
 Abstract – In a WDM-based network, a single physical link
failure may correspond to multiple logical link failures.  As a
result, 2-connected logical topologies such as rings routed on a
WDM physical topology, may become disconnected after a single
physical link failure.  We consider the design of physical
topologies that ensure logical rings can be embedded in a
survivable manner.  First, we develop necessary conditions for the
physical topology to be able to embed all logical rings in a
survivable manner.  We then use these conditions to provide tight
bounds on the number of physical links that an N node physical
topology must have in order to support all logical rings of size
K .  We show that when 4≥K  the physical topology must have
at least 34N links, when 6≥K  it must have 23N links, and
when 2-≥ NK , it must have at least 42 -N links. We design a
topology that meets the above bounds for 2-= NK  using a
dual-hub architecture. Finally, we observe, through simulation
experiments,  that designing the physical topology for supporting
all logical rings in a survivable manner does not use significantly
more physical links than a design that only supports a small
number of logical rings.  Hence, our approach of designing
physical topologies that can be used to embed all possible ring
logical topologies does not lead to a significant over-design of the
physical topology.

I.  Introduction
Wavelength Division Multiplexing (WDM) based

networks consist of a logical topology defined by a set of
nodes and lightpaths connecting the nodes and a physical
topology defined by the set of nodes and the fiber
connecting them.  Although both the logical and physical
topologies may be independently tolerant to single link
failures, once the logical topology is embedded on the
physical topology, the logical topology may no longer be
survivable to single physical link failures.  Each physical
fiber link may carry multiple lightpaths.  Hence, the failure
of a single physical link, can lead to the failure of multiple
links in the logical topology that may subsequently leave
the logical topology disconnected.

As a simple illustrative example, consider the logical and
physical topologies shown in Figure 1.  The logical
topology is a ring with nodes ordered 1-3-4-5-2-1.  Clearly,
such a ring topology is 2-connected, and would remain
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connected if one of its links failed.  The five logical links
of this ring can be routed on the physical topology as
shown in Figure 1a, where each physical link is labeled
with the logical link that traverses it.  For example logical
link (1,3) traverses physical links (1,5) and (5,3).  As can
be seen from the figure, no physical link supports more
than one logical link.  Hence, the logical ring would remain
protected even in the event of a physical link failure.

Figure 1: Survivable routing of a ring logical topology.

Alternatively, had we routed logical link (1,3) on
physical links (1,2) and (2,3) the routing would no longer
be survivable because physical link (1,2) would have to
support both logical links (1,3) and (2,1) hence its failure
would leave the logical topology disconnected.
Furthermore, for many logical topologies, no survivable
routings can be found.  For example, if the logical topology
was a ring with nodes ordered  1-4-2-3-5-1 then it can be
easily seen that no routing exists that can withstand a
physical link failure.  Hence, it is clear that although the
logical topology of the network may be connected, once it
is embedded on top of a WDM physical network, it may no
longer withstand a physical link failure (e.g., fiber cut).

Our focus is on the design of physical topologies capable
of supporting ring logical topologies in a survivable
manner.  While there has been a great deal of work in the
area of optical layer protection [1-8], this survivable
routing formulation is a new approach to network
protection that has significant implications on the design of
future WDM-based networks.  Most previous work in
WDM network protection has focused on restoration
mechanisms that restore all lightpaths in the event of a
physical link failure.  Link based restoration recovers from
a link failure by restoring the failed physical link, hence
simultaneously restoring all of the associated lightpaths
[1,2,5].  This is often done using optical loop-back
protection [1,2,4].  In contrast, path based protection
restores each of the lightpaths independently, by finding an
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alternative end-to-end path for each lightpath [1,2,7]. In
many cases it is indeed necessary to restore all failed
lightpaths.  However, in other cases some level of
protection is provided in the electronic layer and restoration
at the physical layer may not be necessary.   For example,
when the electronic layer consists of SONET rings, single
link failures can be recovered through loopback protection
at the electronic layer.  In this case, providing protection at
both the optical and electronic layers is somewhat
redundant.  Another less obvious example is that of packet
traffic in the internet where multiple electronic layer paths
exist between the source and destination and the internet
protocol (IP) automatically recovers from link failures by
rerouting packets.

