-
lengths). Finally, by allowing wavelengths in the bypass band to
avoid processing at non-hub nodes altogether, the bypass band
can either avoid the switch (thus not suffering power losses due
to switching which would reduce the reach of the lightpaths),
or be placed in a separate fiber entirely. Such a separate fiber
would need to be connected only to the hub nodes and could
physically bypass all other nodes entirely.

We use the P-port traffic medel, which restricts each node
to sending and receiving no more than P calls. We provide
novel RWA algorithms with and without bypass for ring and
torus topologies. We demonstrate for each case optimal or ef-
ficient wavelength usage through comparisons with theoretical
lower bounds, and demonstrate ways for using banding to fur-
ther simplify node complexity. In Section IT we cover RWA
and banding algorithms for ring networks; Sections IIT and IV
extend these results to torus and tree topologies, respectively.

II. RING NETWORKS
A. Routing and Wavelength Assignment

Recall that ender the P-port traffic modél, any traffic set in
which each node sends and receives no more than P calls is ad-
missible; as such, sufficiently many wavelengths must be pro-
visioned 10 support all calls within any given admissible traffic
set. In [7] it was shown that for a ring with N > 7 nodes, there
exists an admissible traffic set which requires at least [ PN/3)
wavelengths to support it if no wavelength conversion is avail-
able. A RWA algorithm was also described that always uses no
more than this minimum number of wavelengths for any admis-
sible traffic set.

For rings with conversion, a cut-set bound can be used to
provide a lower bound on the number of wavelengths required.
Consider a cut of two links which divides the ring in equal
halves of N/2 nodes each (N even). A worst-case admissi-
ble P-port traffic set can be constructed where each nodé on
the left half of the cut sends all P units of traffic to some node
on the right half, This means that PN/2 units of traffic would
traverse 2 links, requiring a minimum of [ PN/4] wavelengths.

bypass wavelengths

*= hub node

* local wavelengths

e L

Fig. 2. A dual ring topology, equivalent to a 20-node, 4-hub ring with some
local and some bypass wavelengths. The shaded nodes are hubs,

An algorithm was provided in [8] called the [ PN/4] algorithm
which achieves this lower bound, showing that the bound is suf-
ficient as well. The algorithm requires a total of up to [PN/2]
wavelength converters, which can be arbitrarily located within
the ring. The details of the algorithm are omitted here; for the
purposes of our discussion here it suffices to know that such an
algorithim exists. This algorithm will be used later in the paper
to assist in performing RWA on other topalogies.

‘We point out that a corollary to the results of [8] is that for the
special case of N = 4 and P = 1, only a single wavelength is
required, and obviously no wavelength converters are required,
This can be extended to the case of arbitrary P by noting that
any P-port set can be decomposed into P single-port sets, and
each set routed individually. Hence for N = 4 the Jower bound
of P wavelengths can be achieved without conversion.

B. Ring Banding Bound

In this section, we consider maximizing the amount of bypass
using banding. Recall that the wavelengths are partitioned into
two sets of adjacent wavelengths known as the local band and
the bypass band. Wavelengths in the local band, known as local
wavelengths, can be accessed by any node; wavelengths in the
bypass band, known as bypass wavelengths, can be accessed
only by a few special nodes known as hub nodes. Any non-
hub node is termed a focal node. As described in Section 1,
maximizing the size of the bypass band corresponds to reducing
the overall cost of the network.

In general, the number of local wavelengths required de-
creases as the number of hubs increases. We next derive a lower
bound on the size of the local band for a fixed number of hubs
i within an N-node ring using a cut-set approach. The hub
nodes divide the ring into sections, each consisting of a num-
ber of local nodes located between two consecutive hub nodes.
Suppose the smallest such section consists of Ng local nodes,
A traffic set exists where each node within that section sends all
P calls to nodes outside that section. Imagine a cut consisting
of the two links at the edge of that section. There are P - Ng
units of traffic travelling across two links, and so a minimum
of [P+ Ng/2] wavelengths are required, Furthermore, these
must all be local wavelengths, since none of the local nodes can
access bypass wavelengths. To obtain the tightest such bound,
we maximize Ng by distributing the hubs symmetrically within
the ring, resulting in Ng = [N/h] — 1 and a lower bound of
{P(]N/h] — 1)/2]. This situation is illustrated in Figure 2 for
the case of h = 4.
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C. Banding and Bypass on Rings

