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Abstract—We develop a novel auction-based algorithm to allow
users to fairly compete for a wireless fading channel. We use the
all-pay auction mechanism whereby user bid for the channel, dur-
ing each time-slot, based on the fade state of the channel, and the
user that makes the higher bid wins use of the channel. Under
the assumption that each user has a limited budget for bidding,
we show the existence of a unique Nash equilibrium strategy. We
show that the strategy achieves a throughput allocation for each
user that is proportional to the user’s budget and establish that the
aggregate throughput received by the users using the Nash equi-
librium strategy is at least 3/4 of what can be obtained using an
optimal centralized allocation scheme that does not take fairness
into account.

Index Terms—Resource allocation, fairness, auction.

I. I NTRODUCTION

Network resources such as bandwidth and power are often
limited in wireless and satellite networks. When demand ex-
ceeds supply, it is desirable to have a systematic procedure in
place for fair allocation. However, there is no consensus on the
notion of fairness. Any centrally imposed notion of fairness
may appear to be unfair from an individual user’s perspective.
In this paper, we address the problem of fair resource allocation
by allowing individual users to compete for resources through
bidding for the use of the channel.

A fundamental characteristic of a wireless network is that the
channel over which communication takes place is often time-
varying. This variation of the channel quality is due to con-
structive and destructive interference between multipaths and
shadowing effects (fading). In a single cell with one transmit-
ter (base station or satellite) and multiple users communicating
through time-varying fading channels, the transmitter can send
data at higher rates to users with better channels. In time slotted
system such as the HDR system, time slots are allocated among
users according to their channel qualities.

The problem of resource allocation in wireless networks has
received much attention in recent years. In [1] the authors try
to maximize the data throughput of an energy and time con-
strained transmitter sending over a fading channel. A dynamic
programming formulation that leads to an optimal transmission
schedule is presented. Other works address the similar problem,
without consideration to fairness, include [7] and [8]. In [5], the
authors consider scheduling policies formaxmin fairness allo-
cation of bandwidth, which maximizes the allocation for the
most poorly treated sessions while not wasting any network re-

sources, in wireless ad-hoc networks. In [4], the authors de-
signed a scheduling algorithm that achievesproportional fair-
ness, a notion of fairness originally proposed by Kelly [6]. In
[9], the authors present a slot allocation scheme that maximizes
expected system performance subject to the constraint that each
user gets a fixed fraction of time slots. The authors did not use
a formal notion of fairness, but argue that their system can ex-
plicitly set the fraction of time assigned to each user. Hence,
while each user may get to use the channel an equal fraction of
the time, the resulting throughput obtained by each user may be
vastly different.

slot 1   slot 2

0.90.3  

user B

slot 1   slot 2

user A
0.20.1

Fig. 1. A communication system with one transmitter and two users with the
specified channel condition.

The following simple example illustrates the different allo-
cation that may result from the different notions of fairness.
We consider the communication system depicted in Fig. 1 and
the allocation schemes that use different notions of fairness dis-
cussed in the previous paragraph. Fig. 1 shows a communica-
tion system with one transmitter and two users A and B. We
assume that the throughput is proportional to the the channel
condition. The channel state for user A and user B in the two
time slots are (0.1, 0.2) and (0.3, 0.9) respectively (channel co-
efficient ranges from 0 to 1, and 1 is the best channel condi-
tion). The throughput result for each individual user and for
total system under different notions of fairness constraint are
given in Table I. When there is no fairness constraint, to maxi-
mize the total system throughput would require the transmitter
to allocate both time slots to user B. To achieve maxmin fair
allocation, the transmitter would allocate slot one to user B and
slot two to user A, thus resulting in a total throughput of 0.5. If
the transmitter wants to maximize the total throughput subject
to the constraint that each user gets one time slot (i.e., the ap-
proach of [9]), the resulting allocation scheme, denoted as time
fraction fair, is to give user A slot one and user B slot two. As
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a result, the total throughput is 1.0.

