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Abstract—This paper considers the scheduling problem that min- convenience, we call the limit window size and the units packets.
imizes the average response time of two jobs subject to window con- For simplicity, we consider the scheduling of packets from two
straints. By window constraints, we mean that within a fixed time jobs. The effects of window constraints are presented in detalil,

interval, the server can serve at mostV packets from one job, where d timal policy is d | d B d thi timal ool
W is called the window size of the job. This paper investigates the and an optmal policy Is developed. Based on this optimal pol-

effects of the window constraints in detail, and derives the optimal iCY, @ suboptimal policy which gives further insights on schedule
policy. The results shows that both the job lengths (which corre- is also derived. Rather than the remaining processing time, our

spond to the remaining processing times in traditional optimization optimal policy takes into account both the job lengths and the
problems without window constraints) and the window sizes are es- window constraints.

sential to the optimal policy. Moreover, instead of changing priority Th ris organized as foll ~in the next tion .
of jobs at different times, in most cases the optimal policy gives full € paper Is organized as lollows. | € next section we pro-

priority to one job. The paper also gives the following suboptimal Vide the problem formulation and discuss the effects of window
policy: if both window sizes are greater than one half of the time constraints. In Section Il we describe the optimal policy and the

interval, give full priority to the shorter job; Otherwise, give full  suboptimal policy. In Section IV we conclude the paper.
priority to the job with the smaller window size. The difference be-

tween the optimal cost and the cost of this suboptimal policy is less
than the maximum of the two window sizes. Il. PROBLEM DESCRIPTION ANDEFFECTS OFWINDOW

CONSTRAINTS

In this section we first describe the system considered, then
explore the window constraints.

Index Terms—scheduling, window constraints, SRPT

I. INTRODUCTION

Traditionally, the performance of scheduling policies is meax. problem Description
sured by the mean response time, defined to be the diﬁerenc&onsider a system with two jobs to be served by one server
between the departure and arrival times of a job. Among arlh ’

olicies, for a work-conserving queue, the Shortest-Remaini e two jobs are broken into packets before being served. They
P ' 949 ’ r}gaveLl and L, packets, respectively. All packets have the same

Erzzte?zlrr]r?i-n-li-m;rfsillae Tznse(;r;]e?euslmgnz:“ﬁnf [g]p tl[r751]a l \%‘:2 ﬁj@;ngth. The server performs packets-based service. Thatis, a new
P 9 P P acket cannot preempt the packet being served, but after the ser-

thor in [4] further gives the distribution of the response time fp2cr : .
vice is complete, the server can process packets from either job.

M/G/1 queue under the SRPT policy. Recently a number of Pine processing time of one packet is defined to be one time slot.

pers [1], [6], [2] address the fairness property of the SRPT poli h
using slowdown (also called stretch), which is defined to be tﬁétt?rlsevzgﬁzgssgrjg?] t:itra;:;)rsr}gtssa slotted system, and henceforth

ratio of the response time and the processing time of aJ(_)b_, as i or convenience, starting from time 0, we index the time slots
measure. They show that the SRPT policy not only minimizes . ; S .
. . A in order. That is, théth slot is called slot:. Similarly, we index
the mean response time, but also is good in fairness. S . .
. . . the packets from jol, i = 1,2, in order, too. That is, theth
All these previous works assume that upon the arrival of a jo L A
g . . o acket served from jobis called packep of job i.
any part of the job is available for service. In practice, jobs are of-

ten broken into smaller units before being served, and there m Jhe service is under window constraints. By under window
. . . 9 ’ L c%straints, we mean that within a fixed time intervalots, the
exist a limit on the number of units that can be served within

time interval. For example, in data networks, files are broken i Lrver can serve at molf; packets from jobl and IV, packets
) PE, ' om job 2 , whereW,, i = 1,2, is called the window size of

messages and then packets before being released from the tr%rBsi-_ The intervalr corresponds to the round trip time in data

port layer. f the transport layer employs TCP, then the num ﬁétworks and the window si2&; corresponds to the maximum
of packets that can be released to the lower layer is limited by t ' !

. . . num f ndin ki Il in n ks.
current window size of TCP, denoted bly. That is, at mostt’ fimber of outstandi g packets allowed in data networks

S o F bit heduli liey, lett;(w),i = 1,2, be th
packets can be released within one round trip time. Another & or an arbitrary scheduling poliey, lett;(r), i € he

ample is the transmission of frames at the data link layer, wh%r- e slot that jobi is finished and define costr) = () +
the number of frames that can be transmitted within one rou m). We want to find a scheduling policy that minimizets),

TR . . ) tis, minimizes the average response time of the two jobs. For
trip time is limited by the window size of the data link layer pro'brevity later on when there is no ambiguity, we omiand write
tocol. ' )

This paper considers the optimal scheduling policy that mify. 1 andtz directly.