In this section, an algorithm called the ring banding algo-
rithm that minimizes the number of wavelengths in the local
band is described. In general, there exists an entire class of
ring banding algorithms depending on the number of hubs in
the ring; however, from a single instance of the algorithm it
is straightforward to extrapolate to any other variation since the
algorithms are all very similar. Therefore in this paper we focus
primarily on the special case of a 4-hub ring banding algorithm,
A 4-hub architecture has the added advantage that routing traf-
fic between the four hubs does not require wavelength conver-
sion to achieve optimal wavelength efficiency, as noted in the
preceding section, since the hubs form a 4-node ring.

For it = 4 hubs, the lower bound is [P{{N/h] - 1)/2] =
[P([N/4]~1)}/2] wavelengths. To obtain some intuition about
how large this local band is, consider the case where N is a
multiple of 4; under this assumption, this minimum number be-
comes [fﬂ%"—'il}. This establishes that at least half of all the
wavelengths must be local wavelengths. (Recall that { PN/4]
total wavelengths are required.}

To reduce the number of local wavelengths required, con-
sider a topology where the 4 hubs are distributed symmetrically
within the ring. The ring banding algorithm gives each call a
route and wavelength assignment vsing a three-step process, as
follows: :

1) Starting from the source node, the call travels to the near-
est hub. This route uses a local wavelength and is static
since the nearest hub node for any given source node is
fixed.

2) From that hub, it travels via a bypass wavelength to the
hub closest to the destination node. This routing is dy-
namic since the source and destination of the call are vari-
able.

3) Finally, the call proceeds from that hub to the destination
node via a local wavelength, again by a static route.

We first prove that Steps 1 and 3 use no more than the mini-
mum number of local wavelengths. Then we provide an RWA
to dynamically route all the calls in Step 2 using as few bypass
wavelengths as possible.

Consider the local wavelength usage. The hubs partition lo-
cal nodes in the ring into four quarters, each of which con-
tains no more than [N/4] - 1 local nodes. Assign each node
within the quarter P bidirectional wavelengths for communica-
tion with the hub closest to it. The forward direction, from the
node to the hub, is used in Step 1, the reverse direction, from
the hub to the node, is used in Step 3. Since half the nodes in
each quarter communicate with the hub node on one side and
half with the other, each bidirectional wavelength can be shared
by two local nodes. This is illustrated for a 16-node ring in
Figure 3. In total, { P([N/4] — 1)/2] local wavelengths are re-
quired by this scheme. Note that this meets the lower bound on
local wavelengths, and corresponds to roughly half of the total
number of wavelengths used by the [ PN/4] algorithm.

Next we consider the dynamic routing of calls between hubs
in Step 2. Each hub is responsible for sending and receiving all
calls belonging to the [V/4] nodes closest to it (including it-
seif) to and from other hubs. Therefore, for Step 2 each of the 4
hubs acts as though it has P* = P[N/4] ports. From the results

(a) ()]

Fig.3. (a) Assigning local wavelengths for a single-port 16-node ring, (b) The
route for call (6, 12). Hubs 5 and 13 are used to access the bypass wavelengths.

of Section II-A, we know that P[N/4] bypass wavelengths are
necessary and sufficient to support such traffic, and furthermore
that we can do so without the use of wavelength converters. (To
see this, note that in the 4-hub ring N = 4 and P/ = P[N/4].)

Local Node Requirements: Each local node can use fixed
routes and wavelengths (0 communicate with its nearest hub
node. This allows the local node architecture to be extremely
simple. Not only do local nedes never need to access bypass
wavelengths, they do not need to switch local wavelengths ei-
ther since these wavelengths are statically assigned. Therefore,
the switching block shown in Figure 1 can be replaced with
static connections from the P ports to the P assigned wave-
lengths.

Hub Node Requirements: Each of the four hub nodes needs
to be able to switch between any of the local wavelengths and
any of the bypass wavelengths. Bypass wavelengths never need
te be switched onto other bypass wavelengths — i.e. no con-
version is required between bypass wavelengths, Conversion is
required between bypass and local wavelengths.

We illustrate the operation of the 4-hub ring banding algo-
rithm with an example.