Throughput Throughput Total

for user A for user B throughput

No fair constraint 0 1.2 1.2
Maxmin fair 0.2 0.3 0.5
Time fraction 0.1 0.9 1.0

TABLE I
THROUGHPUT RESULTS USING DIFFERENT NOTIONS OF FAIRNESS.

In the above example, the transmitter selects an allocation
scheme to ensure an artificially chosen notion of fairness. From
Table I, we can see that from the user’s perspective, no notion
is truly fair as both users want slot two. In order to resolve this
conflict, we use a new approach which allows users to compete
for time slots. In this way, each user is responsible for its own
action and resulting throughput. We call the fraction of band-
width received by each usercompetitive fair. Using this notion
of competitive fairness, the resulting throughput obtained for
each user can serve as a reference point for comparing various
allocation schemes.

In our model, users compete for time-slots. For each time-
slot, each user has a different valuation (i.e., its own channel
condition). And each user is only interested in getting a higher
throughput for itself. Naturally, these characteristics give rise to
an auction. In this paper we consider the all-pay auction mech-
anism. Using the all-pay auction mechanism, users submit a
“bid” for the time-slot and the transmitter allocates the slot to
the user that made the highest bid. Moreover, in the all-pay
auction mechanism, the transmitter gets to keep the bids of all
users (regardless of whether or not they win the auction). Each
user is assumed to have an initial amount of money. The money
possessed by each user can be viewed as fictitious money that
serves as a mechanism to differentiate the QoS given to the var-
ious users. This fictitious money, in fact, could correspond to a
certain QoS for which the user paid in real money. As for the
solution of the slot auction game, we use the concept of Nash
equilibrium, which is a set of strategies (one for each player)
from which there are no profitable unilateral deviation.

In this paper, we consider a communication system with one
transmitter and two users. For each time slot, channel states are
independent and identically distributed with known probability
distribution. Each user wants to maximize its ownexpected
total throughput subject to an average money constraint.

We have the following main results:
• We find a unique Nash equilibrium when both channel

states are uniformly distributed over[0, 1].
• We show that the Nash equilibrium strategy pair provides

an allocation scheme that is fair in the sense that the price
per unit of throughput is the same for both users.

• We show that the Nash equilibrium strategy of this auc-
tion leads to an allocations at which total throughput is no
worse than 3/4 of the throughput obtained by an algorithm
that attempts to maximize total system throughput without
a fairness constraint.

• We provide an estimation algorithm that enables users to

accurately estimate the amount of money possessed by
their opponent so that users do not need prior knowledge
of each other’s money.

Game theoretical approaches to resource allocation problems
have been explored by many researchers recently (e.g., [2][11]).
In [2], the authors consider a resource allocation problem for
a wireless channel, without fading, where users have different
utility values for the channel. They show the existence of an
equilibrium pricing scheme where the transmitter attempts to
maximize its revenue and the users attempt to maximize their
individual utilities. In [11], the authors explore the properties
of a congestion game where users of a congested resource an-
ticipate the effect of their action on the price of the resource.
Again, the work of [11] focuses on a wireline channel with-
out the notion of wireless fading. Our work attempts to apply
game theory to the allocation of a wireless fading channel. In
particular, we show that auction algorithms are well suited for
achieving fair allocation in this environment. Other papers deal-
ing with the application of game theory to resource allocation
problems include [3][15][16].

This paper is organized as follows. In Section II, we describe
the communication system and the auction mechanism. In Sec-
tion III, the unique Nash equilibrium strategy pair and the re-
sulting throughput for each user are presented for the case that
each user can use only one bidding function. In Section IV, we
show the unique Nash equilibrium strategy pair for the case that
each user can use multiple bidding functions. In Section V, we
compare the throughput results of the Nash equilibrium strat-
egy with two other centralized allocation algorithms. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

We consider a communication environment with a single
transmitter sending data to two users over two different fad-
ing channels. We assume that there is always data to be sent
to the users. Time is assumed to be discrete, and the channel
state for a given channel changes according to a known proba-
bilistic model independently over time. The two channels are
also assumed to be independent of each other. The transmit-
ter can transmit to only one user during a particular slot with a
constant powerP . The channel fade state thus determines the
throughput that can be obtained.

