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Abstract—We develop a novel auction-based algorithm to allow  sources, in wireless ad-hoc networks. In [4], the authors de-
;SIHStO faitr_ly Comphde_for a;]Nir:lbeSS fadibUg ?ha{‘hnd-hwe ;S%the signed a scheduling algorithm that achiepesportional fair-
al-pay auction mecnanism wher eby user big tor thechannél, GUr- g 5 notion of fairness originally proposed by Kelly [6]. In
Lnsgere?ﬁgtt'ﬁfkg’h%aﬁh? g}gfx?ﬁfua;: g; :22 guznnag aﬂ?]g: [9], the authors present a slot aIIocgtion scheme that_maximizes
the assumption that each user has a limited budget for bidding, €Xpected system performance subject to the constraint that each
we show the existence of a unique Nash equilibrium strategy. We  user gets a fixed fraction of time slots. The authors did not use
show that the strategy achieves a throughput allocation for each  a formal notion of fairness, but argue that their system can ex-
user that isproportional tothe user’sbudget and establish that the  yicitly set the fraction of time assigned to each user. Hence,

ﬁ%g;]gﬁgqaxg rtgtrezl;grspgtt lrg;\é/eg (t))fy vf/rt:eatuirnslg: Qgtgfeglalﬂneg;; while each user may get to use the channel an equal fraction of

optimal centralized allocation scheme that does not take fairness  the time, the resulting throughput obtained by each user may be
into account. vastly different.

Index Terms—Resour ce allocation, fairness, auction.
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I. INTRODUCTION
Network resources such as bandwidth and power are often ﬁ/
limited in wireless and satellite networks. When demand ex- \\ o
ceeds supply, it is desirable to have a systematic procedure in e - @ user B

place for fair allocation. However, there is no consensus on the
notion of fairness. Any centrally imposed notion of fairness
may appear to be unfair from an individual user’s perspectiveig. 1. A communication system with one transmitter and two users with the
In this paper, we address the problem of fair resource allocatigpfcified channel condition.

by allowing individual users to compete for resources through

bidding for the use of the channel. The following simple example illustrates the different allo-

A fundamental characteristic of a wireless network is that theation that may result from the different notions of fairness.
channel over which communication takes place is often tim&Ve consider the communication system depicted in Fig. 1 and
varying. This variation of the channel quality is due to conthe allocation schemes that use different notions of fairness dis-
structive and destructive interference between multipaths acdssed in the previous paragraph. Fig. 1 shows a communica-
shadowing effects (fading). In a single cell with one transmition system with one transmitter and two users A and B. We
ter (base station or satellite) and multiple users communicatingsume that the throughput is proportional to the the channel
through time-varying fading channels, the transmitter can seedndition. The channel state for user A and user B in the two
data at higher rates to users with better channels. In time slottade slots are (0.1, 0.2) and (0.3, 0.9) respectively (channel co-
system such as the HDR system, time slots are allocated amefficient ranges from 0 to 1, and 1 is the best channel condi-
users according to their channel qualities. tion). The throughput result for each individual user and for

The problem of resource allocation in wireless networks hagatal system under different notions of fairness constraint are
received much attention in recent years. In [1] the authors tgiven in Table I. When there is no fairness constraint, to maxi-
to maximize the data throughput of an energy and time comize the total system throughput would require the transmitter
strained transmitter sending over a fading channel. A dynantiz allocate both time slots to user B. To achieve maxmin fair
programming formulation that leads to an optimal transmissiailocation, the transmitter would allocate slot one to user B and
schedule is presented. Other works address the similar probleshot two to user A, thus resulting in a total throughput of 0.5. If
without consideration to fairness, include [7] and [8]. In [5], thehe transmitter wants to maximize the total throughput subject
authors consider scheduling policies foaxmin fairness allo-  to the constraint that each user gets one time slot (i.e., the ap-
cation of bandwidth, which maximizes the allocation for th@roach of [9]), the resulting allocation scheme, denoted as time
most poorly treated sessions while not wasting any network rieaction fair, is to give user A slot one and user B slot two. As

0.3 0.9
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a result, the total throughputis 1.0. accurately estimate the amount of money possessed by
their opponent so that users do not need prior knowledge

Throughput | Throughput Total of each other’'s money.

