
1

Packet Scheduling with Window Service Constraints
Chunmei Liu, Eytan Modiano

Abstract—This paper considers the scheduling problem that min-
imizes the average response time of two jobs subject to window con-
straints. By window constraints, we mean that within a fixed time
interval, the server can serve at mostW packets from one job, where
W is called the window size of the job. This paper investigates the
effects of the window constraints in detail, and derives the optimal
policy. The results shows that both the job lengths (which corre-
spond to the remaining processing times in traditional optimization
problems without window constraints) and the window sizes are es-
sential to the optimal policy. Moreover, instead of changing priority
of jobs at different times, in most cases the optimal policy gives full
priority to one job. The paper also gives the following suboptimal
policy: if both window sizes are greater than one half of the time
interval, give full priority to the shorter job; Otherwise, give full
priority to the job with the smaller window size. The difference be-
tween the optimal cost and the cost of this suboptimal policy is less
than the maximum of the two window sizes.

Index Terms—scheduling, window constraints, SRPT

I. I NTRODUCTION

Traditionally, the performance of scheduling policies is mea-
sured by the mean response time, defined to be the difference
between the departure and arrival times of a job. Among all
policies, for a work-conserving queue, the Shortest-Remaining-
Processing-Time (SRPT) scheduling policy is optimal with re-
spect to minimizing the mean response time [3], [5]. The au-
thor in [4] further gives the distribution of the response time for
M/G/1 queue under the SRPT policy. Recently a number of pa-
pers [1], [6], [2] address the fairness property of the SRPT policy
using slowdown (also called stretch), which is defined to be the
ratio of the response time and the processing time of a job, as the
measure. They show that the SRPT policy not only minimizes
the mean response time, but also is good in fairness.

All these previous works assume that upon the arrival of a job,
any part of the job is available for service. In practice, jobs are of-
ten broken into smaller units before being served, and there may
exist a limit on the number of units that can be served within a
time interval. For example, in data networks, files are broken into
messages and then packets before being released from the trans-
port layer. If the transport layer employs TCP, then the number
of packets that can be released to the lower layer is limited by the
current window size of TCP, denoted byW . That is, at mostW
packets can be released within one round trip time. Another ex-
ample is the transmission of frames at the data link layer, where
the number of frames that can be transmitted within one round
trip time is limited by the window size of the data link layer pro-
tocol.

This paper considers the optimal scheduling policy that min-
imizes the mean response time when there exists a limit on the
number of units to be served within a fixed time interval. For

Laboratory for Information and Decision Systems, Massachusetts Institute of
Technology, email: mayliu@mit.edu, modiano@mit.edu. This work was sup-
ported by NASA Space Communication Project grant number NAG3-2835.

convenience, we call the limit window size and the units packets.
For simplicity, we consider the scheduling of packets from two
jobs. The effects of window constraints are presented in detail,
and an optimal policy is developed. Based on this optimal pol-
icy, a suboptimal policy which gives further insights on schedule
is also derived. Rather than the remaining processing time, our
optimal policy takes into account both the job lengths and the
window constraints.

The paper is organized as follows: in the next section we pro-
vide the problem formulation and discuss the effects of window
constraints. In Section III we describe the optimal policy and the
suboptimal policy. In Section IV we conclude the paper.

II. PROBLEM DESCRIPTION ANDEFFECTS OFWINDOW

CONSTRAINTS

In this section we first describe the system considered, then
explore the window constraints.

A. Problem Description

Consider a system with two jobs to be served by one server.
The two jobs are broken into packets before being served. They
haveL1 andL2 packets, respectively. All packets have the same
length. The server performs packets-based service. That is, a new
packet cannot preempt the packet being served, but after the ser-
vice is complete, the server can process packets from either job.
The processing time of one packet is defined to be one time slot.
In this way the system becomes a slotted system, and henceforth
all time is measured in time slots.

For convenience, starting from time 0, we index the time slots
in order. That is, thekth slot is called slotk. Similarly, we index
the packets from jobi, i = 1, 2, in order, too. That is, thepth
packet served from jobi is called packetp of job i.

The service is under window constraints. By under window
constraints, we mean that within a fixed time intervalτ slots, the
server can serve at mostW1 packets from job1 andW2 packets
from job 2 , whereWi, i = 1, 2, is called the window size of
job i. The intervalτ corresponds to the round trip time in data
networks, and the window sizeWi corresponds to the maximum
number of outstanding packets allowed in data networks.

For an arbitrary scheduling policyπ, let ti(π), i = 1, 2, be the
time slot that jobi is finished and define costc(π) = t1(π) +
t2(π). We want to find a scheduling policy that minimizesc(π),
that is, minimizes the average response time of the two jobs. For
brevity, later on when there is no ambiguity, we omitπ and write
c, t1 andt2 directly.

B. Equivalent Constraints

From the above problem description we can see that if there
were no window constraints, the problem would be the tradi-
tional scheduling problem that minimizes the average response

178

2

time, and the SRPT policy is the optimal solution. The essence
of the window constraints is to limit the availability of packets for
service. One equivalent constraint to the window constraints is
on the availability of an arbitrary packet for service at a time slot,
and we call it packet constraint. Specifically, at time 0, there are
W1 packets from job 1 (packet 1 toW1) andW2 packets from job
2 (packet 1 toW2) that are available for service. For any other
packetp ≥ Wi +1 from jobi, i = 1, 2, the packet constraint says
that packetp is available for service at time slotz if and only if
packetp −Wi was served before and including slotz − τ . This
packet constraint is helpful in drawing the service pattern under
a scheduling policy with the window constraints.