For a given power level, we assume for simplicity that the
throughput is a linear function of the channel state. This can be
justified by the Shannon capacity at low signal-to-noise ratio, or
by using a fixed modulation scheme [1]. For general throughput
function, the method used in this paper applies as well. LetX i

be a random variable denoting the channel state for the channel
between the transmitter and useri, i = 1, 2. When transmitting
to useri, the throughput will then beP · X i. Without loss of
generality, we assumeP = 1 throughout this paper.

We now describe the all-pay auction rule used in this paper.
Let α andβ be theaverage amount of money available to user
1 and user 2 respectively during each time slot. We assume
that the values ofα andβ are known to both users. Both users
know the distribution ofX1 andX2. We also assume that the
exact value of the channel stateXi is revealed to useri only
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at the beginning of each time slot. During each time slot, the
following actions take place:

1) Each user submits a bid according to the channel condi-
tion revealed to it.

2) The transmitter chooses the one with higher bid to trans-
mit.

3) Once a bid is submitted by the user, it is taken by the
transmitter regardless of whether the user gets the slot or
not, i.e., no refund for the one who loses the bid.

The formulation of our auction is different from the type of
auction used in economic theory in several ways. First, we look
at a case where the number of object in the auction goes to infin-
ity. While in the current auction research, the number of object
is finite [12][13][14]. Second, in our auction formulation, the
money used for bidding does not have a direct connection with
the value of the time slot. Money is merely a tool for users
to compete for time slots, and it has no value after the auc-
tion. Therefore, it is desirable for each user to spend all of its
money. However, in auction theory, an object’s value is mea-
sured in the same unit as the money used in the bidding process,
hence their objective is to maximize the difference between the
object’s value and its cost. Lastly, in our formulation, the valu-
ation of each commodity (time-slot) changes due to the fading
channel model; a notion that is not common in economic the-
ory.

Besides the all-pay auction,first-price auction andsecond-
price auction are two other commonly used auction mecha-
nisms. In the first-price auction, each bidder submits a single
bid without seeing the others’ bids, and the object is sold to
the bidder who makes the highest bid. The winner pays its bid.
In the second price auction, each user independently submits a
single bid without seeing the others’ bids, and the object is sold
to the bidder who makes the highest bid. However, the price
it pays is thesecond-highest bidder’s bid [12]. We choose to
use the all-pay auction in this paper to illustrate the auction ap-
proach to resource allocation in wireless networks. We believe
that other auction mechanisms can be similarly applied.

The objective for each user is to design a bidding strategy,
which specifies how a user will act in every possible distin-
guishable circumstance, to maximize itsown expected through-
put per time slot subject to the expected or average money con-
straint. Once a user, say user 1, chooses a function, sayf

(i)
1 ,

for its strategy in theith slot, it bids an amount of money equal
to f

(i)
1 (x) when it sees its channel condition in theith slot is

X1 = x.
Formally, letF1 andF2 be the set of continuous and bounded

real-valued functions with finite first and second derivative over
the support ofX1 andX2 respectively. Then, the strategy space
for user 1, sayS1, and user 2, sayS2, are defined as follows:

S1 =
{

f
(1)
1 , · · · , f

(n)
1 ∈ F1

∣∣∣ 1
n

n∑
i=1

E[f (i)
1 (X1)] = α

}

S2 =
{

f
(1)
2 , · · · , f

(n)
2 ∈ F2

∣∣∣ 1
n

n∑
i=1

E[f (i)
2 (X2)] = β

} (1)