foruser A | foruserB | throughput Game theoretical approaches to resource allocation problems
No fair constraint 0 1.2 1.2 have been explored by many researchers recently (e.g., [2][11]).
Maxmin fair 0.2 0.3 0.5 In [2], the authors consider a resource allocation problem for
Time fraction 0.1 0.9 1.0 a wireless channel, without fading, where users have different

utility values for the channel. They show the existence of an
equilibrium pricing scheme where the transmitter attempts to
maximize its revenue and the users attempt to maximize their
individual utilities. In [11], the authors explore the properties

of a congestion game where users of a congested resource an-

In the above example, the transmitter selects an allocati@isipate the effect of their action on the price of the resource.
scheme to ensure an artificially chosen notion of fairness. Frosgain, the work of [11] focuses on a wireline channel with-
Table |, we can see that from the user’s perspective, no notigat the notion of wireless fading. Our work attempts to apply
is truly fair as both users want slot two. In order to resolve thigame theory to the allocation of a wireless fading channel. In
conflict, we use a new approach which allows users to compeigrticular, we show that auction algorithms are well suited for
for time slots. In this way, each user is responsible for its owsichieving fair allocation in this environment. Other papers deal-
action and resulting throughput. We call the fraction of bandng with the application of game theory to resource allocation
width received by each useompetitive fair. Using this notion problems include [3][15][16].
of competitive fairness, the resulting throughput obtained for This paper is organized as follows. In Section II, we describe
each user can serve as a reference point for comparing varieté communication system and the auction mechanism. In Sec-
allocation schemes. tion 111, the unique Nash equilibrium strategy pair and the re-

In our model, users compete for time-slots. For each timeulting throughput for each user are presented for the case that
slot, each user has a different valuation (i.e., its own channgich user can use only one bidding function. In Section IV, we
condition). And each user is only interested in getting a higheghow the unique Nash equilibrium strategy pair for the case that
throughput for itself. Naturally, these characteristics give rise tach user can use multiple bidding functions. In Section V, we
an auction. In this paper we consider the all-pay auction mectompare the throughput results of the Nash equilibrium strat-
anism. Using the all-pay auction mechanism, users submikgy with two other centralized allocation algorithms. Finally,
“bid” for the time-slot and the transmitter allocates the slot tgection VI concludes the paper.
the user that made the highest bid. Moreover, in the all-pay
auction mechanism, the transmitter gets to keep the bids of all
users (regardless of whether or not they win the auction). Each
user is assumed to have an initial amount of money. The moneyWe consider a communication environment with a single
possessed by each user can be viewed as fictitious money thatsmitter sending data to two users over two different fad-
serves as a mechanism to differentiate the QoS given to the viagg channels. We assume that there is always data to be sent
ious users. This fictitious money, in fact, could correspond tota the users. Time is assumed to be discrete, and the channel
certain QoS for which the user paid in real money. As for thstate for a given channel changes according to a known proba-
solution of the slot auction game, we use the concept of Nabllistic model independently over time. The two channels are
equilibrium, which is a set of strategies (one for each playeslso assumed to be independent of each other. The transmit-
from which there are no profitable unilateral deviation. ter can transmit to only one user during a particular slot with a

In this paper, we consider a communication system with or@nstant poweP. The channel fade state thus determines the
transmitter and two users. For each time slot, channel states @ughput that can be obtained.
independent and identically distributed with known probability For a given power level, we assume for simplicity that the
distribution. Each user wants to maximize its osipected throughputis a linear function of the channel state. This can be
total throughput subject to an average money constraint. justified by the Shannon capacity at low signal-to-noise ratio, or

TABLE |
THROUGHPUT RESULTS USING DIFFERENT NOTIONS OF FAIRNESS

Il. PROBLEM FORMULATION

We have the following main results: by using a fixed modulation scheme [1]. For general throughput
« We find a unique Nash equilibrium when both channdlinction, the method used in this paper applies as well X gt
states are uniformly distributed ovier, 1]. be a random variable denoting the channel state for the channel

« We show that the Nash equilibrium strategy pair providgsetween the transmitter and ugei = 1, 2. When transmitting
an allocation scheme that is fair in the sense that the priteuser:, the throughput will then bé - X;. Without loss of
per unit of throughput is the same for both users. generality, we assume = 1 throughout this paper.