In such cases, a less stringent requirement may be
imposed on the network – for example that the network
remain connected in the event of a physical link failure.
This approach, of course, is not suitable for all situations.
For example, when a network is carrying high priority
traffic with Quality of Service and protection guarantees, it
may still be necessary to provide full restoration.
However, when a network is used to support best effort
internet traffic, guaranteeing connectivity may suffice.

In [9,10] we considered the problem of embedding ring
logical topologies on a given physical topology in a manner
that ensures the logical topology remains connected in the
event of a physical link failure.  We call such embeddings
“survivable”. One of the key results observed in [10] is that
for many physical topologies it is not possible to embed
ring logical topologies in a survivable manner.  For
example, almost 50% of 9 node rings cannot be embedded,
in a survivable manner, in the 11 node NJLATA network
[10].  Similar results were also obtained for other
commonly used physical topologies.  Hence, in this paper
we focus on the dual problem:  How should the physical
topology be designed so that it can support logical rings in
a survivable manner?   In particular, we investigate
properties of physical topologies that enable multiple
logical rings to be embedded in a survivable manner and
use these properties to design suitable physical topologies.
Such design is particularly useful for service providers that
design their network infrastructure in order to serve
customer requests for lightpath connections.

Since at present most protected logical topologies tend to
be rings, in this paper we focus on the design of physical
topologies for supporting logical rings in a survivable
manner. Alternatively, the service provider can provide
restoration at the physical layer. However, such restoration
may duplicate functionality provided at higher layers and
be wasteful of resources.  Also, the physical layer
restoration must be fast enough to be compatible with the
requirements of the higher layer (e.g., must restore the fiber
cut before SONET initiates loopback protection). Our
approach to the physical topology design allows a service
provider to route the lightpaths that constitute the logical

ring along completely disjoint paths, thereby preserving the
connectivity properties of the ring.

We consider the design of N  node physical topologies
that can support survivable routings of ring logical
topologies of size

† 

K £ N .  Since rings of size 3 can be
trivially embedded in a survivable manner on any 2-
connected physical topology, we focus on the problem of
embedding rings of size 

† 

K ≥ 4 . We approach the design
problem from two angles.  First we develop necessary
conditions on the physical topology for ensuring all

† 

K node
ring permutations can be embedded in a survivable manner.
These conditions lead to lower bound requirements on the
number of physical links. Second, we formulate the
problem as an Integer Linear Program (ILP) to design the
physical topology using the minimum number of physical
links while allowing a set of random logical topologies to
be embedded in a survivable manner.  Finally we use the
insights gained from solving the ILP and our analytical
results to design physical topologies which can support all
ring permutations in a survivable manner using the
minimum number of physical links.

II. Conditions for survivable routing
We consider a bi-directional physical topology with

nodes N  and edges E .  Similarly, each bi-directional
logical topology consists of a set of nodes LN and edges LE .

A cut is a partition of the set of nodes N into to subsets
S and SN - .  The cut-set corresponds to the set of edges in
E  that have one endpoint in S  and the other in SN - . In
[9] it was shown that a necessary and sufficient condition
for survivable routing of a logical topology is that no single
physical link is shared by all logical links belonging to a
cut-set of the logical topology.  In other words, not all of
the logical links belonging to a cut-set can be routed on the
same physical link.  This condition must hold for all cut-
sets of the logical topology.  For ring logical topologies,
this implies that no two logical links can be mapped on the
same physical link.