For each user, a strategy is a sequence of bidding functions
f (1), · · · , f (n). Without loss of generality, we restrict each user

to haven different bidding functions, wheren can be chosen as
an arbitrarily large number. Note that users choose a strategy
for a block ofn time slots instead of just for a single time slot,
one bidding function for each slot. In order to maximize the
overall throughput (over infinite horizon), each user chooses
bidding functions to maximize the expected total throughput
over this block ofn slots. The termE[f (i)

1 (X1)] denotes the
expected amount of money spent by user 1 if it uses bidding
functionf

(i)
1 for theith slot in the block.

We first consider a special class of strategies in which each
user can use only a single bidding function. More specifically,
by settingf1 = f

(1)
1 = · · · = f

(n)
1 andf2 = f

(1)
2 = · · · =

f
(n)
2 , we have the following:

S̄1 =
{
f1 ∈ F1

∣∣∣ E[f1(X1)] = α
}

S̄2 =
{
f2 ∈ F2

∣∣∣ E[f2(X2)] = β
} (2)

By considering first the set of strategies in̄S1 and S̄2, we are
able to find the Nash equilibrium strategy pair within the setS1

andS2.
Given a strategy pair(f1, f2), wheref1 ∈ S̄1 andf2 ∈ S̄2,

the expected throughput or payoff function for user 1 is defined
as the following assuming the constant powerP = 1:

G1(α, β) = EX1,X2 [X1 · 1f1(X1)≥f2(X2)] (3)

where

1f1(X1)≥f2(X2) =
{

1 if f1(X1) ≥ f2(X2)
0 otherwise

Similarly, the throughput function for user 2 assumingP = 1:

G2(α, β) = EX1,X2 [X2 · 1f2(X2)>f1(X1)] (4)

Throughout this paper, for simplicity, we let the channel state
Xi be uniformly distributed over[0, 1]. However, our approach
can be extended to the case where the channel state has a gen-
eral distribution. Due to space limitations, we omit the more
complex analysis for general channel state distribution.

III. U NIQUE NASH EQUILIBRIUM STRATEGY WITH A

SINGLE BIDDING FUNCTION

We present in this section a unique Nash equilibrium strategy
pair(f ∗

1 , f∗
2 ). A strategy pair(f ∗

1 , f∗
2 ) is said to be in Nash equi-

librium if f ∗
1 is the best response for user 1 to user 2’s strategy

f∗
2 , andf ∗

2 is the best response for user 2 to user 1’s strategyf ∗
1 .

We consider here the case where both users choose their strate-
gies from the strategy spacēS1 andS̄2 (i.e., the single bidding
function strategy) and the value ofα andβ are known to both
users.

To get the Nash equilibrium strategy pair, we first argue that
an equilibrium bidding function must be nondecreasing. To see
this, consider an arbitrary bidding functionf such thatf(a) >
f(b) for somea < b. If user 1 choosesf as its bidding function,
user 1 will be better off if it bidsf(b) when the channel state
is a andf(a) when the channel state isb. This way, its odds
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of winning the slot when the channel state isb, which is more
valuable to it, will be higher than before, and it has an incentive
to change its strategy (i.e.,f is not an equilibrium strategy).
Hence, we conclude that, for each user, an equilibrium bidding
function must be nondecreasing.

We further restrict users’ bidding functions to bestrictly in-
creasing for technical reason which will be explained later.
There is no loss of generality in this assumption because any
continuous, bounded, nondecreasing function can be approxi-
mated by astrictly increasing function arbitrarily closely.