Example 1: Figure 3 considers single-port traffic on a 16-
node ring, and shows the wavelengths that would be assigned in
Steps 1 and 3 of the algorithm to handle the traffic between the
local nodes and the hubs. Note that only the minimum number
[(16/4—1)/2] = 2 of local wavelengths are required. For any
fixed traffic set, the four hubs would then provide a RWA using
the bypass wavelengths via the [ PN/47 algorithm.

To illustrate the full RWA for a given call, consider a call
travelling from node 6 to node 12. The closest hub for node 6
is 5, and the closest hub for node 12 is 13. Therefore a route is
assigned as follows: (1) from node 6 to node 5 via a local wave-
length, (2) from node 5 to node 13 via a bypass wavelength, and
(3) from node 13 to node 12 via a local wavelength again. Fig-
ure 3 shows an example of a possible RWA for the call using
this approach.

HI. TORUS NETWORKS
A, Torus RWA Lower Bound

Torus networks with no wavelength conversion were consid-
ered in [9], which presented a suboptimal RWA algorithm based
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on column-first routing requiring twice the minimum number of
wavelengths. We investigate the use of wavelength conversion
to reduce the number of wavelengths required. We will first
show a lower bound on wavelengths required; subsequently, we
give a novel algorithm for RWA on a torus that makes efficient
use of wavelengths and achieves the bound in certain cases.

Define an R x C torus to be a network consisting of RC
nodes, each of which is uniquely assignedtoarowr,1 < r <
R,and acolumn ¢, 1 € ¢ < C. Each node is connected via
four bidirectional links to four other nodes: the two adjacent
nodes occupying the same row, and the two adjacent nodes in
the same column. More specifically, denote the node in row r
and column ¢ by n, c. Then the node n,. . is connected via bidi-
rectional links to the nodes n,g1 ¢, ro1,cs fir,edl, and Ny o,
where operations on the rows and columns are modulo R and
C, respectively. Figure 4 shows an example of a 6 x 3 torus.
Note that each row contains C' nodes, and each column con-
tains R nodes.

We again use the P-port traffic model, where each node is
assumed to have P ports, and hence can send and receive at
most P calls. We next investigate how many wavelengths must
be provisioned in the torus to support any admissible traffic set
under these assumptions.

Suppose without loss of generality that R > C. (If the oppo-
site 18 true, rotate the picture of the torus 90 degrees and re-label
the rows as the columns and vice versa.) Let R be even. Con-
sider a horizontal cut across the columns which removes 2C
links and divides the torus into two equal sets of RC/2 nodes
each. Consider the first'set. Under the P-port maodel, there ex-
ists a worst-case traffic set in which each node in that set sends
all P calls to some node in the other set. In this case, there are

PRC/2 calls traversing 2C links, which means that a minimum’

of {{(PRC/2)/(2C)] = [PR/4} wavelengths are required. A
similar argument for R odd yields a bound of [P(R — 1)/4]
wavelengths.

B. The TERA Algorithm

In this section we describe an algorithm based on the Torus
Embedded-Ring Approach (TERA) for routing and wavelength
assignment. We will show that by judicious use of wave-
length conversion, the TERA algorithm will use no more
than max{[ PC/2], [PR/4]} wavelengths. For toruses where
R > 2C, this achieves the lower bound of [PR/4] wave-
lengths; in the worst case (R, = C) ituses [PR/2].

. We will describe the algorithm in detail later in this. section,
but the general idea is as follows. For any given call going from
Tpy oy 1O Ty oo, instead of considering all possible route assign-
ments (of which there are many), we break the problem down
into finding a route from the source n,, o, to some intermediate
node n, o, in the same row, from n,, ., to some n,, ., in the
same column, and finalty from n,., ., to the destination 7., ¢, in
the same row. The advantage to this approach is that instead of
having a single call travelling through a torus, the call has been
subdivided into three smaller calls, each on a different ring, and
the results for rings in the preceding section can be used to do
the routing and wavelength assignment for each sub-call. Fig-
ure 4 gives an example of routing a call using this approach.

ol e

Fig. 4. Breaking up a call into three sub-calls using a bridging column, The
single call on the left, from ng,1 to ng 3, is routed a3 two row-ring calls and
a column-ring call using the bridging column 2, Each of the sub-calls can be
routed independently on their respective rings using the [PN/4] algorithm,
Additional wavelength conversion may be required at nodes nz g and ns 2 if
the sub-calls are not assigned to the same wavelength.