Another equivalent constraint is on the difference between the
slots when packetp and packetp − Wi receive service, and we
call it service constraint. This constraint is useful in deriving the
optimal policy. Letui(p) denote the time slot that packetp from
job i is served. Then the service constraint requires

ui(p)− ui(p−Wi) ≥ τ for all p ≥ Wi + 1. (1)

That is, for packets that areWi packets apart, the slots when they
receive service must be at leastτ apart. The equality holds if
and only if packetp is served at the time slot when it becomes
available. Notice that since each packet takes one time slot for
processing,ui(p) − ui(p − Wi) ≥ Wi holds for all possible
policies. Also notice that by definition,ti = ui(Li).

C. Effects of Window Constraints

In this subsection we illustrate how the window constraints af-
fect the service pattern. Start from the simple case when there
is only one job, say jobi, waiting for service, and consider the
work-conserving policy. By work-conserving, we mean that no
work is created or destroyed in the system, therefore the server
cannot be idle if there are packets available for service. If there
were no window constraints, then the server would continue serv-
ing packets until the job is finished. When there exists window
constraint, by repeatedly using the packet constraint given in the
previous subsection, it is straightforward to obtain the service
pattern under the work-conserving policy, as shown in Figure 1
(a) and (b) for caseWi ≥ τ and caseWi < τ , respectively. The
gray blocks in the figure represent that the server is processing
packets, and the letter inside each block represents which job the
packets in service are from. The formula above the blocks are
the number of packets in the packet-blocks or the lengths of the
idle-blocks in slots, and the formula below are the block lengths
in slots. Later figures showing service patterns can be explained
similarly.

Figure 1 (a) shows that whenWi ≥ τ , the service pattern is the
same as that without window constraints. That is, the server con-
tinues serving packets until the job is finished. Actually, since
the server can serve at mostτ packets during anyτ interval,
which cannot be greater than the window sizeWi in this case,
the window constraints in practice take no effect. Another inter-
pretation is that in this case,ui(p) − ui(p − Wi) ≥ Wi ≥ τ
for all p ≥ Wi + 1. That is, the service constraint (1) is satis-
fied automatically. Therefore, whenWi ≥ τ , there are always
packets available for service, and the service pattern is the same
as that without window constraints. Whereas whenWi < τ , the
service constraint is not satisfied automatically, and not all time

τ≥iW

τ<iW

(a)

(b)

iL

iW iW−τ iW−τiW iW
iii WML =

i

i i i

ii LT =

iii WMT +−= τ)1(
τ

Fig. 1. Service pattern for one job under work-conserving policy and window
constraints

slots have packets available for service. The service pattern thus
consists of packet-blocks and idle-blocks. Figure 1 (b) shows
that their sizes areWi andτ −Wi, respectively.

Moreover, for the future use when deriving the optimal pol-
icy, define functionfi(l) to be the shortest time needed to fin-
ish l packets from jobi when there is no packets from other
jobs. WhenWi ≥ τ , it is obvious thatfi(l) = l. When
Wi < τ , further definem and n to be the integers that sat-
isfy l = mWi + n and n ∈ [1,Wi]. fi(l) can be obtained
by considering the slots when packetl − kWi receives service
for k = 0, ..,m. Specifically, by the service constraint (1),
ui(l)−ui(n) =

∑m−1
k=0 [ui(l−kWi)−ui(l−(k+1)Wi)] ≥ mτ .

Recall that packet 1 toWi are available for service at time 0.
Thereforeui(n) ≥ n and consequently,ui(l) ≥ mτ + n. More-
over, it is easy to verify thatui(l) = mτ + n can be achieved by
the work-conserving policy. We thus have that the shortest time
fi(l) = mτ + n for Wi < τ . Overall,

fi(l) = { l Wi ≥ τ
mτ + n Wi < τ

(2)

Figure 2 plots functionfi(l) for different window sizeWi.

τ≥iW

τ<iW
)(lfi

l

iW−τ

iW

slope=1

Fig. 2. Time needed for servingl packets from jobi

Further defineTi to be the shortest time needed to finish jobi
when there is no other jobs, and call it shortest processing time of
job i subject to window constraint. For simplicity, assumeLi =
MiWi for some integerMi whenWi < τ . Then by definition
and Equation (2),

Ti = fi(Li) = { Li whenWi ≥ τ
(Mi − 1)τ + Wi whenWi < τ

(3)

This is consistent with theTi shown in Figure 1. Note that for
a job with lengthLi, a server placing window constraintsWi

179

3

andτ , Ti is a constant and independent of the scheduling policy
employed.

Now consider the simple case when there are two jobs waiting
for service and the server employs the work conserving policy
that gives full priority to job 1. By giving full priority to job 1,
we mean that whenever packets from job 1 are available for ser-
vice, the server serves packets from job 1. Under this scheduling
policy, the service pattern for job 1 is unaffected and thus the
same as that when there is only job 1 waiting for service (c.f.
Figure 1).