Next, we show some useful properties associated with the
equilibrium strategy pair(f ∗

1 , f∗
2 ). All of the proofs in this pa-

per are omitted for brevity.
Lemma 1: If (f ∗

1 , f∗
2 ) is a Nash equilibrium strategy pair,

f∗
1 (1) = f∗

2 (1).
We have just established thatf ∗

1 (1) = f∗
2 (1) is a necessary

condition for(f ∗
1 , f∗

2 ) to be an equilibrium strategy pair. We
also find thatf ∗

1 (0) = f∗
2 (0) = 0 since it does not make sense

to bid for a slot with zero channel state. Thus, from now on, to
find the Nash equilibrium strategy pair(f ∗

1 , f∗
2 ), we will con-

sider only the function pairf1 ∈ S̄1 andf2 ∈ S̄2 that are strictly
increasing and satisfying the above two boundary conditions
(i.e.,f1(1) = f2(1) andf1(0) = f2(0) = 0).

These two boundary conditions, together with strictly in-
creasing property off1 ∈ S̄1 andf2 ∈ S̄2, make the inverse of
f1 andf2 well defined. Thus, we are able to define the follow-
ing terms. With user 2’s strategyf2 fixed, letg(1)

f2
: (x1, b) → R

denote user 1’s expected throughput of a slot conditioning on
the following events:

• User 1’s channel state isX1 = x1.
• User 1’s bid isb.

Specifically, we can the write the equation:

g
(1)
f2

(x1, b) = x1 · P (f2(X2) ≤ b) (5)

whereP (f2(X2) ≤ b) is the probability that user 1 wins the
time slot. Consequently, using a strategyf1, user 1’s throughput
is given by:

G1(α, β) =
∫ 1

0

g
(1)
f2

(x1, f1(x1)) · pX1(x1) dx1

=
∫ 1

0

g
(1)
f2

(x1, f1(x1)) dx1.

(6)

where the last equality results from the uniform distribution as-
sumption.

With user 1’s strategyf1 fixed, similar terms for user 2 can
be defined.

g
(2)
f1

(x2, b) = x2 · P (f1(X1) ≤ b)

Then, user 2’s throughput is given by:

G2(α, β) =
∫ 1

0

g
(2)
f1

(x2, f2(x2)) · pX2(x2) dx2

=
∫ 1

0

g
(2)
f1

(x2, f2(x2)) dx2.

(7)

Due to the uniformly distributed channel state,P (f2(X2) ≤ b)
is given by

P (f2(X2) ≤ b) = P (X2 ≤ f−1
2 (b)) = f−1

2 (b)

wheref−1
2 is well defined. Thus, we can rewrite Eq. (5) as

g
(1)
f2

(x1, b) = x1 · f−1
2 (b).

Hence we have,

G1(α, β) =
∫ 1

0

x1 · f−1
2 (f1(x1)) dx1 (8)

G2(α, β) =
∫ 1

0

x2 · f−1
1 (f2(x2)) dx2 (9)

The following lemma gives a necessary and sufficient condi-
tion of a Nash equilibrium strategy pair. For convenience, we

denote
∂g

(1)
f2

(x1,b)

∂b |||b=b∗ (i.e., the marginal gain atb = b∗) as

Dg
(1)
f2

(x1, b
∗).

Lemma 2: A strategy pair(f ∗
1 , f∗

2 ) is a Nash equilibrium

strategy pair if and only ifDg
(1)
f∗
2

(x1, f
∗
1 (x1)) = c1 and

Dg
(2)
f∗
1

(x2, f
∗
2 (x2)) = c2, for some constantsc1 andc2, for all

x1 ∈ [0, 1] and allx2 ∈ [0, 1].
To understand the lemma intuitively, suppose there exists

x 
= x̃ such thatDg
(1)
f∗
2

(x, f∗
1 (x)) > Dg

(1)
f∗
2

(x̃, f∗
1 (x̃)). Re-

ducing the bid at̃x to f ∗
1 (x̃) − δ and increasing the bid atx

to f∗
1 (x) + δ will result in an increase in the throughput by

(Dg
(1)
f∗
2

(x, f∗
1 (x)) − Dg

(1)
f∗
2

(x̃, f∗
1 (x̃))) · δ. Thus, user 1 has an

incentive to change its bidding function, and(f ∗
1 , f∗

2 ) cannot be
a Nash equilibrium strategy pair in this case.