In the above approach, an intelligent choice of a column e
for each call is required so that subsequent routing of the result-
ing sub-calls then uses as few wavelengths as possible.

For notational purposes, define the ring formed by the nodes
{ni;li = 1,...,C} to be the row-ring 4, and the ring formed
by the nodes {n; ;|¢ = 1,..., R} to be the column-ring 7. Un-
der this nomenclature, there are B row-rings and €' column-
rings. Let us call the columns {¢;} used to generate the sub-
calls the bridging columns, since calls will use these columns
to travel between row-rings. In an R x C' torus, there are C
bridging columns. We will use a bipartite matching approach
to associate each call with a bridging column in such a way that
the resulting sub-calls will form a 2P-port traffic set on each
row-ring, and a P-port traffic set on each column-ring. Once
this is done, it is evident that by using the [PN/4]-algorithm
on each row and column-ring, the total number of wave-
lengths required in the torus wilt be max{[2PC/4], [PR/4]}
=max{[PC/2], [PR/4]}, as claimed.

C. Bridging Column Assignment

In this section, we will describe a method for using match-
ings to assign a bridging column to each call such that the re-
sulting sub-calls form a 2P-port traffic set on each row-ring,
and a P-port traffic set on each column-ring,

Consider a call (n,, c;, ory ¢, )} that is divided into three sub-
calls (nrl.cnnh,cb)‘ (n"lucblnfflscb)‘ and (nrﬁ’cb’nrﬂ’cﬂ)' We
will call the (N, ey, Tory ¢, ) the starting sub-call, (r, o, , Tirg 1)
the bridging sub-call, and (n,, ., 7y, ¢,) the ending sub-call.
We wish to determine the conditions that the the bridging col-
umn assignment are subject to.

1. Row.ring conditions: For cach row-ring of size C, there
are 2PC sub-calls to be routed on it, P of which are starting
sub-calls and the remaining P of which are ending sub-calls.
Each node already uses P ports for sending the starting sub-
calls, and P ports for receiving the ending sub-calls. We wish
to choose bridging columns such that the starting sub-calls on
each row-ring use no more than P additioral destination ports
per node, and the ending sub-calls use no more than P addi-
tional source ports per node. If these conditions are met, then
each row-ring needs no more than 2P ports per node,
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2. Column-ring conditions: For ¢ach column-ring, we wish
to choose bridging columns such that the P-port assumption
holds true for each column-ring; i.e. the set of PR bridging
calls for each column-ring should use na more than P source
and destination ports per node.

Lemma 1: If the bridging conditions imposed by the
column-rings are satisfied, then the bridging conditions for the
row-rings are also satisfied.

Proof: For each row-ring, at least P ports are required
regardless of the choice of column-rings since the sources of
each starting sub-call and the destinations of each ending sub-
call are fixed. Thus it remains to show only that each node is the
destination of no more than P starting sub-calls, and the source
of no more than P ending sub-calls, to prove that only another
P ports per node are required (for a total of 2P per node).

To see that this is true, note that the destination of each start-
ing sub-call is the source of a corresponding bridging sub-call.
Therefore, if a node in a row-ring were the destination of more
than P starting sub-calls, that node would also be the source
of more than P bridging sub-calls on its column-ring. Since
we assumed that the column-ring conditions were satisfied, this
cannot be true.

Similarly, the source of each ending sub-call is the destina-
tion of a corresponding bridging sub-call. If a node in a row-
ring were the source of more than P ending sub-calls, that node
would also be the destination of more than P bridging sub-calls
on its column-ring, which canrnot be true. |

Lemma 1 tells us that it suffices to assign calls to bridging
columns so that the column-ring conditions are satisfied. We
achieve this by using a bipartite matching approach, as follows.

Consider the traffic set for the R x C torus. We construct a
bipartite graph consisting of two sets of 1 vertices, which we
willcall {5} and {D;}, wherei=1,...,Randj=1,...,R.
In a given set, each vertex corresponds uniquely to one of the R
TOW-Tings.