imizes the mean response time when there exists a limit on theE valent C .
number of units to be served within a fixed time interval. Fdp- Eauivalent Constraints
Laboratory for Informati 4 Decision Svst " husetts Institut fFrom the above problem description we can see that if there
aporatory tor Information an ecision systems, iVlassachusetts Institute o . . .
Technology, email: mayliu@mit.edu, modiano@mit.edu. This work was suwere no window constraints, the prOblem would be the tradi-

ported by NASA Space Communication Project grant number NAG3-2835.  tional scheduling problem that minimizes the average response
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time, and the SRPT policy is the optimal solution. The essence L

of the window constraints is to limit the availability of packets for @ Wer i

service. One equivalent constraint to the window constraints is b - — -

on the availability of an arbitrary packet for service at a time slot, T

and we call it packet constraint. Specifically, at time 0, there are . L=MW___

W, packets from job 1 (packet 1 #7) andWW-, packets from job W, -w, W, o-w W,

2 (packet 1 tol¥,) that are available for service. For any other ) w, <~ i i ‘ ‘ i
packetp > W;+1 fromjobi, i = 1,2, the packet constraint says — ¢ —» —
that packep is available for service at time sletif and only if N T, =M, -z +W, -

packetp — W; was served before and including stot- 7. This . ) ) i )
packet constraint is helpful in drawing the service pattern uncﬁ%?' 1. Service pattern for one job under work-conserving policy and window
constraints
a scheduling policy with the window constraints.
Another equivalent constraint is on the difference between the

slots when packet and packep — IV; receive service, and We g|qts have packets available for service. The service pattern thus
call it service constraint. This constraint is useful in deriving theynsists of packet-blocks and idle-blocks. Figure 1 (b) shows
optimal policy. Letu;(p) denote the time slot that packefrom 4 -+ their sizes ard; andr — W, respectively.
Job i is served. Then the service constraint requires Moreover, for the future use when deriving the optimal pol-
icy, define functionf;(!) to be the shortest time needed to fin-
ui(p) —ui(p — Wi) 2 rforallp > Wi + 1. () ish i packets from jobi when there is no packets from other

That is, for packets that af&; packets apart, the slots when theyobs. WhenW; >, it is obvious thatf;(I) = I. When
receive service must be at leastipart. The equality holds if W: < 7, further definem andn to be the integers that sat-
and only if packep is served at the time slot when it becometfy { = mW; + n andn € [1,W;]. fi(l) can be obtained
available. Notice that since each packet takes one time slot Ry considering the slots when packet kW; receives service
processing’ui(p) _ Ui(p _ Wl) > W; holds for all possib|e for k = 0,..,m. Sﬁ)eciﬁca”y, by the service constraint (1),
policies. Also notice that by definition; = wu;(L;). wi(l) —ui(n) = 300 [ui(l=kWi) —ui (I = (k+1)W;)] > mr.
Recall that packet 1 tdV; are available for service at time 0.
Thereforeu,;(n) > n and consequently; (1) > m7 + n. More-
over, it is easy to verify that;(l) = m7 4+ n can be achieved by

In this subsection we illustrate how the window constraints qfhe Work-conserving p0||cy We thus have that the shortest time
fect the service pattern. Start from the simple case when thetel) = ymr + n for W; < 7. Overall,
is only one job, say jol, waiting for service, and consider the
work-conserving policy. By work-conserving, we mean that no £ = { l Wiy >
work is created or destroyed in the system, therefore the server U mr+n W<
cannot belldle if there are packets available for service. If thelglegure 2 plots functiorf; (1) for different window sizev’;.
were no window constraints, then the server would continue serv=
ing packets until the job is finished. When there exists window

C. Effects of Window Constraints

@)

constraint, by repeatedly using the packet constraint given in the f.(1) Wi<e
previous subsection, it is straightforward to obtain the service W2z
pattern under the work-conserving policy, as shown in Figure 1

(a) and (b) for casé&/; > 7 and caséV; < t, respectively. The T W slope=l

gray blocks in the figure represent that the server is processing
packets, and the letter inside each block represents which job the ‘
packets in service are from. The formula above the blocks are
the number of packets in the packet-blocks or the lengths of the 1
idle-blocks in slots, and the formula below are the block lengths
in slots. Later figures showing service patterns can be explainggl 2. Time needed for serviripackets from joki
similarly.

Figure 1 (a) shows that whef; = 7, the service pattern is the Further definel; to be the shortest time needed to finish job

same as that without window constraints. That is, the server corF th ) ther iob d call it shortest ina ti ¢
tinues serving packets until the job is finished. Actually, sincgnen there IS no other Jobs, and call it shortest processing time o

the server can serve at mostpackets during any interval, Job ¢ subject to V\_/indow constraint. For simplicity, assu_@e_:
which cannot be greater than the window siZg in this case, M;W; for some intege/; whenW; < r. Then by definition

the window constraints in practice take no effect. Another inte?—nOI Equation (2),