« We show that the Nash equilibrium strategy of this auc- We now describe the all-pay auction rule used in this paper.
tion leads to an allocations at which total throughput is nbet o and3 be theaverage amount of money available to user
worse than 3/4 of the throughput obtained by an algorithrh and user 2 respectively during each time slot. We assume
that attempts to maximize total system throughput withotlhat the values oft and3 are known to both users. Both users
a fairness constraint. know the distribution ofX; and X,. We also assume that the

« We provide an estimation algorithm that enables users éxact value of the channel stal€; is revealed to user only
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at the beginning of each time slot. During each time slot, the haven different bidding functions, where can be chosen as
following actions take place: an arbitrarily large number. Note that users choose a strategy

1) Each user submits a bid according to the channel condidr a block ofn time slots instead of just for a single time slot,

tion revealed to it. one bidding function for each slot. In order to maximize the

2) The transmitter chooses the one with higher bid to transverall throughput (over infinite horizon), each user chooses

mit. bidding functions to maximize the expected total throughput

3) Once a bid is submitted by the user, it is taken by thever this block ofn slots. The termZ| 1(“ (X1)] denotes the

transmitter regardless of whether the user gets the slotexpected amount of money spent by user 1 if it uses bidding
not, i.e., no refund for the one who loses the bid. functionffi) for thesth slot in the block.

The formulation of our auction is different from the type of e first consider a special class of strategies in which each
auction used in economic theory in several ways. First, we lo@fser can use only a single bidding function. More specifically,
_atacas_ev_vhere the numberpfobjectlnthe auction goestm_nf&- settingf; = f1<1> L fl(n) andf, = fz(l) L
ity. While in the current auction research, the number of obje
is finite [12][13][14]. Second, in our auction formulation, the’?2

n)

, we have the following:

money used for bidding does not have a direct connection with _— B
the value of the time slot. Money is merely a tool for users S1= {fl € ‘ Elfi(X0)] = O‘}
to compete for time slots, and it has no value after the auc- o { ‘ }
) L . . So = e Iy | Elfa(X2)] =
tion. Therefore, it is desirable for each user to spend all of its 2 F2 2 [£2(X2)] = 6
money. However, in auction theory, an object’s value is me%
R

@

sured in the same unit as the money used in the bidding proc ¥ considering first the set of strategiessh and 5z, we are

hence their objective is to maximize the difference between tanldego find the Nash equilibrium strategy pair within the Set
2.

object’s value and its cost. Lastly, in our formulation, the valu=" —, . . -
J y Given a strategy paiffi, f2), wheref; € S; andfy € Sa,

ation of each commodity (time-slot) changes due to the fadin . ) )
channel model; a notion that is not common in economic thé-e expected throughput or payoff function for user 1 is defined

ory. as the following assuming the constant poves 1:
Besides the all-pay auctiofirst-price auction andsecond-

price auction are two other commonly used auction mecha-

nisms. In the first-price auction, each bidder submits a sing}ﬂ1ere

bid without seeing the others’ bids, and the object is sold to

the bidder who makes the highest bid. The winner pays its bid. 1t fi(Xy) > fo(X2)

In the second price auction, each user independently submits a 1 (X1)2f2(X2) = { 0 otherwise

single bid without seeing the others’ bids, and the object is sold )

to the bidder who makes the highest bid. However, the pric@milarly, the throughput function for user 2 assumifg- 1:

it pays is thesecond-highest bidder’s bid [12]. We choose to

use the all-pay auction in this paper to illustrate the auction ap- Ga(a, f) = Exy xa[X2 - Ly 0xa)> fa(x0)] Q)

proach to resource allocation in wireless networks. We be”eveThroughoutthis paper, for simplicity, we let the channel state

that other auction mechanisms can be similarly applied. X be uniformly distributed ovelp, 1]. However, our approach

The Obje(.:t.'ve for each user IS to d_e5|gn a b'dd"?g S”?“‘?gé’an be extended to the case where the channel state has a gen-
which specifies how a user will act in every possible distin:

guishable circumstance, to maximizedtsn expected through- eral distribution. Due to space limitations, we omit the more

put per time slot subject to the expected or average money C(():rc])_mplex analysis for general channel state distribution.