We classify different cases by whetherW1 ≥ τ , W1+W2 > τ
and/orL1 + L2 > T1. The reasons are explained below. The
service patterns under different cases can be obtained straight-
forwardly by using the packet constraint, and the results are as
shown in Figure 3 to Figure 6.

1 2
1L 2L

1T 2T

1 2 2 2

1T 2T

1L 2W 2W−τ
222 WML =

τ≥2W

τ
τ<2W

Fig. 3. Service pattern for two jobs under work-conserving policy that gives full
priority to job 1,W1 ≥ τ

Specifically, Figure 3 plots the case whenW1 ≥ τ . As men-
tioned before, in this case there are always packets from job 1
available for service and the server continues serving job 1 until
it is finished. Afterwards the server begins to serve job 2 in the
absence of job 1. Therefore the service pattern can be divided
into two parts: the first part is the service pattern for job 1 in
the absence of job 2 (takesT1 slots), and the second part is the
service pattern for job 2 in the absence of job 1 (takesT2 slots).

1 2 1 2 1 2
1W 1W−τ

1 2 1 2 1 2
1W 1W−τ

2

2W 2W−τ

1T

1T

τ≥2W

121 TLL −+

τ

τ τ
τ<2W 2

Fig. 4. Service pattern for two jobs under work-conserving policy that gives full
priority to job 1,W1 < τ , W1 + W2 > τ andL1 + L2 > T1

Figure 4 shows the service pattern whenW1 < τ , W1 +W2 >
τ andL1 + L2 > T1. W1 < τ means that packets from job 1
are not always available for service, and there are gaps between
packet-blocks of job 1. Moreover, during any time interval with
lengthτ , the server can serve at mostτ packets. But according to

the window constraints, there can be as many asW1 + W2 > τ
packets available for service before either job is finished. There-
fore, at any time slot before either job is finished, there exists at
least one packet, from either job 1 or job 2, available for service.
Consequently, a work-conserving policy has no idle slot before
either job is finished, and hence packets from job 2 fill up the
gaps between the packet-blocks of job 1, as shown in Figure 4.

Furthermore, since each packet takes one time slot,T1 − L1

packets are needed to fill up all the gaps between packet-blocks
of job 1. Therefore, inequalityL1 + L2 > T1 means that there
are enough packets from job 2 to fill all the gaps between packet-
blocks of job 1, and at the time job 1 is finished (slotT1), there
areL1 + L2 − T1 packets left from job 2. The service pattern in
Figure 4 can thus be summarized as follows: the pattern for job
1 is the same as that in Figure 1 (without job 2). Before job 1 is
finished, packets from job 2 fill up all the gaps between packet-
blocks of job 1, and there are no idle slots. After job 1 is finished,
the service pattern follows the pattern of job 2 for its remaining
packets.

For convenience, for this case, defineQ2 andd2 to be the in-
tegers that satisfy

L1 + L2 − T1 = Q2W2 + d2, (4)

andd2 ∈ [1,W2]. The physical meaning ofQ2 andd2 are shown
in Figure 4. By symmetry, whenW2 < τ , W1 + W2 > τ and
L1 + L2 > T2, defineQ1 andd1 to be the integers that satisfy
d1 ∈ [1,W1] and

L1 + L2 − T2 = Q1W1 + d1. (5)

These parameters will be used later when we describe the optimal
policy.

1 2 1 2 1 2
1W 1W−τ

1T

1

2122)(rWNL +−= τ

2r

τ

)(12 WN −τ
21 rW −−τ

Fig. 5. Service pattern for two jobs under work-conserving policy that gives full
priority to job 1,W1 < τ , W1 + W2 > τ andL1 + L2 ≤ T1

Figure 5 plots the service pattern whenW1 < τ , W1+W2 > τ
but L1 + L2 ≤ T1. Similar to the previous case, packets from
job 2 fill up the gaps between packet-blocks of job 1. Differently,
in this caseL1 + L2 ≤ T1. This means that there are no enough
packets from job 2 to fill up all the gaps (T1−L1 packets needed
to fill up all the gaps), and job 2 is finished before job 1. For
convenience, defineN2 andr2 to be the integers that satisfy

L2 = N2(τ −W1) + r2, (6)

and r2 ∈ [1, τ − W1]. Their physical meanings are shown in
Figure 5. By symmetry, whenW2 < τ , W1 + W2 > τ but
L1 + L2 ≤ T2, defineN1 andr1 to be the integers that satisfy
r1 ∈ [1, τ −W2] and

L1 = N1(τ −W2) + r1. (7)

180

4

These parameters will be used later when we describe the optimal
policy.

1 2 1 2 1 2
1W 2W

1T

τ

2

2T

222 WML =111 WML =

Fig. 6. Service pattern for two jobs under work-conserving policy that gives full
priority to job 1,W1 + W2 ≤ τ

Finally, Figure 6 plots the service pattern whenW1 +W2 ≤ τ .
In this case, during eachτ time slots, there are at mostW1 + W2

packets served and the restτ − (W1 + W2) slots are idle.
From the above analysis we see that under the work-

conserving scheduling policy that gives full priority to job 1,
whetherW1 ≥ τ determines whether the server continues serv-
ing job 1 until it is finished, or there are gaps between packet-
blocks of job 1. WhetherW1 + W2 > τ determines whether
there are idle slots before either job is finished. Moreover, when
W1 < τ andW1 + W2 > τ , whetherL1 + L2 > T1 determines
whether job 1 is finished first. The service pattern for other poli-
cies under different window sizes and job lengths can be obtained
in a similar way.