pretation is that in this case,(p) — u;(p — W;) > W; > 7

forallp > W; + 1. Thatis, the service constraint (1) is satis- L; whenW; >

fied automatically. Therefore, whéiy; > 7, there are always T; = fi(Li) ={ (M; — 1) +W; whenW; <r @)
packets available for service, and the service pattern is the same ' ’ ’

as that without window constraints. Whereas wiiEn< 7, the This is consistent with th&; shown in Figure 1. Note that for
service constraint is not satisfied automatically, and not all tinaejob with lengthL;, a server placing window constrainkg;
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andr, T; is a constant and independent of the scheduling politye window constraints, there can be as maniyast Wy > 7
employed. packets available for service before either job is finished. There-
Now consider the simple case when there are two jobs waitifage, at any time slot before either job is finished, there exists at
for service and the server employs the work conserving polizast one packet, from either job 1 or job 2, available for service.
that gives full priority to job 1. By giving full priority to job 1, Consequently, a work-conserving policy has no idle slot before
we mean that whenever packets from job 1 are available for seither job is finished, and hence packets from job 2 fill up the
vice, the server serves packets from job 1. Under this schedulgps between the packet-blocks of job 1, as shown in Figure 4.
policy, the service pattern for job 1 is unaffected and thus theFurthermore, since each packet takes one time Flot; L,
same as that when there is only job 1 waiting for service (cgackets are needed to fill up all the gaps between packet-blocks
Figure 1). of job 1. Therefore, inequality,; + Lo > 77 means that there
We classify different cases by whetl&f > =, W, + W, > 7 are enough packets from job 2 to fill all the gaps between packet-
and/orLy; + L, > T;. The reasons are explained below. Thblocks of job 1, and at the time job 1 is finished (sI§), there
service patterns under different cases can be obtained straiginéL,; + L, — T packets left from job 2. The service pattern in
forwardly by using the packet constraint, and the results areigure 4 can thus be summarized as follows: the pattern for job

shown in Figure 3 to Figure 6. 1is the same as that in Figure 1 (without job 2). Before job 1 is
finished, packets from job 2 fill up all the gaps between packet-
L, blocks of job 1, and there are no idle slots. After job 1 is finished,
L 9 the service pattern follows the pattern of job 2 for its remaining
W, >z 1 packets.
< T, > T, > For convenience, for this case, defie andd, to be the in-
tegers that satisfy
_——— L =MW,—
W, 7-W
L Li+ Ly = Th = QW2 + dy, 4
W, <r 1 : : : andds € [1, Ws]. The physical meaning @), andd, are shown
< e T ™ > in Figure 4. By symmetry, whei’, < 7, Wy + W, > 7 and
T T, L, + Ly > Ty, define@; andd; to be the integers that satisfy
dy € [1, Wﬂ and
Fig. 3. Service pattern for two jobs under work-conserving policy that gives full
priority to job 1,W; > 7 L+ Ly —Ty = QWi +d,. (5)

Specifically, Figure 3 plots the case whBi > 7. As men- Thgse parameters will be used later when we describe the optimal

tioned before, in this case there are always packets from jot?‘i“cy'

available for service and the server continues serving job 1 until
9l L, = N,(z —W,) +,

it is finished. Afterwards the server begins to serve job 2 in the S (T W,) A
absence of job 1. Therefore the service pattern can be divided W £ W/ A r T;W1 -
into two parts: the first part is the service pattern for job 1 in L 9 9 J_‘
the absence of job 2 (takd&§ slots), and the second part is the 1 1 ! | 1
service pattern for job 2 in the absence of job 1 (tdkeslots). - 7
w L+L,-T, T
Wt 1 I 2 1 I 2 I 1 2 Fig._5. Sgrvice pattern for two jobs under work-conserving policy that gives full
2 PEE— R priority to job 1,W; < 7, W1 + W2 > 7andLi + Ly < Ty
" T i folLi+ Lo = Ty)
In LT Figure 5 plots the service patternwhiéq < 7, W1 +Wy > 7
Q 1 . butL; + Ly < Ty. Similar to the previous case, packets from
W W N & job 2 fill up the gaps between packet-blocks of job 1. Differently,
W, ] o 22 ) ‘ E in this casel; + L, < Tj. This means that there are no enough
Wy<r | 1 S packets from job 2 to fill up all the gap®(— L, packets needed
> il to fill up all the gaps), and job 2 is finished before job 1. For
T flli+ 1y -Th) convenience, defind, andr to be the integers that satisfy

Dby (0100 L1y < Wy - Wa o randLs £ Lo o1 oves Ly = No(r — WA) + 72, ®)
andry € [1,7 — Wy]. Their physical meanings are shown in
Figure 4 shows the service pattern wh&n < 7, W1 +W, > Figure 5. By symmetry, whefl’, < 7, W7 + Wy > 7 but
TandL; + L, > Ti. W1 < 7 means that packets from job 1L, + Lo < T5, defineN; andr; to be the integers that satisfy
are not always available for service, and there are gaps betweer [1,7 — W>] and
packet-blocks of job 1. Moreover, during any time interval with
lengthr, the server can serve at mespackets. But according to Ly = Ny(7 — Wa) + 1. @
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These parameters will be used later when we describe the optimal
policy. M;