With Lemma 2, we are able to find the unique Nash equilib-
rium strategy pair. The exact form of the equilibrium bidding
strategies are presented in the following Theorem.

Theorem 1: Under the assumption of a single bidding func-
tion, the following is a unique Nash equilibrium strategy pair
for the auction:

f∗
1 (x) = c · xγ+1 (10)

f∗
2 (x) = c · x 1

γ +1 (11)

where the constantγ andc are chosen such that

∫ 1

0

c · xγ+1 dx = α (12)

∫ 1

0

c · x 1
γ +1 dx = β (13)

Equations (12) and (13) impose the average money constraints.
Fig. 2 shows an example of the Nash equilibrium bidding strat-
egy pair whenα = 1 andβ = 2. Since user 1 has less money
than user 2, user 1 concentrates its bidding on time slots with
very good channel state.

Fig. 3 shows the resulting allocation scheme when both users
employ the Nash equilibrium strategy shown in Fig. 2. Above
the curve, time slots will be allocated to user 2 since user 2’s
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Fig. 2. An example of Nash equilibrium strategy pair forα = 1 andβ = 2.
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Fig. 3. Allocation scheme from Nash equilibrium strategy pair forα = 1 and
β = 2.

bid is higher than user 1’s in this region. Similarly, user 1 gets
the slots below the curve. Here, user 2 is allocated more slots
than user 1 since it has more money.

If both players use the Nash equilibrium strategy, the ex-
pected throughput obtained are given by:

G1(α, β) =
α

α + β +
√

(α − β)2 + αβ
(14)

G2(α, β) =
β

α + β +
√

(α − β)2 + αβ
(15)

As can be seen, the ratio of the throughput obtainedG1(α,β)
G2(α,β)

is equal to α
β which is the ratio of the money each user had

initially. Thus, the Nash equilibrium strategy pair provides an
allocation scheme that is fair in the sense that the price per unit
of throughput is the same for both users.

IV. U NIQUE NASH EQUILIBRIUM STRATEGY WITH

MULTIPLE BIDDING FUNCTIONS

In the previous section, we restricted the strategy space of
each user to be a single bidding function (i.e.,S̄1 and S̄2) in-

stead of a sequence of bidding functions (i.e.,S1 andS2). How-
ever, the money constraint imposed upon each user is a long
term average money constraint. A natural question to ask is the
following: Is it profitable for an individual user to change its
bidding functions over time while satisfying the long term av-
erage money constraint? Therefore, in this section, we allow the
users to use a strategy within a broader class of strategy space,
S1 andS2, and explore whether there is an incentive for a user
to do so (i.e., whether there exists a Nash equilibrium strategy
so that it can increase its throughput).

To choose a strategy (i.e., a sequence of bidding functions)
from the strategy spaceS1 or S2, a user encounters two prob-
lems. First, it must decide how to allocate its money among
thesen bidding functions so that the average money constraint
is still satisfied. Second, once the money allocated to theith
bidding function is specified, a user has to choose a bidding
function for theith slot. The second problem is already solved
in the previous section (see Theorem 1). In this section, we
will focus on the first problem that a user encounters, specifi-
cally, the problem of how to allocate money between the bid-
ding functions while satisfying the following condition: The
total expected amount of money for thesequence of n bidding
functions isn · α for user 1 andn · β for user 2.

More precisely, the strategy space or possible actions that can
be taken by users are the following:

Ŝ1 = {α1, · · · , αn | α1 + · · · + αn = n · α}
Ŝ2 = {β1, · · · , βn | β1 + · · · + βn = n · β}

The objective of each user is still to maximize its own through-
put. When user 1 and user 2 allocateαi andβi for their ith
bidding function which is given in Theorem 1, the payoff func-
tions areG1(αi, βi) for user 1 andG2(αi, βi) for user 2.