Furthermore in [13] we develop some necessary
conditions on the physical topology to ensure survivable
routing of ring logical topologies.  Consider any random
ring logical topology.   For any cut SNS -, of the

physical topology, let 

† 

CSP (S,N-S ) be the number of physical

links along this cut and 

† 

CSL (S,N-S )  be the number of

logical links traversing the same cut.  Clearly, in order to
be able to route the logical links along disjoint physical
paths, 

† 

CSP (S,N-S )  must be greater than or equal

to

† 

CSL (S,N-S ) for each cut.  This condition is necessary, but

not sufficient to insure that a survivable routing exists for a
particular ring logical topology.  For embedding all
possible K  node ring logical topologies in a survivable
manner we obtain the following necessary condition on the
physical topology.



Theorem 1 An N node physical topology can support
any possible K node ring logical topology in a survivable
manner only if for any cut of the physical topology

SNS -, , 

† 

CSP (S,N - S) ≥ 2 min(S , N - S , K 2Î ˚) .

Proof: see [13]. The proof is by construction showing
that there exists a ring logical topology that requires

† 

2 min(S , N - S ), K 2Î ˚( )  physical links along the cut.

Theorem 1 says that for all cuts of the physical topology,
the number of physical links in the cut-set must be greater
than or equal to twice the minimum of the number of nodes
on the smaller side of the cut and 

† 

K 2Î ˚, where 

† 

K 2Î ˚
corresponds to the maximum number of nodes in a K
node ring logical topology that can be on both sides of the
cut.  Theorem 1 is a necessary but not sufficient condition.
Using Theorem 1, we develop lower bounds on the number
of physical links needed to embed rings of size =K 4, 6,
and 8.  Similar procedures can be used to develop lower
bounds for larger values of 

† 

K. Most importantly we show
in Theorem 5, that to embed rings of size 2-= NK , a
minimum of 42 -N  physical links are needed. A summary
of these lower bound results is given in Table 1. In Section
IV, these lower bounds are used to design physical
topologies that can support rings of size K  with a minimal
number of physical links.

Logical Ring
Size

Physical link
requirement

Result

4=K 34N Theorem 2

6=K 23N Theorem 3

8=K N55.1 Theorem 4

2-= NK 42 -N Theorem 5

Table 1: Lower bounds on the number of physical links.

We begin by developing the following lower bound on
the number of physical links needed to support rings of size
4 on an N  node physical topology.

Theorem 2:  To support all logical rings of size

† 

K ≥ 4 ,
an N  node physical topology must have at least

3/4N links.
To prove Theorem 2, we utilize the following lemma

which is obtained by applying Theorem 1 to two node cut-
sets of the physical topology.

Lemma 1: Any node of degree 2 must have physical
links to nodes of degree 4 or higher.

Proof: Suppose a node of degree 2 has a physical link to
a node of degree 3, then the cut-set consisting of the degree
2 node and its degree 3  neighbor contains only 3 links.
However, since the cut-set contains two nodes, Theorem 1
requires a minimum of 4 cut-set links.

Proof of Theorem 2: Let id  be the number of nodes

with degree i  in the physical topology. Then the number
of links in the physical topology, L , is

† 

L =
idi
2

i= 2

N-1

Â = d2 +
3d3

2
+

idi
2

i= 4

N-1

Â . (1)

From Lemma 1, we know that every degree 2 node must
have physical links to two nodes which have degree 4 or
higher, therefore

† 

d2 £
i
2

i= 4

N-1

Â di . (2)

Substituting Eq. (2) into Eq. (1) yields

† 

L ≥ 2d2 +
3
2

d3 . (3)

Since nodes of degree i  add a minimum of 2i physical

links to the physical topology,

† 

L ≥
2d2 + 3d3 + 4(N - d2 - d3)

2
= 2N - d2 -

d3
2

. (4)

Equations (3) and (4) require that the number of physical
links must be

† 

L ≥ max(2d2 +
3
2

d3,2N - d2 -
d3
2

) . (5)

We can determine the values of 2d and 3d that minimize

the number of physical links required.  The minimum value

occurs when 
2

2
2

3
2 3

232
d

dNdd --=+ , i.e., when

3

22 3
2

dN
d

-
= .  Substituting this value of 2d  into

Equation (1) yields

† 

L ≥
4N
3

+
d3
6

≥
4N
3

. (6)

Next we develop a lower bound on the number of physical
links required to support rings of size K=6 and K=8.