(M; = )7 <Y i (kW) — wi((k — 1)W5)]

/W /< 2 22 ~— k=2

e {2l 2] [ — b (W)

T, where the last equality comes from the definitiong,cénd v, .
T, We therefore have

A\

A
\

Fig. 6. Service pattern for two jobs under work-conserving policy that gives full
priority to IOb LWi+We <7 Cc = tl +t2 2 (]\/[1 — 1)T+ (]\/[2 — 1)T+U1 (Wl) +UQ(W2) (8)

Recall that packet 1 td/; from job 1 and packet 1 t&/; from
job 2 are available for service from time 0. Hence the problem of
minimizinguy (W7) 4+ u2(Ws), called the suboptimal problem, is
he traditional optimization problem with no window constraints
nd the SRPT policy that gives priority to the job with shotér

Finally, Figure 6 plots the service pattern whéh + W, < 7.
In this case, during eachtime slots, there are at mo8t; + 1,
packets served and the rest- (W, + W) slots are idle.

From the above analysis we see that under the wor,
conserving scheduling _policy that gives full priority_ to job 1 optimal. Without loss of generality, assuiig < Ws. Then
whetherl, > 7 determines whether the server continues seri, oo0ving the result of the SRPT policy, the resulting optimal
ing job 1 until it is finished, or there are gaps between pack im of the suboptimal problem ¥V, + Ws, which is a lower

blocks of job 1. WhetheiV; + Wy > 7 determines whether bound foru. (W W), After pluaging it into the inequalit
there are idle slots before either job is finished. Moreover, wh (W) +uz (Ws). plugging g y

Wy < 7andWy + W5 > 7, whetherL; + L, > T; determines

whether job 1 is finished first. The service pattern for other poli-

cies under different window sizes and job lengths can be obtained c> (My — D)7 + (My — 1)7 4+ 2W, + Ws
in a similar way. _ _ _ T+ Ty + W,

The above analysis and figures also show that due to the win-
dow constraints, the service pattern for jobs are quite differephere the equality follows from Equation (3). The above in-
from traditional problems without window constraints. As willequality gives us a lower bound ferfor any policy that satisfy
be shown later, the optimal policy is quite different as well.  the window constraints.

Now consider the policy that gives full priority to the job with
the shorter window size, which is job 1 under our assumption.
From Figure 6 we can easily obtain that under this scheduling

In this section we derive the optimal policy for the problenfolicy, ¢ = t1 +t2 = T1 + T» + W1, which achieves the lower
described and the more insightful suboptimal policy. The diffepound ofc. Therefore, the policy that gives full priority to the
ence between the costs of the optimal policy and this suboptirifdt With the shorter window size is optimal.

%5, we obtain

I11. OPTIMAL PoLICY AND SUBOPTIMAL PoLICY

policy will be given as well. When deriving the optimal policy, u
we C|assify the pr0b|em into two cases: From the proof we see that the lower bouﬁﬂ+ T + Wy
can be achieved if and only if the equality in (8) is achieved and
Case 1W, + W, < 7 u1 (W1) +uz2(W3) achieves its lower bound. It can be easily ver-
Case 2W, + Wy > 7. ified that our optimal policy meets both of the two requirements.

In the case whell; < 7 andM; = 1 (L; = W;), the window B. Optimal Policy WhefV; + W5 > 7
constraints take no effects. Since we are concerning only thenow let's consider the second case, wh&n + W, > 7. We
window constraints, henceforth whé¥i; < 7, we only consider first give five lemmas that characterize the optimal policy, then
the cases withl/; > 2. based on these lemmas, we develop the optimal policy.

Lemma 1:If W, + W, > 7, the optimal policy has no idle
. . slots before either job is finished.
A. Optimal Policy WhefiV'y + W < 7 Proof: Suppose policyr is an optimal policy and has at

Theorem 1:If W; + W, < 7, the policy7* that gives full least one idle slot before either job is finished. Sifice+ Wy >
priority to the job with smaller window size is optimal. 7, at this idle slot there is at least one packet from job 1 or job

Proof: SinceW; > 0 for i = 1,2, the inequalityl?; + 2 available for service. Without loss of generality, assume the

W, < 7 means thatV;, < 7 for bothi = 1 and 2. From the packet available is packgtfrom job 1. By doing the following,
service constraint (1), we havg(kW;) — u;((k — 1)W;) > 7 we obtain policyr’: keep the position of each packet from job
for k € [2, M;], where as defined befor@/; is the integer that 2. Serve packep from job 1 at this idle slot, and for alt €
satisfiesL; = M;W;. Equality holds if and only if packétW; is  [p + 1, L1], serve packek at ui(k — 1), whereu,(k — 1) is
served at the time slot when it becomes available. By summidgfined for policyr. That is, move all packets after packdtom
this inequality ovelk, we obtain job 1 one packet backward. Then for the new potityt (7') =
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w1 (L1 —1) < u1(Ly) = t1(w) andty(n') = to (), which results
in¢(r’) = ti(n’) + to(n') < ti(m) + to(m) = c(m). That is,
policy = cannot be optimal, which leads to a contradiction
Define policy sefll; = {policy | job i is finished first and
there is no idle slot before jobis finished, i = 1,2, and op-