Each call in the traffic set will cerrespond to an edge in the
graph. A call from a node n,, ., 10 7., o, Will be represented
by an edge from vertex Sy, to D,,; in other words, a call in
the torus is represented by an edge in the graph connecting the
vertex in {S;} representing its source row-ring, and the vertex
in {D;} representing its destination row-ring. Since we have
a P-port traffic set, and each row-ring contains C' nodes, each
vertex in the graph will have degree PC.

We will call the bipartite graph thus constructed the bridg-
ing graph. Tn the next step, we will make use of the following
theorem for bipartite matchings with equal nodal degree.

Theorem 1: Define a perfect marching to be a set of edges
where exactly one edge is incident on every vertex, Then, in
a bipartite graph (V}, 14, £) in which each vertex in V] and in

V; has degree m, the set £ can be partitioned into m disjoint

perfect matchings.
Proof: The proof is basically by induction using Hall's
theorem and is omitted here for brevity. |
In the context of our constricted bipartite matching, Theo-
rem 1 guarantees that we can obtain a set of PC disjoint per-
fect matchings. Each perfect matching corresponds to aset of R
calls where exactly one call originates from each row-ring, and
one call is destined for each row-ring. Since for any given call
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Fig. 5. (a) A traffic set for the single-port 4 X 2 torus considered in Example
2. The first two pairs of columns give the row-column pairs for the source and
destination nodes, while the last two columns give the edges that represent each
respective call in the bridging graph. (b) The resultant assignment of bridging
columns to calls for Example 2

the bridging sub-call has source node equal to the source row of
the original call, and destination node equal to the destination
row of the original call, this means that if all calls in a match-
ing use the same bridging column, the set of resultant bridging
sub-calls will correspond to a single-port traffic matrix for that
column.

The preceding idea forms the basis for the assignment of
bridging columns. Recall that Theorem 1 guarantees that we
will have PC' disjoint perfect matchings. Divide these match-
ings into C sets of P disjoint perfect matchings. Assign each set
of matchings to one of the C columns. All calls in a matching
assigned to a given column will use that column as its bridg-
ing column. Since each matching requires only a single port
per node, the P matchings in each column will require no more
than P ports per node. Thus the column-ring conditions (and
subsequently the row-ring conditions, by Lemma 1) are satis-
fied.

Example 2: In this example, we consider the problem of as-
signing bridging columns to a traffic set on a single-port 4 x 2
torus. The traffic set is given in Figure 5. The corresponding
bridging graph is shown in Figure 6. Recall that Theorem ]
states that since the graph has vertex degree PC =1.2 =2,
we can find 2 disjoint matchings. One possible such choice is
given.

Under the choice of matchings given in Figure 6, we assign
all calls in the first matching to column 1, and all calls in the sec-
ond matching to column 2. This uniquely specifies a bridging
column for each call in the traffic set, as shown in Figure 5. For-
example, the first call in the set, from ny ; to ng 4, corresponds
to the graph edge Sy to D3, This edge is in the first matching,
so the call from ny; to ng,o is assigned to the bridging col-
umn of I. The resulting sub-calls are (m; 1,m1,1), (1,1,73,1),
and (ng,1.n3,2). (Note that one of the sub-calls happened to be
degenerate.)

We can now formally state the TERA algorithm.

THE TERA ALGORITHM
1) Given a P-port traffic set for the torus, construct the cor-
responding bipartite bridging graph, as described in Sec~
tion III-C, Divide the edges on the bridging graph into C
sets of P disjoint bipartite matchings. Assign each set to
a different bridging column.

2) Now that each call has a bridging column, divide each

call into a starting sub-call, a bridging sub-call, and an
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Fig, 6. The bridging graph for Example 2. As expected, each vertex in the
bridging graph has veriex degree PC = 1. 2 = 2, Using Theorem |, this can
be divided into € = 2 disjoint perfect matchings.

ending sub-call.

3) For each row-ring, use the { PN/4] algorithm to perform
RWA on all starting and ending sub-calls within that row-
ring. This requires [ PC/2] wavelengths per row-ring.

4) For each column-ring, use the [PN/4] algorithm to per-
form RWA of all bridging sub-calls within that column-
ring, This requires [PR/4] wavelengths per column-
ring.

5) Give each original call in the torus the route and wave-
length assignment formed by the concatenation of the
RWA of the starting, bridging, and ending sub-calls. Up
to two converters may be needed to change between sub-
calls.

D. Banding and Bypass on Toruses

In this section, we give an algorithm for banding on a torus .

which reduces size of the band of local wavelengths dropped at
non-hub nodes.