The following lemma gives us a Nash equilibrium strategy
pair for the auction game described in this section.

Lemma 3: Given that user 2’s strategy is to allocate its
money evenly among its bidding functions (i.e.,β i = β, i =
1 · · ·n), user 1’s best response is to allocate its money evenly
as well (i.e.,αi = α, i = 1 · · ·n); and vice versa. Therefore, a
Nash equilibrium strategy pair for this auction is for both users
to allocate their money evenly.

We have already obtained a Nash equilibrium strategy pair
from the above Lemma. The following theorem states that this
Nash equilibrium strategy pair is in fact unique within the strat-
egy space considered.

Theorem 2: For the auction in this section, a unique Nash
equilibrium strategy for both users is to allocate their money
evenly among the bidding functions.

In this section, users are given more freedom in choosing
their strategies (i.e., they can choosen different bidding func-
tions). However, as Theorem 2 shows, the unique Nash equi-
librium strategy pair is for each user to use a single bidding
function from its strategy space. Thus, the throughput result
obtained in this broader strategy space-S1 andS2–is the same
as the throughput result from previous section. Therefore, there
is no incentive for a user to use different bidding functions.
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V. COMPARISON WITH OTHER ALLOCATION SCHEMES

To this end, we have a unique Nash equilibrium strategy pair
and the resulting throughput when both players choose to use
the Nash equilibrium strategy. Inevitably, due to the fairness
constraint, total system throughput will decrease as compared
to the maximum throughput attainable without any fairness
constraint. Hence we would like to compare the total through-
put of the Nash equilibrium strategy to that of an unconstrained
strategy. We address this question by first considering an al-
location scheme that maximizes total throughput subject to no
constraint. Then, we investigate the throughput of another cen-
tralized allocation scheme that maximize the total throughput
subject to the constraint that the resulting throughput of indi-
vidual user is kept at certain ratio.

A. Maximizing Throughput with No Constraint

To maximize throughput without any constraints, the trans-
mitter sends data to the user with a better channel state
during each time slot. Then the expected throughput is
E[max{X1, X2}]. Since X1 and X2 are independent uni-
formly distributed in[0, 1], we haveE[max{X1, X2}] = 2

3 .
Using the Nash equilibrium playing strategy, the total expected
system throughput,G1(α, β)+G2(α, β), is 1

2 in the worst case
(i.e., one users gets all of the time slots while the other user is
starving).Thus, the channel allocation scheme proposed in this
paper can achieve at least 75 percent of the maximum attain-
able throughput. This gives us a lower bound of the throughput
performance of the allocation scheme derived from the Nash
equilibrium pair.

B. Maximizing Throughput with Constant Throughput Ratio
Constraint

Now, we investigate an allocation scheme with a fairness
constraint that requires the resulting throughput of the users to
be kept at a constant ratio. Specifically, letG1 andG2 denote
the expected throughput for user 1 and user 2 respectively. We
have the following optimization problem:

max G1 + G2

subj.
G1

G2
= a

(16)

wherea is a positive real number.
The resulting optimal allocation scheme for the above prob-

lem is of the form shown in Fig. 4. The space spanned by
X1 andX2 is divided into two regions by the separation line
X2 = c · X1, wherec is some positive real number. Above the
line (i.e.,X2 > c · X1), the transmitter will assign the slot to
user 2. Below the line (i.e.,X2 < c · X1), the transmitter will
assign the slot to user 1.

To prove the above, we use a method that is similar to the
one in [9]. Specifically, letA : (X1, X2) → {1, 2} be an al-
location scheme that maps a slot, in which channel states are
X1 andX2 to either user 1 or user 2. By using an allocation
schemeA, the resulting throughput for user 1 and user 2 are

GA
1 = E[X1 · 1A(X1,X2)=1] andGA

2 = E[X2 · 1A(X1,X2)=2]
respectively. Now, we define an allocation scheme as follows:

A∗(X1, X2) =
{

1 if X1(1 + λ∗) ≥ X2(1 − a · λ∗)
2 otherwise

whereλ∗ is chosen such thatGA∗
1 /GA∗

2 = a is satisfied. It is
straightforward to verify that suchλ∗ exists.