Suppose; > (N2 + 1)W; and let slots denote the slot where
the firstv; packets from job 1 are finished. Since for every
slots, the server can serve at mdst packets from job 1, before
slots there are at leagtV, + 1)(7 — W) slots where the server
is not serving packets from job 1. In addition, by the definition

timal policy setll* = {policy that has the lowest cost over all, at least one packet from job 2 is served after sloThat is,

policies}. The above lemma shows that C II; U II,.

Lemma 2:If Wy + Wa > 7, thenL; + Ly > min{7T1,T>}.
Furthermore, ifL; + Ly < T}, thenll; = @ andIl* C Il; if
Ly + Ly < T3, thenll; = @ andIT* C II;.

Proof: First show thatl; + Ly > min{T},T>}. If at least
one of W, and W is greater than or equal to sayW; > r,
for i = 1 and/or2, thenT; = L, (Equation (3)). Thud,; +
Ly > T; > min{Ty,T5}. If Wi < 7 andW, < 7, we show
L, + L, > min{T1, T3>} by contradiction, as follows.

SUppOSd/1+L2 <T andL1+L2 <Ts. If Mi—1 < M, the
firstinequalityL, + Lo < T} givesusMyWo = Lo < Ty — 14
(]Wl - 1)(7’ - Wl) < ]\/[2(7' — Wl) This giVESW1 + Wy < 7.
Contradiction.

On the other hand, if/; — 1 > M,, the second inequality
L+ Ly < Ty giVES usM{Wy = Ly < Ty — Ly = (]\/[2 —
1)(r — Wa) < My(t — Wa). Again this givesiV; + W, < 7.
Contradiction.

Therefore whedl; + W, > 7, the two inequalitied.; + Ly <
Ty andL;, + Ly < T, cannot hold together. Hencg; + Lo >
min{T},T»}.

Now consider the rest of the lemma. SirfEgis the shortest

before slots there are at modt, — 1 packets from job 2 that were
served. But from Equation @, — 1 = No(1 —W7)+ro—1 <
(N3 + 1)(7 — Wy) — 1. Therefore, before slat, thus before,
there are at least one idle slot, which contradicts to the definition
of 1L5. |

Intuitively, ¥ corresponds ta; under the policy that gives
full priority to job 2, andv¥ corresponds te; under the policy
that gives full priority to job 1. Then Equation (9) and (10) can
be easily obtained from Figure 1 to 5.

Lemma 4:WhenW;, + W5 > 7andL; + Ly > T5, for all
policies inIl, with v; = v € [vf,vY], the finish timet; andt,
and the cost are lower bounded by

t%(l}) = L2 + v, (ll)
th(v) =tL () + fi(L1 —v) +b, (12)
cF(v) = 2Ly + 20+ fi(L1 —v) + b, (13)
whereb = 7 — W), —rp if Ly + Ly < T) andv = oY =

(N2 + 1)W7, andb = 0 otherwise. Moreover, there are at least
one policy inIl, that can achieve these bounds.

processing time of job 1 subject to window constraint, for any  pygof: Here we only prove the lower bounds. One policy

policy 7, the time when job 1 is finished > T;. If L1 + Ly <

that achieves both bounds can be constructed. Since the construc-

T, then all policies that finish job 1 first have at least one idlgyp, is complicated and skipping it does not affect the following

slot among the first; slots, thus among the first slots, that is,
before job 1 is finished. Therefore by the definitionIdf and
Lemma 1,]I; = @ andII* C II,.

Similarly, whenL; + Ly < T5, I, = @ andn* C II;. |

The next three lemmas characterize policieH jrwhich leads
to optimal policies. Here we consider dét instead ofII; in
order to use Figure 1 to 6 as illustration.

For an arbitrary policyr, € I1, letv; (m2) denote the number
of packets from job 1 that were served before job 2 is finish
For brevity, later on when there is no ambiguity, we omitand
usev; directly.

Lemma 3:WhenW; + Wy > 7 and Ly + Ly > Ts, for any
policy s € TI,, we havey (1) € [vF, vY], where

L _ 0 whenWy > 7
v =1 Ty — Ly whenW, < 7 ©)
Li—1 whenlL; + Ly > T
U _ 1 1 2 1
v = (Ny+1)W; whenL; + Ly < T} (10)
Proof:

part of the paper, for brevity, we omit the details.