straint. Once a user, say user 1, chooses a functionfgé,y
for its strategy in theth slot, it bids an amount of money equal ~ !!l- UNIQUE NASH EQUILIBRIUM STRATEGY WITH A
to ffi)(:c) when it sees its channel condition in tfta slot is SINGLE BIDDING FUNCTION
X, =z We present in this section a unique Nash equilibrium strategy
Formally, letF; andF, be the set of continuous and boundedair (f1, f5). A strategy pai( f;, f5) is said to be in Nash equi-
real-valued functions with finite first and second derivative ovdibrium if f; is the best response for user 1 to user 2’s strategy
the support of{; andX, respectively. Then, the strategy spacgs, andfs is the best response for user 2 to user 1's strafggy
for user 1, says, and user 2, say,, are defined as follows: We consider here the case where both users choose their strate-
gies from the strategy spa andsS, (i.e., the single bidding
& _ function strategy) and the value afand are known to both
Sy = {ffl),m SMe R ‘ = ZE[ @ (x))] = a} users.
ni ) To get the Nash equilibrium strategy pair, we first argue that
) (n) 1> @ an equilibrium bidding function must be nondecreasing. To see
Sy = { 2 o fy €F ‘ - > BV (X)) = ﬁ} this, consider an arbitrary bidding functignsuch thatf (a) >
=1 f(b) for somea < b. If user 1 chooseg as its bidding function,
For each user, a strategy is a sequence of bidding functiaumser 1 will be better off if it bidsf (b) when the channel state
fO ... £ Without loss of generality, we restrict each useis a and f(a) when the channel state s This way, its odds

Gi(a, B) = Ex, x,[X1 - 1y, (x1)> fa(X2)] (3)
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of winning the slot when the channel statebjsvhich is more Due to the uniformly distributed channel staf&,f2(X2) < b)
valuable to it, will be higher than before, and it has an incentivis given by

to change its strategy (i.ef, is not an equilibrium strategy).

Hence, we conclude that, for each user, an equilibrium bidding P(fa(Xs) <b) = P(X5 < fy'(b)) = f5 ' (b)
function must be nondecreasing.

We further restrict users’ bidding functions to &eictly in-
creasing for technical reason which will be explained later. ) .
There is no loss of generality in this assumption because any 9y, (€1,0) = @1 - f57(b).
continuous, bounded, nondecreasing function can be approﬁiénce we have
mated by astrictly increasing function arbitrarily closely. ’

wheref;1 is well defined. Thus, we can rewrite Eq. (5) as

Next, we show some useful properties associated with the 1
equilibrium strategy paitf;, f3). All of the proofs in this pa- Gi(a, B) = / xy - fy ' (fr(z)) dan (8)
per are omitted for brevity. o

Lemmal: If (fy, fy) is a Nash equilibrium strategy pair, Golo, ) = / zo - [T (falxa)) day Q)
i) = f3(1). 0

We have just*est*abllshed thAt(1) = f3(1) is anecessary e following lemma gives a necessary and sufficient condi-
condl_tlon for(f7, f3) to be an eq_uﬂlbrlum strategy pair. Weyion of 4 Nash equilibrium strategy pair. For convenience, we
also find thatf;(0) = f5(0) = 0 since it does not make sense 99D (21,0 ] _ _
to bid for a slot with zero channel state. Thus, from now on, tdenote—25——|,—- (i.e., the marginal gain & = b*) as
find the Nash equilibrium strategy pdif;, f), we will con- Dgg)(ml, b*).
sider only the function paif; € S; andf, € Sy thatarestrictly  Lemma2: A strategy pair(f;, f5) is a Nash equilibrium
e o sty e i oS s 1 1o 5 5111 o

e, fi(l) = fa 1(0) = f2(0) = 0). 2 .