The above analysis and figures also show that due to the win-
dow constraints, the service pattern for jobs are quite different
from traditional problems without window constraints. As will
be shown later, the optimal policy is quite different as well.

III. O PTIMAL POLICY AND SUBOPTIMAL POLICY

In this section we derive the optimal policy for the problem
described and the more insightful suboptimal policy. The differ-
ence between the costs of the optimal policy and this suboptimal
policy will be given as well. When deriving the optimal policy,
we classify the problem into two cases:

Case 1:W1 + W2 ≤ τ ;
Case 2:W1 + W2 > τ .

In the case whenWi < τ andMi = 1 (Li = Wi), the window
constraints take no effects. Since we are concerning only the
window constraints, henceforth whenWi < τ , we only consider
the cases withMi ≥ 2 .

A. Optimal Policy WhenW1 + W2 ≤ τ

Theorem 1:If W1 + W2 ≤ τ , the policyπ∗ that gives full
priority to the job with smaller window size is optimal.

Proof: SinceWi > 0 for i = 1, 2, the inequalityW1 +
W2 ≤ τ means thatWi < τ for both i = 1 and 2. From the
service constraint (1), we haveui(kWi) − ui((k − 1)Wi) ≥ τ
for k ∈ [2,Mi], where as defined before,Mi is the integer that
satisfiesLi = MiWi. Equality holds if and only if packetkWi is
served at the time slot when it becomes available. By summing
this inequality overk, we obtain

(Mi − 1)τ ≤
Mi∑
k=2

[ui(kWi)− ui((k − 1)Wi)]

= ui(MiWi)− ui(Wi)
= ti − ui(Wi),

where the last equality comes from the definitions ofti andui.
We therefore have

c = t1+t2 ≥ (M1−1)τ +(M2−1)τ +u1(W1)+u2(W2). (8)

Recall that packet 1 toW1 from job 1 and packet 1 toW2 from
job 2 are available for service from time 0. Hence the problem of
minimizingu1(W1)+u2(W2), called the suboptimal problem, is
the traditional optimization problem with no window constraints
and the SRPT policy that gives priority to the job with shorterWi

is optimal. Without loss of generality, assumeW1 ≤ W2. Then
by applying the result of the SRPT policy, the resulting optimal
sum of the suboptimal problem is2W1 + W2, which is a lower
bound foru1(W1)+u2(W2). After plugging it into the inequality
(8), we obtain

c ≥ (M1 − 1)τ + (M2 − 1)τ + 2W1 + W2

= T1 + T2 + W1,

where the equality follows from Equation (3). The above in-
equality gives us a lower bound forc for any policy that satisfy
the window constraints.

Now consider the policy that gives full priority to the job with
the shorter window size, which is job 1 under our assumption.
From Figure 6 we can easily obtain that under this scheduling
policy, c = t1 + t2 = T1 + T2 + W1, which achieves the lower
bound ofc. Therefore, the policy that gives full priority to the
job with the shorter window size is optimal.

From the proof we see that the lower boundT1 + T2 + W1

can be achieved if and only if the equality in (8) is achieved and
u1(W1)+u2(W2) achieves its lower bound. It can be easily ver-
ified that our optimal policy meets both of the two requirements.

B. Optimal Policy WhenW1 + W2 > τ

Now let’s consider the second case, whenW1 + W2 > τ . We
first give five lemmas that characterize the optimal policy, then
based on these lemmas, we develop the optimal policy.

Lemma 1: If W1 + W2 > τ , the optimal policy has no idle
slots before either job is finished.

Proof: Suppose policyπ is an optimal policy and has at
least one idle slot before either job is finished. SinceW1 +W2 >
τ , at this idle slot there is at least one packet from job 1 or job
2 available for service. Without loss of generality, assume the
packet available is packetp from job 1. By doing the following,
we obtain policyπ′: keep the position of each packet from job
2. Serve packetp from job 1 at this idle slot, and for allk ∈
[p + 1, L1], serve packetk at u1(k − 1), whereu1(k − 1) is
defined for policyπ. That is, move all packets after packetp from
job 1 one packet backward. Then for the new policyπ′, t1(π′) =

181

5

u1(L1−1) < u1(L1) = t1(π) andt2(π′) = t2(π), which results
in c(π′) = t1(π′) + t2(π′) < t1(π) + t2(π) = c(π). That is,
policy π cannot be optimal, which leads to a contradiction.

Define policy setΠi = {policy π| job i is finished first and
there is no idle slot before jobi is finished}, i = 1, 2, and op-
timal policy setΠ∗ = {policy that has the lowest cost over all
policies}. The above lemma shows thatΠ∗ ⊆ Π1 ∪Π2.