The lower bound? (v) comes directly from the definition of
v1. Now considet? (v). By the definition ofvy, there arel.; —v
packets from job 1 left after job 2 is finished, which need at least
f1(L1 —v) slots to be served. Thereforg,> to+ f1(L; —v) >
th(v)+ f1(L1—v). Thisis one lower bound df . A tighter lower
bound can be found whely, + L, < T andv = v} = (Ny +
1)W1, as follows. By the definition of’;, we havet; > Tj.

henL; + L, < Ty andv = vf = (N2 + 1)W1, by plugging
v = (N2+1)W into the equations and after some manipulations,
we obtainT; = t£(v) + f1(L1 —v) + (7 — Wy +r2). We hence
havet; > tZ(v) + fi(L1 — v) + (1 — Wy + r2) in this case.
Combining the above analysis leads to the lower botjra)
given in the lemma.

The lower bound?’ (v) for the cost follows frome: = ¢, +t5 >
th(v) +t&(v) = T (v). [ ]

Over the policy sell,, for a fixedv; = v, Lemma 4 gives the
lowest cost. Lemma 3 further provides upper and lower bounds

First consider the lower bounds. A trivial loweron v;. We can thus optimize the lowest cost in Lemma 4 over

bound is 0. For the case whéW, < 7, the tighter lower bound all possiblev; and obtain the optimal cost ovEr. Specifically,
given in the lemma can be shown by contradiction as followfar an arbitrary policyr in I, we havec(mz) > % (vy(m2)) >
Suppose; < T, — L. Then the total number of packets servethin, ¢,z v cE(v). Letcs denote the minimum and; denote
before job 2 is finished is; + Ly < T» < to, where the last thev that achieves the minimum. The next lemma develops this
equality and the last inequality come from the definitionZaf idea and gives; overIl,.

(see Equation (3)). Therefore, there must be idle slots before jo-emma 5:WhenW, +W, > 7 andL, + Ly > Ty, the lowest

2 is finished, which contradicts to the definitionlds.
Next consider the upper bound. A trivial upper bound js—

cost overlly, ¢, is achieved at the following;:
1) whenW, > 7: v} = v¥;

1, otherwise job 1 would be finished first. For the case when2) whenr/2 < Wy < 7 andW; > 7. v} = vl = 0;

Ly + Ly < T, we showv; < (Ny + 1)W; by contradiction.

3) whenr/2 < W) < 7andW, < 7:

182



a) ifQ =0 v =vl=L—d; but W, > 7 or Q; # 0, the figure shows that} (v) achieves its
b) if Q1 #0andd; > 7 — Wy v =vf =T, — Lo; minimum atvj = (M; — 1)W;. This is part 4b).

) ifQ #0andd; < 7— Wy vf = o +d; = Furthermore, whefl’; < 7/2andL; + Ly < Ty, it can be
(My — Q) Wr; shown that¥ — vf > W;. Figure 8 then gives} as in part 5)
4) whenW; < 7/2andLy + Ly > Ty: of the lemma. Again for brevity, we omit the details. |
a) if Wy <7andQ, =0:vf =vl =L, —dy; For convenience, foi,j = 1 or 2 andi # j and an integer
b) if Wo > 70rQq # 0: vt = (M; — 1)Wr; a < Wl let g ; Qenote the_ pplicy t'hat servespackets from
5) whenW, < 7/2andL; + Ly < Ty: job j first, then gives full priority to joki. Furthermore, when

Wi < 7/2, W1 + W, > 7andL; + Ly > T4, letw, denote the
following policy: if Wy > 7, then first gives priority to job 1 until
W, packets from job 1 left, then gives priority to job 2;if; <
7, then first serves packets from job 1, next serves blocks
of W, packets from job 2 andr blocks of W packets from
job 1 alternatively, then gives priority to job 2. Hereandn are
integers that satisff, + Lo —To— W1 = m(W,+Wy—7)+n and

a) if ro > Wit Uik = U{] = (N2 + 1)W1,
b) if ry < Wit ot =0 — Wy = NoWy.

Proof: First consider part 1) wheW; > 7. In this case
fi(l) =landL; + Ly > T;. Hence from Lemma 4 we have:
ck(v) = 2Ly +2v+ Ly —v = Ly + 2Ly +v. Thereforeck (v)
increases monotonically withand consequentlyy; = vE. Part

1) thus holds. .
) n € [0, W1 4+ W, — 7). It can be seen that poliey, corresponds
&) to case 4b) in Lemma 5 withy () = v}. Policy m; is similarly
' (r— W) defined.
T4 Next lemma gives the cost functions of policies that will be
S'OB? 1 used later when developing optimal policies and suboptimal poli-
cies.
; —> Lemma 6:WhenW; + Wy > 7, fori,j = 1 or 2 andi # 7,
d T the cost functions of policyy ; is
( )7{ 2T‘1+f](L1+L27Tl) WhenL1+L2>T,-,
AT =V 4 (N; + 1)1 — (1 —Wi—r;) whenL, + Ly <T;
- (14)
0 T5—1Ls N \TEF L 4 .
N (Mi=@Q)) v WhenW;, W, < randL; + L, > Tj, the cost function of
e whien n-g/{-. T policy Td, i is
Fig. 7. ck(v) againstv whent/2 < Wy < 7 (whenW, > 7, vf = 0 and I 4L — T — d h o
Whean <, ’U{‘ =15 — LQ) C(ﬂ'dj,i) = QTL + 2dj + { f]( 1t —QWi v d7) xhgzgj ; 0
(15)