These two boundary conditions, together with strictly inpg;'{*)("m’f2 (z2)) = c2, for some constanis; andc,, for all
creasing property of; € Sy andf, € S, make the inverse of %1 € [0,1]and allz> € [0,1). _
f1 and f» well defined. Thus, we are able to define the follow- 10 understand the(1>lemma lntU|t|ver,(f)uppose there exists
ing terms. With user 2's stratefy fixed, Ietggé> :(z1,b) =R ® # I suchthatDgy (z, fi(z)) > Dg;. (7, fi(7)). Re-
denote user 1's expected throughput of a slot conditioning ¢hicing the bid at: to f;(Z) — ¢ and increasing the bid at

the following events: to fi(z) + 6 will result in an increase in the throughput by
« User 1's channel state i§; = z;. (Dgl%)(ac, fi(x) — Dg}? (7, f{(2))) - 6. Thus, user 1 has an
o User 1's bid ish. incentive to change its bidding function, aftf', f5) cannotbe
Specifically, we can the write the equation: a Nash equilibrium strategy pair in this case.
With Lemma 2, we are able to find the unique Nash equilib-
gg)(ajh b) = 1 - P(f2(X2) < b) (5) rium strategy pair. The exact form of the equilibrium bidding

strategies are presented in the following Theorem.
where P(f2(X32) < b) is the probability that user 1 wins the Theorem 1: Under the assumption of a single bidding func-
time slot. Consequently, using a stratggyuser 1's throughput tion, the following is a unique Nash equilibrium strategy pair

is given by: for the auction:
1 fi(@) =c-a7tt (10)
Gr(e,0) = [ of2 @, fi@) - px, (o) do :
1(e, ) | (@1, fi(z1)) - px, (z1) dy fH@) = e gt 1)
" (6)
= / 9% (@1, fi(21)) dy. where the constant andc are chosen such that
0
1
where the last equality results from the uniform distribution as- / c -2 dr = a (12)
sumption. 0
With user 1's strategy; fixed, similar terms for user 2 can 1 1
be defined. /O c v dr = 13)

) = 20 - <
95, (v2,0) = w2 - P(fi(X1) < b) Equations (12) and (13) impose the average money constraints.

Fig. 2 shows an example of the Nash equilibrium bidding strat-

Then, user 2's throughput is given by: > ‘
anp d y egy pair where = 1 and = 2. Since user 1 has less money

1 than user 2, user 1 concentrates its bidding on time slots with
Ga(a, B) = / gg)(l’m fa(x2)) - px, (22) dwa very good channel state.
0_1 ©) Fig. 3 shows the resulting allocation scheme when both users
= / 9}2)(9627 fa(z2)) da. employ the Nash equilibrium strategy shown in Fig. 2. Above
! the curve, time slots will be allocated to user 2 since user 2's
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Bidding function for user 1 with o= 1 and =2 stead of a sequence of bidding functions (i%9. andsS-). How-

‘ ‘ ‘ ‘ ever, the money constraint imposed upon each user is a long
term average money constraint. A natural question to ask is the
following: Is it profitable for an individual user to change its
bidding functions over time while satisfying the long term av-
erage money constraint? Therefore, in this section, we allow the
users to use a strategy within a broader class of strategy space,
S1 andS,, and explore whether there is an incentive for a user
to do so (i.e., whether there exists a Nash equilibrium strategy
Bidding function for user 2 with o= L and B = 2 so that it can increase its throughput).

To choose a strategy (i.e., a sequence of bidding functions)
from the strategy spac#, or Sy, a user encounters two prob-
lems. First, it must decide how to allocate its money among
thesen bidding functions so that the average money constraint
is still satisfied. Second, once the money allocated toittne
bidding function is specified, a user has to choose a bidding
5 02 01 o6 o8 1 function for theith slot. The second problem is already solved

channel coefficient in the previous section (see Theorem 1). In this section, we
will focus on the first problem that a user encounters, specifi-
cally, the problem of how to allocate money between the bid-
ding functions while satisfying the following condition: The
total expected amount of money for teauence of n bidding
00l functions isn - « for user 1 anch - 3 for user 2.
ol Slots assignedto user 2 More precisely, the strategy space or possible actions that can
be taken by users are the following:

o

money (bid)
= N w S

o

0.8 1

o

0.2 0.4 0,6
channel coefficient

3

N w EN

money (bid)

[N

o

Fig. 2. An example of Nash equilibrium strategy pair for= 1 and = 2.

Result of the bid witha =1and =2

o~

S ={a,-,on |+ +a,=n-a}

gzz{/glv"'1571‘/81+"'+ﬁn:n.ﬁ}

NI

channel coefficient of user 2
o o o o o
o

oS ¢
N W

01 Slots assigned to user 1 The objective of each user is still to maximize its own through-
o = o o o | put. When user 1 and user 2 allocate and 3; for their ith
channel coefficient of user 1 bidding function which is given in Theorem 1, the payoff func-

Fig. 3. Allocation scheme from Nash equilibrium strategy pairdos 1 and tions areG: (a;, ;) for user 1 ands(«;, 5;) for user 2.