Since the TERA algorithm essentially resuits in a problem
of disjointly routing traffic on different rings in the rows and
columns, we can apply an approach similar to the ring banding
algorithm. Rather than using the [ PN/47 algorithm to route the
sub-calls on the row-rings and column-rings, the ring banding
algorithm is used. In this discussion, we focus on using the 4-
hub ring banding algorithm, but the results could be extended
to using different numbers of hubs,

We assume again by convention that # > C. Using a 4-
hub architecture on each row, we can reduce the number of lo-
cal wavelengths required on those rings 10 P{C/8]. A mini-
mum of 4R hubs are required to do this, since no two row-rings
can share a hub node. In order for rings along the columns to
aiso require a local band of no more than P[('/8] wavelengths,
enough hubs must be allocated along the columns such that no
node in a column-ring is further than [C/8] hops from a hub
node. This requires at least [ 2z} hub nodes along each col-
umn. An upper bound on the total number of hubs required is
therefore 4R + [Tg}%ﬂ -, or approximately 8 R hubs. There-
fore the number of hubs h* is bounded by 4R < h* < 8H. We
can achieve the lower bound by using clever hub designation to
allow the same nodes to serve as hubs for both a row-ring and a
column-ring, reducing the total number of hubs required.

We describe a hub allocation scheme that uses the min-
imum number of hubs. For the first row, designate nodes
71 hy+ TL,Aas 1 kg, aNd 7y g, to be hubs, where the column
numbers h; are given in Table 1. In the second row, nodes
N2, 1k, : 112,160+ 112,104, ANd N2 19, are hubs; note that this

TABLEI
HUB COLUMN NUMBERS FOR THE FIRST ROW-RING

WCmoddn. .. b, hy h, [
o [ Cia 2¢4 104
1 9 Lcuf 1lcal 21cud) +7ca)
2 [] T'cu Lra) 4Tl | Lo« 2lcul
3 [ ['cua) [ e] led)

o

n

16

2
1 6 un 16 ]

Fig. 7. A 21 x 21 torus. The local nodes are at all intersection points of the
grid, while the hub nodes are shown as shaded circles. For R = C = 9, we
have that | N/4] = 2and [N/4] = 3.s0thathy =0, hs = 2, h3 = 4, and
h4 = 7. Adding each of the row numbers modulo 9 gives the hub assignments
shown. As a check, notethat gq = 0, g2 = 2, g3 = 5, and g4 = 7 also
comectly yields the resulting hub allocations down the columns.

is a cyclic shift in the right-ward direction (modulo C) of the
hub allocation for the previous row. This pattern repeats for all
subsequent rows. In general, n, . isahub ifc® (r = 1) = h;
for some 1 = 1, 2, 3, or 4; £ is called the hub index of that hub,

It is trivial to note that each row now has 4 hubs, and
hence only P[{C/8] local wavelengths are required along the
rows. The following lemma claims that this hub allocation
also requires no more than P[C/8] local wavelengths along
the columns.

Lemma 2: Designating hub nodes along the row-rings as de-
scribed results in a hub allocation with the property that along
each column-ring, no local node is more than [C/R] hops away
from the nearest hub node.

Proof: The proof will show that along any column, no
two hubs are separated by more than [C/4] nodes, from which
it follows that no node can be more than [C /8] hops away from
a hub.

Recall that a node n, . is a hub if ¢ & (r — 1) = hy;
equivalently, ny. is a hub iff r = h; © (¢ — 1) for some
i = 1,2, 3, or 4. Consider two adjacent hubs in the same col-
umn Ny, ¢, Ny, o With hub indices i and j; the distance between
themis ry — rq = h; — h;. From Table I, for any two adjacent
kiand hj, ki — h; < [C/4], completing the proof, N

The consequence of the lemma is that any local node is no
more than [C/8] nodes away from a hub; hence no more than
P[C/8] wavelengths are required. Figure 7 gives an example
of 2 21 x 21 torus, and illustrates the hub allocation obtained
from this construction. '

The number of bypass wavelengths required can be obtained
by examining the number of calls arriving and departing from
each hub node. Along the rows, each hub is responsible for
[C/4] nodes, and each such node has 2P ports; therefore each
row-hub has P = 2P[C/4]. Using the [PN/4] algorithm,
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P[C/2] bypass wavelengths are required. A similar argument
on the columns shows that P{R/4] bypass wavelengths are re-
quired.