Lemma 2: If W1 + W2 > τ , thenL1 + L2 > min{T1, T2}.
Furthermore, ifL1 + L2 ≤ T1, thenΠ1 = ∅ andΠ∗ ⊆ Π2; if
L1 + L2 ≤ T2, thenΠ2 = ∅ andΠ∗ ⊆ Π1.

Proof: First show thatL1 + L2 > min{T1, T2}. If at least
one ofW1 andW2 is greater than or equal toτ , sayWi ≥ τ ,
for i = 1 and/or2, thenTi = Li (Equation (3)). ThusL1 +
L2 > Ti ≥ min{T1, T2}. If W1 < τ andW2 < τ , we show
L1 + L2 > min{T1, T2} by contradiction, as follows.

SupposeL1+L2 ≤ T1 andL1+L2 ≤ T2. If M1−1 ≤ M2, the
first inequalityL1+L2 ≤ T1 gives usM2W2 = L2 ≤ T1−L1 =
(M1 − 1)(τ −W1) ≤ M2(τ −W1). This givesW1 + W2 ≤ τ .
Contradiction.

On the other hand, ifM1 − 1 > M2, the second inequality
L1 + L2 ≤ T2 gives usM1W1 = L1 ≤ T2 − L2 = (M2 −
1)(τ − W2) < M1(τ − W2). Again this givesW1 + W2 < τ .
Contradiction.

Therefore whenW1+W2 > τ , the two inequalitiesL1+L2 ≤
T1 andL1 + L2 ≤ T2 cannot hold together. Hence,L1 + L2 >
min{T1, T2}.

Now consider the rest of the lemma. SinceT1 is the shortest
processing time of job 1 subject to window constraint, for any
policy π, the time when job 1 is finishedt1 ≥ T1. If L1 + L2 ≤
T1, then all policies that finish job 1 first have at least one idle
slot among the firstT1 slots, thus among the firstt1 slots, that is,
before job 1 is finished. Therefore by the definition ofΠ1 and
Lemma 1,Π1 = ∅ andΠ∗ ⊆ Π2.

Similarly, whenL1 + L2 ≤ T2, Π2 = ∅ andπ∗ ⊆ Π1.
The next three lemmas characterize policies inΠ2 which leads

to optimal policies. Here we consider setΠ2 instead ofΠ1 in
order to use Figure 1 to 6 as illustration.

For an arbitrary policyπ2 ∈ Π2, let v1(π2) denote the number
of packets from job 1 that were served before job 2 is finished.
For brevity, later on when there is no ambiguity, we omitπ2 and
usev1 directly.

Lemma 3:WhenW1 + W2 > τ andL1 + L2 > T2, for any
policy π2 ∈ Π2, we havev1(π2) ∈ [vL

1 , vU
1], where

vL
1 = { 0 whenW2 ≥ τ

T2 − L2 whenW2 < τ
(9)

vU
1 = { L1 − 1 whenL1 + L2 > T1

(N2 + 1)W1 whenL1 + L2 ≤ T1
(10)

Proof: First consider the lower bounds. A trivial lower
bound is 0. For the case whenW2 < τ , the tighter lower bound
given in the lemma can be shown by contradiction as follows.
Supposev1 < T2 −L2. Then the total number of packets served
before job 2 is finished isv1 + L2 < T2 ≤ t2, where the last
equality and the last inequality come from the definition ofT2

(see Equation (3)). Therefore, there must be idle slots before job
2 is finished, which contradicts to the definition ofΠ2.

Next consider the upper bound. A trivial upper bound isL1 −
1, otherwise job 1 would be finished first. For the case when
L1 + L2 ≤ T1, we showv1 ≤ (N2 + 1)W1 by contradiction.

Supposev1 > (N2 + 1)W1 and let slots denote the slot where
the firstv1 packets from job 1 are finished. Since for everyτ
slots, the server can serve at mostW1 packets from job 1, before
slots there are at least(N2 + 1)(τ −W1) slots where the server
is not serving packets from job 1. In addition, by the definition
v1, at least one packet from job 2 is served after slots. That is,
before slots there are at mostL2−1 packets from job 2 that were
served. But from Equation 6,L2 − 1 = N2(τ −W1) + r2 − 1 ≤
(N2 + 1)(τ −W1)− 1. Therefore, before slots, thus beforet2,
there are at least one idle slot, which contradicts to the definition
of Π2.

Intuitively, vL
1 corresponds tov1 under the policy that gives

full priority to job 2, andvU
1 corresponds tov1 under the policy

that gives full priority to job 1. Then Equation (9) and (10) can
be easily obtained from Figure 1 to 5.

Lemma 4:WhenW1 + W2 > τ andL1 + L2 > T2, for all
policies inΠ2 with v1 = v ∈ [vL

1 , vU
1], the finish timet1 andt2

and the costc are lower bounded by

tL2 (v) = L2 + v, (11)

tL1 (v) = tL2 (v) + f1(L1 − v) + b, (12)

cL(v) = 2L2 + 2v + f1(L1 − v) + b, (13)

whereb = τ − W1 − r2 if L1 + L2 ≤ T1 and v = vU
1 =

(N2 + 1)W1, andb = 0 otherwise. Moreover, there are at least
one policy inΠ2 that can achieve these bounds.

Proof: Here we only prove the lower bounds. One policy
that achieves both bounds can be constructed. Since the construc-
tion is complicated and skipping it does not affect the following
part of the paper, for brevity, we omit the details.