Next consider part 2) and 3) wheny2 < W, < 7. From Moreover, wherV; < 7 andl, + L, < T}, the cost function
Lemma 4, Figure 7 plots} (v) against for this case. This figure Of POlicy mr, ; is e(mr,.i) = Ti + Nj7 + 2rj. WhenW; < 7
directly givesv; under different cases in part 2) and 3) of th@nd Ly + Ly > max{T1, 1>}, the cost function of policyr; is

lemma. Here for brevity, we omit the details. o(mi) = 2(Ly + L) — Wj. _ 3 _
These cost functions can be easily verified from Figure 1 to

Figure 5. For brevity, we omit the proof.
WhenW; + Wy > 7 andTy < Ly + Ly < Ty, Lemma 2

) says thall* C II,. That is, optimal policies oveil, are optimal
113 (when Ly +Ly <T3) policies over the entire policy space as well. In addition, it can
be easily verified that in this cagg, # 0. Furthermore, in this
case, it can also be verified that policy » has thev} described
in Lemma 5 in case 1), 2), 3b) and 4a), policy, » has thev}
in case 3c), and policy, ; andr,, ; have thev} in case 5a) and
(M — )iy 5b), respectively. We hence have the following theorem:

Theorem 2:WhenW; + Wy > 7 andTy < Ly + Lo < Ty,

(# — W, j.‘"/'

0 o - =
o (N2 + DI ‘;._/"ﬂ b the following policy is optimal:
1) whenW; > 7/2:if Wy, Ws < 7 andd; < 7 — Wi, policy
74,2 IS optimal; otherwise policyt » is optimal;
Fig. 8. Cé‘(l}) against whenW; < T/2 (whenLy + Lo > Tl,vgj =L;—-1 2) when Wl < 7—/2: if o > Wl’ po“cy T0.1 is Opt|ma|’
andwhenL, + Ly < T1, 07 = (N2 + 1)W1) otherwise policyr,., ; is optimal. '

By symmetry, the next theorem follows:
Now consider part 4) and 5) whéi; < 7/2. From Lemma  Theorem 3:WhenW; + Wy > 7 andT; < L; + Ly < T,
4, Figure 8 plots:} (v) againstv for this case. The figure showsthe following policy is optimal:
that whenL; + Lo > T3, if Wy < 7 and@, = 0, thenw lies 1) whenW, > 7/2: if Wy, Ws < 7 anddy < 7 — Wa, policy
in the last segment of the curve. Since along the last segment, 74, 1 is optimal; otherwise policyt, ; is optimal;
¢k (v) increases monotonically with, we have in this case; = 2) whenW, < 7/2: if r; > Wa, policy w2 is optimal;
vf = L; — d;. This is part 4a). Whereas whdn + L, > T otherwise policyr,, 2 is optimal.
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TABLE |

We hence gives a suboptimal policy in the following corollary,
OPTIMAL POLICIES OVERII; ORIl WHEN Wy + W2 > 7 AND

which is more insightful.

Ly + Ly > max{Ty, T2} Corollary 2: WhenW; + W, > T, the following policy is
suboptimal: ifiV; < 7/2 fori = 1 or 2, give full priority to job
Wa i; if W; > 7/2 for bothi = 1 and 2, give priority to the shorter
Wi >T [r/2,7] <7/2 job. The difference between the optimal cost and the cost of this
>T T0,2,70,1 T0,2,70,1 0,2, suboptimal policy is less thanax{W;, Ws}.
[7/2,7] | mo2.m0,1 | M0,2,7a; 2,M0,1,May,1 | T0,2,Tdy,2,T0,1, 71 | This corollary can be proven by comparing the cost of the sub-
<7/2 | Mo 0,2,72,70,1:Tdy,1 N/A optimal policy described with the cost of the optimal policy de-

scribed in Theorem 2 to 4, where the cost functions are given in
Lemma 6. The comparison is tedious. Due to limited space, here
we omit the details.

Notice that wherV; + Wy > 7, W; < 7/2fori = 1o0r 2
means that job has smaller window size. We can thus combine
Theorem 1 and Corollary 2 and obtain the following suboptimal
policy for all cases:

Theorem 5:The following policy is suboptimal for minimiz-

Theorem 2 and 3 provide optimal policies under case<
Li+ Lo < Ty andTy < Ly + Ly < T. Now consider optimal
policies under casé; + Ly > max{T1,T>}.