Consider an arbitrary allocation schemeA that satisfies
GA

1 /GA
2 = a. We have

E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2]
= E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2]

+ λ∗(E[X1 · 1A(X1,X2)=1] − aE[X2 · 1A(X1,X2)=2])
= E[(X1 + λ∗X1) · 1A(X1,X2)=1]

+ E[(X2 − aλ∗X2) · 1A(X1,X2)=2]
≤ E[(X1 + λ∗X1) · 1A∗(X1,X2)=1]

+ E[(X2 − aλ∗X2) · 1A∗(X1,X2)=2]
= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2]

+ λ∗(E[X1 · 1A∗(X1,X2)=1] − aE[X2 · 1A∗(X1,X2)=2])
= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2]

(17)

1X2X
2X

1X

= c

0 1 user 1

user 2

1

Fig. 4. The optimal allocation scheme to achieve constant throughput ratio
fairness.

The inequality in the middle is from the definition ofA∗.
Specifically, if we were asked to choose an allocation scheme
A to maximizeE[(X1 + λ∗X1) · 1A(X1,X2)=1] + E[(X2 −
aλ∗X2) · 1A(X1,X2)=2]. Then,A∗ will be an optimal scheme
from its definition. Thus, we are able to show thatA∗(X1, X2)
is an optimal solution to the optimization problem in (16).

To find the slopec in Fig.4, we first write the throughput for
each user:

GA∗
1 =

∫ 1

0

∫ cx1

0

x1 dx1 dx2 =
1
3
c (18)

and

GA∗
2 =

∫ c

0

∫ 1
c x2

0

x2 dx1dx2 +
∫ 1

c

x2 dx2

=
1
2
− 1

6
c2

(19)

SinceGA
1 /GA

2 = a, we getc = −1+
√

1+3a2

a .
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Using the Nash equilibrium strategy pair, the ratio of the
resulting throughput pairG1(α,β)

G2(α,β) is the same as the ratio of
money individual user possess (α

β ). For the optimization prob-
lem described in (16), by settinga = α/β, we compare the
resulting throughput with the throughput obtained when both
users employ the Nash equilibrium strategy. Fig. 5 and Fig. 6
show the comparison. For both users, the Nash equilibrium
throughput result is very close to the throughput obtained by
solving the constrained optimization problem (within 97 per-
cent to be precise).
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Fig. 5. Throughput result comparison for user 1.
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Fig. 6. Throughput result comparison for user 2.

VI. CONCLUSION

We apply an auction algorithm to the problem of fair allo-
cation of a wireless fading channel. Using the all-pay auction
mechanism, we are able to obtain a unique Nash equilibrium
strategy. Our strategy allocated bandwidth to the users in ac-
cordance with the amount of money that they possess. Hence,
this scheme can be viewed as a mechanism for providing qual-
ity of service (QoS) differentiation; whereby users are given
fictitious money that they can use to bid for the channel. By
allocating users different amounts of money, the resulting QoS
differentiation can be achieved.

We also show that the Nash equilibrium strategy of this auc-
tion leads to an allocation at which total throughput is no worse
than 3/4 the maximum possible throughput when fairness con-
straints are not imposed (i.e., slots are allocated to the user with
the better channel). In this paper, we focused on finding a

Nash equilibrium strategy when both channels are uniformly
distributed. However, as we mentioned earlier, our analysis can
be extended to channel state with general distribution. An in-
teresting extension could be to find the exact form of a Nash
equilibrium with general channel state distribution. Another di-
rection for future work is the application of different auction
mechanisms (e.g., first-price and second-price).
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