The lower boundtL2 (v) comes directly from the definition of
v1. Now considertL1 (v). By the definition ofv1, there areL1−v
packets from job 1 left after job 2 is finished, which need at least
f1(L1−v) slots to be served. Therefore,t1 ≥ t2 +f1(L1−v) ≥
tL2 (v)+f1(L1−v). This is one lower bound oft1. A tighter lower
bound can be found whenL1 + L2 ≤ T1 andv = vU

1 = (N2 +
1)W1, as follows. By the definition ofT1, we havet1 ≥ T1.
WhenL1 + L2 ≤ T1 andv = vU

1 = (N2 + 1)W1, by plugging
v = (N2+1)W1 into the equations and after some manipulations,
we obtainT1 = tL2 (v) + f1(L1− v) + (τ −W1 + r2). We hence
havet1 ≥ tL2 (v) + f1(L1 − v) + (τ − W1 + r2) in this case.
Combining the above analysis leads to the lower boundtL1 (v)
given in the lemma.

The lower boundcL(v) for the cost follows fromc = t1+t2 ≥
tL1 (v) + tL2 (v) = cL(v).

Over the policy setΠ2, for a fixedv1 = v, Lemma 4 gives the
lowest cost. Lemma 3 further provides upper and lower bounds
on v1. We can thus optimize the lowest cost in Lemma 4 over
all possiblev1 and obtain the optimal cost overΠ2. Specifically,
for an arbitrary policyπ2 in Π2, we havec(π2) ≥ cL(v1(π2)) ≥
minv∈[vL

1 ,vU
1] c

L(v). Let c∗2 denote the minimum andv∗1 denote
thev that achieves the minimum. The next lemma develops this
idea and givesv∗1 overΠ2.

Lemma 5:WhenW1 +W2 > τ andL1 +L2 > T2, the lowest
cost overΠ2, c∗2, is achieved at the followingv∗1 :

1) whenW1 ≥ τ : v∗1 = vL
1 ;

2) whenτ/2 < W1 < τ andW2 ≥ τ : v∗1 = vL
1 = 0;

3) whenτ/2 < W1 < τ andW2 < τ :

182

6

a) if Q1 = 0: v∗1 = vL
1 = L1 − d1;

b) if Q1 6= 0 andd1 ≥ τ −W1: v∗1 = vL
1 = T2 − L2;

c) if Q1 6= 0 andd1 < τ − W1: v∗1 = vL
1 + d1 =

(M1 −Q1)W1;
4) whenW1 ≤ τ/2 andL1 + L2 > T1:

a) if W2 < τ andQ1 = 0: v∗1 = vL
1 = L1 − d1;

b) if W2 ≥ τ or Q1 6= 0: v∗1 = (M1 − 1)W1;
5) whenW1 ≤ τ/2 andL1 + L2 ≤ T1:

a) if r2 ≥ W1: v∗1 = vU
1 = (N2 + 1)W1;

b) if r2 < W1: v∗1 = vU
1 −W1 = N2W1.

Proof: First consider part 1) whenW1 ≥ τ . In this case
f1(l) = l andL1 + L2 > T1. Hence from Lemma 4 we have:
cL
2 (v) = 2L2 + 2v + L1 − v = L1 + 2L2 + v. Therefore,cL

2 (v)
increases monotonically withv and consequently,v∗1 = vL

1 . Part
1) thus holds.

Slope 1

Fig. 7. cL
2 (v) againstv whenτ/2 < W1 < τ (whenW2 ≥ τ , vL

1 = 0 and
whenW2 < τ , vL

1 = T2 − L2)

Next consider part 2) and 3) whenτ/2 < W1 < τ . From
Lemma 4, Figure 7 plotscL

2 (v) againstv for this case. This figure
directly givesv∗1 under different cases in part 2) and 3) of the
lemma. Here for brevity, we omit the details.

Fig. 8. cL
2 (v) againstv whenW1 ≤ τ/2 (whenL1 +L2 > T1, vU

1 = L1− 1

and whenL1 + L2 ≤ T1, vU
1 = (N2 + 1)W1)

Now consider part 4) and 5) whenW1 ≤ τ/2. From Lemma
4, Figure 8 plotscL

2 (v) againstv for this case. The figure shows
that whenL1 + L2 > T1, if W2 < τ andQ1 = 0, thenv lies
in the last segment of the curve. Since along the last segment,
cL
2 (v) increases monotonically withv, we have in this casev∗1 =

vL
1 = L1 − d1. This is part 4a). Whereas whenL1 + L2 > T1

but W2 ≥ τ or Q1 6= 0, the figure shows thatcL
2 (v) achieves its

minimum atv∗1 = (M1 − 1)W1. This is part 4b).
Furthermore, whenW1 ≤ τ/2 andL1 + L2 ≤ T1, it can be

shown thatvU
1 − vL

1 > W1. Figure 8 then givesv∗1 as in part 5)
of the lemma. Again for brevity, we omit the details.