The wavelength assignment also has two useful properties.
First, non-hub nodes have fixed routing and fixed wavelengths.
Conversion between local wavelengths is hence not required,
since each node is assigned its own wavelength to send and re-
ceive from its hub. Also, local nodes need no knowledge of net-
work state. Second, the only place where conversion is required
is at the hubs. No conversion is required to connect calls contin-
uing from a row-ring onto a column-ring, or from a column-ring
onto a row-ring.

IV. TREE NETWORKS
A. Tree RWA Lower Bound

In this section, a bound on the minimum number of wave-
lengths required to support P-port traffic in trees is established.
We use the cut-set bound to obtain a lower bound on the num-
ber of wavelengths. Since a tree contains no cycles, the re-
moval of any single link 4 disconnects the tree into two disjoint
sets of nodes. For each i, we call these sets S} and S?, and
let |S}| and |S2| denote the number of nodes in each set, re-
spectively. Suppose |S}| < |S?|. Then there exists a worst-
case admissible set where each node in S} sends all P units
of traffic to some node in S?. Since all this traffic must cross
link i, at least W; = |S}| wavelengths are required to sup-
pert it. If |S}| > |S?|, similar reasoning gives W; = [S2|.
We can obtain the tightest lower bound by maximizing over
all links 7. Let the greatest lower bound thus obtained be
W = max;{W;} = max;{min{|5}|,i5?|}}. A link which
achieves this lower bound is known as a bortleneck link.

From the preceding discussion, it is clear that the lower
bound obtained in this section is dependent on the specific
topology of the tree, and not just on the number of nodes in the
tree. For example, for a balanced d-ary tree, the links adjacent
to the root node are the bottleneck finks, and W = P(N—1}/d.
For balanced binary trees, where d = 2, the bound is W =
P(N -1)/2.

B. The [PN/2| Embedded-Ring Approach

[10] has considered RWA on trees using a bipartite matching
approach. In this section, we describe a novel RWA based on
embedding a virtual ring in the tree topology. We will show that
for connected P-port traffic sets, this approach requires at most
[PN/2] wavelengths for any tree topology, and hence is opti-
mal for tree topologies where W = [PN/2]. For example, it is
optimal for balanced binary trees. Furthermore, no wavelength
conversion is required.

The ring-embedding idea is intuitively very simple. In any
tree, by using depth-first search, we can form a circuit which
visits each node in the tree at least once while traversing each
link only twice (once in each direction). This circuit is said
to form a virtual ring in the following sense. Consider a ring
topology where the nodes are connected in the order in which
each corresponding node in the tree is first visited by the circuit.
Then any RWA for this ring has a one-to-one correspondence
with a RWA for the tree, Each link between two adjacent nodes

bottleneck links

Fig. 8. Embedding a cycle in a 15-node balanced binary tree. The nodes have
been numbered so that the cycle visits them in order of increasing index. The
corresponding virtual ring topology is shown next to the tree,

on the ring corresponds to the links traversed by the circuit in
travelling between those two nodes on the tree. Such a circuit
is illustrated in Figure 8 for a 15-node batanced binary tree.

A single, unidirectional wavelength on the ring corresponds
to the use of a single, bidirectional wavelength on the tree.
(A bidirectional wavelength is required because a single circuit
around the tree used each link once in each direction.) Define
two calls on a ring to be adjacent if the destination of one call
is the source of the other. For the RWA on the ring, we rely on
a lemma from [7] which states that any two adjacent calls on
a ring must fit on a single wavelength in one direction or the
other. (A graphical proof is straightforward.} The ring embed-
ding algorithm simply divides the traffic into adjacent pairs, and
determines the single-wavelength direction for each pair. Each
pair 15 then routed on a single directed wavelength on the virtual
ring, which corresponds to a RWA on the tree which uses a sin-
gle bidirectional wavelength per pair. Since there are a total of
[PN/2] pairs, no more than [ PN/2] wavelengths are needed.

We can also extend the ring banding results to the tree by
using the ring banding algorithm on the virtual ring. It can be
shown that this is analogous to the ring and torus cases and
allows half the wavelengths to bypass all but the hub nodes.
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