B =2 The following lemma gives us a Nash equilibrium strategy
pair for the auction game described in this section.

e L ) . Lemma 3: Given that user 2's strategy is to allocate its
bid is higher than user 1's in this region. .Slmllarly, user 1 getﬁ‘uoney evenly among its bidding functions (i.6, = 3,i —

the slots belqw thg curve. Here, user 2 is allocated more S|Cit$. -n), user 1's best response is to allocate its money evenly
than user 1 since it has more money. as well (i.e.; = a,i = 1---n); and vice versa. Therefore, a

If both players use t.he Nash gquilibrium strategy, the ash equilibrium strategy pair for this auction is for both users
pected throughput obtained are given by: to allocate their money evenly.

Gi(o, ) = “ (14) We have already obtained a Nash equilibrium strategy pair
a+ 8+ (a—p)2+ab from the above Lemma. The following theorem states that this
16 Nash equilibrium strategy pair is in fact unique within the strat-
Ga(a, f) = at B+ \/m (15) egy space considered.

Theorem 2: For the auction in this section, a unique Nash
As can be seen, the ratio of the throughput Obtai@%@”i) equilibrium strategy for both users is to allocate their money

«,B)

is equal to% which is the ratio of the money each user haévenly among the bidding functions.
initially. Thus, the Nash equilibrium strategy pair provides an |n this section, users are given more freedom in choosing
allocation scheme that is fair in the sense that the price per ugligir strategies (i.e., they can chooséifferent bidding func-

of throughput is the same for both users. tions). However, as Theorem 2 shows, the unique Nash equi-

librium strategy pair is for each user to use a single bidding

IV. UNIQUE NASH EQUILIBRIUM STRATEGY WITH function from its strategy space. Thus, the throughput result
MULTIPLE BIDDING FUNCTIONS obtained in this broader strategy spateand S,—is the same

In the previous section, we restricted the strategy space ax the throughput result from previous section. Therefore, there
each user to be a single bidding function (i.8;, and S>) in- is no incentive for a user to use different bidding functions.
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V. COMPARISON WITH OTHER ALLOCATION SCHEMES Gi' = E[X1 - 1a(x,,x0)=1] andG4 = E[X5 - 1a(x,, x5)=2)

. . I respectively. Now, we define an allocation scheme as follows:
To this end, we have a unique Nash equilibrium strategy pair

and the resulting throughput when both players choose to use 1 if X1+ 2) > Xo(l—a-\)

the Nash equilibrium strategy. Inevitably, due to the fairmess A" (X1, X2) = { 2 otherwise

constraint, total system throughput will decrease as compared

to the maximum throughput attainable without any fairesghere \* is chosen such thai4" /G4" = a is satisfied. It is

constraint. Hence we would like to compare the total througRyrajghtforward to verify that suck* exists.

put of the Nash equilibrium strategy to that of an unconstrained cgnsider an arbitrary allocation schem that satisfies

strategy. We address this question by first considering an @?/G? — a. We have

location scheme that maximizes total throughput subject to no

constraint. Then, we investigate the throughput of another CENEX - Lacx, xp)=1) + E[X2 - La(x,, xs)=2]

tralized allocation scheme that maximize the total throughput _ E[X, -1 ]+ E[Xs-1 )]

subject to the constraint that the resulting throughput of indi- ARG )= 27 A, X2)=2

vidual user is kept at certain ratio. T A(BX - 1ax, x0)=1] = eB[X2 - 1a(x, x5)=2])
= E[(X1 +XX1) - Lacx,,xz)=1]

+ E[(XQ — a)\*Xg) . 1A(X1,X2):2]

To maximize throughput without raints. the trans. — L FAED - Las o =il

0 maximize throughput without any constraints, the trans- El(Xo — aVXo) - La.

mitter sends data to the user with a better channel state (X2 = aAN"X5) - 1a- (31, x)=2)

during each time slot. Then the expected throughput is = B[X1 - Las(x, x0)=1] + E[Xo - 1ae(x,,x0)=2]