For convenience, fori, j = 1 or 2 andi 6= j and an integer
a ≤ Wi, let πa,i denote the policy that servesa packets from
job j first, then gives full priority to jobi. Furthermore, when
W1 < τ/2, W1 + W2 > τ andL1 + L2 > T1, let π2 denote the
following policy: if W2 ≥ τ , then first gives priority to job 1 until
W1 packets from job 1 left, then gives priority to job 2; ifW2 <
τ , then first servesn packets from job 1, next servesm blocks
of W2 packets from job 2 andm blocks of W1 packets from
job 1 alternatively, then gives priority to job 2. Herem andn are
integers that satisfyL1+L2−T2−W1 = m(W1+W2−τ)+n and
n ∈ [0,W1 + W2 − τ]. It can be seen that policyπ2 corresponds
to case 4b) in Lemma 5 withv1(π2) = v∗1 . Policyπ1 is similarly
defined.

Next lemma gives the cost functions of policies that will be
used later when developing optimal policies and suboptimal poli-
cies.

Lemma 6:WhenW1 + W2 > τ , for i, j = 1 or 2 andi 6= j,
the cost functions of policyπ0,i is

c(π0,i) = { 2Ti + fj(L1 + L2 − Ti) whenL1 + L2 > Ti

Ti + (Nj + 1)τ − (τ −Wi − rj) whenL1 + L2 ≤ Ti

(14)
WhenW1,W2 < τ andL1 + L2 > Ti, the cost function of

policy πdj ,i is

c(πdj ,i) = 2Ti + 2dj + { fj(L1 + L2 − Ti − dj) whenQj ≥ 1
−Wi whenQj = 0

(15)
Moreover, whenWi < τ andL1 + L2 ≤ Ti, the cost function

of policy πrj ,i is c(πrj ,i) = Ti + Njτ + 2rj . WhenWj < τ
andL1 + L2 > max{T1, T2}, the cost function of policyπi is
c(πi) = 2(L1 + L2)−Wj .

These cost functions can be easily verified from Figure 1 to
Figure 5. For brevity, we omit the proof.

WhenW1 + W2 > τ andT2 < L1 + L2 ≤ T1, Lemma 2
says thatΠ∗ ⊆ Π2. That is, optimal policies overΠ2 are optimal
policies over the entire policy space as well. In addition, it can
be easily verified that in this caseQ1 6= 0. Furthermore, in this
case, it can also be verified that policyπ0,2 has thev∗1 described
in Lemma 5 in case 1), 2), 3b) and 4a), policyπd1,2 has thev∗1
in case 3c), and policyπ0,1 andπr2,1 have thev∗1 in case 5a) and
5b), respectively. We hence have the following theorem:

Theorem 2:WhenW1 + W2 > τ andT2 < L1 + L2 ≤ T1,
the following policy is optimal:

1) whenW1 > τ/2: if W1,W2 < τ andd1 < τ −W1, policy
πd1,2 is optimal; otherwise policyπ0,2 is optimal;

2) whenW1 ≤ τ/2: if r2 ≥ W1, policy π0,1 is optimal;
otherwise policyπr2,1 is optimal.

By symmetry, the next theorem follows:
Theorem 3:WhenW1 + W2 > τ andT1 < L1 + L2 ≤ T2,

the following policy is optimal:
1) whenW2 > τ/2: if W1,W2 < τ andd2 < τ −W2, policy

πd2,1 is optimal; otherwise policyπ0,1 is optimal;
2) whenW2 ≤ τ/2: if r1 ≥ W2, policy π0,2 is optimal;

otherwise policyπr1,2 is optimal.

183

7

TABLE I
OPTIMAL POLICIES OVERΠ1 OR Π2 WHEN W1 + W2 > τ AND

L1 + L2 > max{T1, T2}

W2

W1 ≥ τ [τ/2, τ] ≤ τ/2
≥ τ π0,2,π0,1 π0,2,π0,1 π0,2,π1

[τ/2, τ] π0,2,π0,1 π0,2,πd1,2,π0,1,πd2,1 π0,2,πd1,2,π0,1,π1

≤ τ/2 π2,π0,1 π0,2,π2,π0,1,πd2,1 N/A

Theorem 2 and 3 provide optimal policies under caseT2 <
L1 + L2 ≤ T1 andT1 < L1 + L2 ≤ T2. Now consider optimal
policies under caseL1 + L2 > max{T1, T2}.

Lemma 5 shows that whenL1 + L2 > max{T1, T2}, over
policy setΠ2, v1(π0,2), v1(πd1,2) or v1(π2) equals tov∗1 for dif-
ferent cases. Therefore, policyπ0,2, πd1,2 or π2 is optimal for the
corresponding cases overΠ2. By symmetry, policyπ0,1, πd2,1 or
π1 is optimal for the corresponding cases overΠ1. Table I lists
the optimal policies overΠ1 or Π2 for different cases. For ex-
ample, whenW1,W2 ≥ τ , π0,2 is optimal overΠ2 andπ0,1 is
optimal overΠ1. We therefore have policyπ0,2 andπ0,1 in the
cell for W1 ≥ τ andW2 ≥ τ .

Furthermore, sinceΠ∗ ⊆ Π1 ∪ Π2, one of the optimal poli-
cies overΠ1 andΠ2 is also optimal over the entire policy space.
Although we can further classify different cases and derive their
corresponding optimal policies, the number of categories is sig-
nificant, and the description of optimal policies is tedious and
provides little insights. We therefore do not further classify the
cases, but rather give the following theorem:

Theorem 4:When W1 + W2 > τ and L1 + L2 >
max{T1, T2}, for different cases in Table I, the policy that has
the lowest cost among policies in the corresponding cell is opti-
mal.