Lemma 5 shows that wheh; + Ly > max{T3,T>}, over
policy setlly, v1(mg,2), v1(7a,,2) OF v1(m2) equals tovy for dif-
ferent cases. Therefore, poligy 2, 74, 2 Or w3 is optimal for the

corresponding cases ovés. By symmetry, policyro,1, 7a,.1 OF ing average response time of two jobs subject to window con-
71 is optimal for the corresponding cases oVar. Table | lists

X . ) straints: if both window sizes are greater than one half of the
the optimal policies ovefl; or 1_12 for_d|fferent cases. For_ex- time interval, give full priority to the shorter job. Otherwise, give
ample, whenvy, Wy > 7, mo 2 is optimal overll; andm 1 IS g priority to the job with the smaller window size. The dif-
optimal overll,. We therefore have policyo 2 andmo,1 INthe o ence hetween the optimal cost and the cost of this suboptimal
cell for W, > 7 an_dWQ =T . . policy is less than the maximum of the two window sizes.

Furthermore, sincél* C II; U I, one of the optimal poli- Now it's clear that wherlV; > 7/2 for bothi = 1 and 2, the
cies overtl, andll, is also optimal over the entire policy space ob lengths determine the op;timal policy. Otherwise, the ‘window
Although we can further classify different cases and derive th I es are essential. '
corresponding optimal policies, the number of categories is sig-
nificant, and the description of optimal policies is tedious and

provides little insights. We therefore do not further classify the ) V. CONCLUS'O_N .
cases, but rather give the following theorem: This paper considers the scheduling problem that minimizes

Theorem 4:When W, + W, > 7 and L, + L, > the average response time of two jobs subject to window con-
max{T, T3}, for different cases in Table I, the policy that hastraints. The effects of the window constraints are presented, and
the lowest cost among policies in the corresponding cell is opfite optimal policy is derived. In most cases, instead of changing

mal. priority of jobs at different times, the optimal policy gives full
Notice that the cost functions for policies listed are given iariority to one job. In traditional optimization problems with-
Lemma 6. out window constraints, the remaining processing times are the

Theorem 2 to 4 provide optimal policies under different case®ly parameters that affects the optimal policy (SRPT policy).
They show that the optimal policy is a function of job lengthd/Vhile the suboptimal policy derived here shows that under win-
window sizes as well as the time intervalFurthermore, in most dow constraints, not only the job lengths (which correspond to
cases, the optimal policy does not change the priority of jobs Blie remaining processing times in traditional optimization prob-

rather gives full priority to one job. lems) determine the optimal scheduling policy, but the relative
Corollary 1: If Wy, W, > 7, the policy that gives priority to magnitude of the window sizes are essential as well. One di-
the shorter job is optimal. rection of future work is to compare the performance of the opti-

Proof: WhenW; > 7 for somei, we havel; = L;, which mal policy and suboptimal policy with the traditional round-robin
leads toL; + Ly > T;. Therefore, wheVy, Wy > 7, L1 + policy and SRPT policy.
Ly > max{T1,T2}. The case thus falls into the first cell in
Table I, which lists policyr, » andmg ;. From Lemma 6, their REFERENCES
costs arec(mp o) = 2T+ f1L1 + Lo — Tp = 2Lo+ (L1 +Lo—  [1] N. Bansal and M. Harchol-Balter, "Analysis of SRPT Scheduling: Inves-

LQ) = L, + 2L, where the second equality comes from the fact tigating Unfairness,” ACM SIGMETRICS Performance Evaluation Review
' vol. 29, Issue 1, 2001.

f1(l) = landT, = L. Similarly, ¢(mo,1) = 2Ly + Lo. Hence, ] s mMuthukrishnan, Rajmohan Rajaraman, Anthony Shaheen and Johannes E.

if L1 < Ly, then policyrg 1 is optimal, and ifL, < L4, then Gehrke, "Online Scheduling to Minimize Average Stretch,” Proc. 40th An-
i i i ) nual IEEE Symp. on Foundations of Computer Science, pp. 433-443, 1999.
policy 70,2 I.S optimal. The corollary thus holds. . u [3] L. Schrage, "A Proof of the Optimality of the Shortest Remaining Processing
As mentioned before, wheW, W, > 7, the window con- Time Discipline,” Operation Research, vol. 16, no.3, pp. 687-690, 1968.

straints take no effect on the service of both jobs. The proble#i L. Schrage and L. W. Miller, "The Queue M/G/1 with the Shortest Remaining
thus becomes the traditional problem that minimizes average re- fgé%ess'”g Time Discipline,” Operation Research, vol. 14, no.4, pp. 670-684,
sponse time. The optimal SRPT policy also gives priority to thg p. R. Smith, "A New Proof of the Optimality of the Shortest Remaining
shorter file in our case. This is consistent with the above corol- Processing Time Discipline,” Operation Research, vol. 26, no.1, pp. 197-
lary. 199, 1978.

.. X ) . [?] A. Wierman and M. Harchol-Balter, "Classifying Scheduling Policies with
Although the policies described in Theorem 2 to 4 are optimal, respect to Unfairness in an M/GI/1,” ACM SIGMETRICS Performance Eval-

they are complex and it is not clear which parameter is essential. uation Review, vol. 31, Issue 1, 2003.
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