A. Maximizing Throughput with No Constraint

E[max{Xy, X»2}]. Since X; and X, are independent uni- + A (E[X1 - Las(xy,x0)=1] — aB[X2 - 14+ (x,, x,)=2])
formly distributed in[0, 1], we haveE[max{X, X5}] = 2. = E[X1 - La~(x, x2)=1] + E[X2 - Lax(x,,x5)=2]
Using the Nash equilibrium playing strategy, the total expected ' ' 17)

system throughput/ (o, 8) + G2 («, 3), is 5 in the worst case

(i.e., one users gets all of the time slots while the other user is

starving).Thus, the channel allocation scheme proposed in this user 2
paper can achieve at least 75 percent of the maximum attain- 1
able throughput. This gives us a lower bound of the throughput

performance of the allocation scheme derived from the Nash Xp= Xy
equilibrium pair. Xo

B. Maximizing Throughput with Constant Throughput Ratio
Constraint 0 Xy 1 userl

NOW,_We inveStig_ate an aIIoca_tion scheme with a fairnesgsy 4. The optimal allocation scheme to achieve constant throughput ratio
constraint that requires the resulting throughput of the usersftaness.

be kept at a constant ratio. Specifically, d¢t andG, denote
the expected throughput for user 1 and user 2 respectively.

have the following optimization problem: ®rhe inequality in the middle is from the definition af*.

Specifically, if we were asked to choose an allocation scheme
A to maximize E[(X1 + A*X1) - Lax,,xz)=1] + E[(X2 —

max G+ Gz (16) aX X5) - 1ax,,x;)=2]- Then,A* will be an optimal scheme
subj. G —a from its definition. Thus, we are able to show thEt(X;, X5)
2 is an optimal solution to the optimization problem in (16).

. . To find the slope: in Fig.4, we first write the throughput for
whereq is a positive real number. each user:

The resulting optimal allocation scheme for the above prob-
lem is of the form shown in Fig. 4. The space spanned by e 1 pem 1
X; and X, is divided into two regions by the separation line G = / / rydrydry = S (18)
X5 = ¢+ X1, wherec is some positive real number. Above the oJo
line (i.e., X2 > ¢ - X1), the transmitter will assign the slot toand
user 2. Below the line (i.eX> < ¢- X1), the transmitter will
assign the slot to user 1. an
To prove the above, we use a method that is similar to the 2
one in [9]. Specifically, letd : (X, X2) — {1,2} be an al-
location scheme that maps a slot, in which channel states are
X; and X, to either user 1 or user 2. By using an allocation
schemed, the resulting throughput for user 1 and user 2 arinceG1' /G4 = a, we gete = =1Ev1lide,

c 1‘12 1
/ / xo dridas —I—/ To dxo
0 Jo c (19)
2

N | =
=2
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Using the Nash equilibrium strategy pair, the ratio of thélash equilibrium strategy when both channels are uniformly
resulting throughput pai% is the same as the ratio ofdistributed. However, as we mentioned earlier, our analysis can
money individual user posﬂseé%x_ For the optimization prob- be extended to channel state with general distribution. An in-

lem described in (16), by setting = a/3, we compare the teresting extension could be to find the exact form of a Nash
resulting throughput with the throughput obtained when botﬁqu!hbnum with general.channel st.ate.dlstnbut.lon. Anotherdl-
users employ the Nash equilibrium strategy. Fig. 5 and Fig."§ction for future work is the application of different auction
show the comparison. For both users, the Nash equilibriféchanisms (e.g., first-price and second-price).
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VI. CONCLUSION

We apply an auction algorithm to the problem of fair allo-
cation of a wireless fading channel. Using the all-pay auction
mechanism, we are able to obtain a unique Nash equilibrium
strategy. Our strategy allocated bandwidth to the users in ac-
cordance with the amount of money that they possess. Hence,
this scheme can be viewed as a mechanism for providing qual-
ity of service (QoS) differentiation; whereby users are given
fictitious money that they can use to bid for the channel. By
allocating users different amounts of money, the resulting QoS
differentiation can be achieved.

We also show that the Nash equilibrium strategy of this auc-
tion leads to an allocation at which total throughput is no worse
than 3/4 the maximum possible throughput when fairness con-
straints are notimposed (i.e., slots are allocated to the user with
the better channel). In this paper, we focused on finding a
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