Notice that the cost functions for policies listed are given in
Lemma 6.

Theorem 2 to 4 provide optimal policies under different cases.
They show that the optimal policy is a function of job lengths,
window sizes as well as the time intervalτ . Furthermore, in most
cases, the optimal policy does not change the priority of jobs but
rather gives full priority to one job.

Corollary 1: If W1,W2 ≥ τ , the policy that gives priority to
the shorter job is optimal.

Proof: WhenWi ≥ τ for somei, we haveTi = Li, which
leads toL1 + L2 > Ti. Therefore, whenW1,W2 ≥ τ , L1 +
L2 > max{T1, T2}. The case thus falls into the first cell in
Table I, which lists policyπ0,2 andπ0,1. From Lemma 6, their
costs are:c(π0,2) = 2T2+f1L1 + L2 − T2 = 2L2+(L1+L2−
L2) = L1 + 2L2, where the second equality comes from the fact
f1(l) = l andT2 = L2. Similarly, c(π0,1) = 2L1 + L2. Hence,
if L1 ≤ L2, then policyπ0,1 is optimal, and ifL2 ≤ L1, then
policy π0,2 is optimal. The corollary thus holds.

As mentioned before, whenW1,W2 ≥ τ , the window con-
straints take no effect on the service of both jobs. The problem
thus becomes the traditional problem that minimizes average re-
sponse time. The optimal SRPT policy also gives priority to the
shorter file in our case. This is consistent with the above corol-
lary.

Although the policies described in Theorem 2 to 4 are optimal,
they are complex and it is not clear which parameter is essential.

We hence gives a suboptimal policy in the following corollary,
which is more insightful.

Corollary 2: WhenW1 + W2 > τ , the following policy is
suboptimal: ifWi ≤ τ/2 for i = 1 or 2, give full priority to job
i; if Wi > τ/2 for both i = 1 and 2, give priority to the shorter
job. The difference between the optimal cost and the cost of this
suboptimal policy is less thanmax{W1,W2}.

This corollary can be proven by comparing the cost of the sub-
optimal policy described with the cost of the optimal policy de-
scribed in Theorem 2 to 4, where the cost functions are given in
Lemma 6. The comparison is tedious. Due to limited space, here
we omit the details.

Notice that whenW1 + W2 > τ , Wi ≤ τ/2 for i = 1 or 2
means that jobi has smaller window size. We can thus combine
Theorem 1 and Corollary 2 and obtain the following suboptimal
policy for all cases:

Theorem 5:The following policy is suboptimal for minimiz-
ing average response time of two jobs subject to window con-
straints: if both window sizes are greater than one half of the
time interval, give full priority to the shorter job. Otherwise, give
full priority to the job with the smaller window size. The dif-
ference between the optimal cost and the cost of this suboptimal
policy is less than the maximum of the two window sizes.

Now it’s clear that whenWi > τ/2 for both i = 1 and 2, the
job lengths determine the optimal policy. Otherwise, the window
sizes are essential.

IV. CONCLUSION

This paper considers the scheduling problem that minimizes
the average response time of two jobs subject to window con-
straints. The effects of the window constraints are presented, and
the optimal policy is derived. In most cases, instead of changing
priority of jobs at different times, the optimal policy gives full
priority to one job. In traditional optimization problems with-
out window constraints, the remaining processing times are the
only parameters that affects the optimal policy (SRPT policy).
While the suboptimal policy derived here shows that under win-
dow constraints, not only the job lengths (which correspond to
the remaining processing times in traditional optimization prob-
lems) determine the optimal scheduling policy, but the relative
magnitude of the window sizes are essential as well. One di-
rection of future work is to compare the performance of the opti-
mal policy and suboptimal policy with the traditional round-robin
policy and SRPT policy.

REFERENCES

[1] N. Bansal and M. Harchol-Balter, ”Analysis of SRPT Scheduling: Inves-
tigating Unfairness,” ACM SIGMETRICS Performance Evaluation Review
vol. 29, Issue 1, 2001.

[2] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen and Johannes E.
Gehrke, ”Online Scheduling to Minimize Average Stretch,” Proc. 40th An-
nual IEEE Symp. on Foundations of Computer Science, pp. 433-443, 1999.

[3] L. Schrage, ”A Proof of the Optimality of the Shortest Remaining Processing
Time Discipline,” Operation Research, vol. 16, no.3, pp. 687-690, 1968.

[4] L. Schrage and L. W. Miller, ”The Queue M/G/1 with the Shortest Remaining
Processing Time Discipline,” Operation Research, vol. 14, no.4, pp. 670-684,
1966.

[5] D. R. Smith, ”A New Proof of the Optimality of the Shortest Remaining
Processing Time Discipline,” Operation Research, vol. 26, no.1, pp. 197-
199, 1978.

[6] A. Wierman and M. Harchol-Balter, ”Classifying Scheduling Policies with
respect to Unfairness in an M/GI/1,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 31, Issue 1, 2003.

184