Theorem 3:  To support all logical rings of size K ≥ 6 ,
an N  node physical topology must have at least

2/3N links.
Theorem 4:  To support all logical rings of size

† 

K ≥ 8 ,
an N  node physical topology must have at least

N55.1 links.
The proofs of Theorem 3 and 4 follow very similar lines

to that of Theorem 2 and are given in the appendix.
The above approach can be pursued further to obtain

bounds on the number of physical links required to support
logical rings of sizes greater than 8. However, such proofs
become increasingly complex for larger values of K .
Instead, the following Theorem provides a lower bound on
the number of physical links needed to embed rings of size
K=N-2 or larger.

Theorem 5: The minimum number of physical links
necessary to support all logical rings of size K ≥ N - 2  (for

4≥K ) in a survivable manner is )2(2 -N .
To prove Theorem 5 we show that for any physical

topology with fewer than )2(2 -N  links, we can find an
2-N  node ring logical topology where each logical link

requires two physical links (for a total of )2(2 -N links).



Hence a physical topology with fewer than )2(2 -N  links
cannot support all 2-N node logical topologies. The proof
of Theorem 5 is given in the Appendix.  The above
theorem provides a necessary condition on the number of
physical links required to embed all logical rings of size

2-N  or greater.  Later, in Section IV, we will show that
this number is also sufficient for N  even.  We will also
show that when N  is odd 32 -N links are sufficient to
embed all rings of size less than or equal to N .

The above Theorems and Lemmas provide us with lower
bounds on the number of physical links that the physical
topology requires.  They also give us some insights
regarding the structure of the topology (e.g., low degree
nodes must be connected to high degree nodes, etc.).
However, they do not directly provide us with a physical
topology design.  In order to obtain additional insight, we
next apply Integer Linear Programming techniques to
design physical topologies.  In the last section we will use
these insights to design physical topologies that meet the
above bounds.

III. ILP Formulation
In this section we develop an Integer Linear Program

(ILP) formulation for designing physical topologies that
can support large numbers of logical rings in a survivable
manner. We consider the problem of finding a physical
topology with a minimum number of physical links and the
associated survivable routings for a batch of R  ring logical
topologies with K nodes each.  We use the ILP below to
determine a survivable routing for each of the R  rings,
which ensures that each logical topology remains
connected even in the event of a physical link failure.  In
order to route a logical link ( )ts, on the physical topology
one must find a corresponding path on the physical
topology between nodes s and t .  Such a lightpath consists
of a set of physical links connecting nodes s and t as well
as wavelengths along those links.  Let 1=st

ijf  if logical link

( )ts,  is routed on physical link ( )ji,  and 0 otherwise.
Our linear programming algorithm starts with a fully-

connected physical topology and assigns a cost of 1 to each
physical link that is used. The batch of R  rings is
embedded simultaneously, and we assign 1=ijy  if any

lightpath uses physical link ),( ji .  We can now formulate
the physical topology design problem as the following ILP,
with the objective of minimizing the total number of
physical links used.

Minimize Â
ŒEji

ijy
),(

 subject to:

a) Connectivity constraints:  for each pair ( )ts,  in each

ring EL: .       

0

1

1

),(..),(..

Ni

otherwise

itif

isif

ff
Eijtsj

st
ji

Ejitsj

st
ij Œ"

Ô
Ó

Ô
Ì

Ï

=-

=

=- ÂÂ
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b) Survivability constraints for each logical ring EL:
Ejiff

LEts

st
ji

LEts

st
ij Œ"£Â+Â

ŒŒ
),(        ,1

),(),(
.

c )  P h y s i c a l  l i n k  u s e  c o n s t r a i n t s :

LL
st

ijij EEtsEjify "Œ"Œ"≥ ,),(    ,),(        ,

d) Integer flow constraints: { }1,0Œst
ijf

The survivability constraint above (b) ensures that no
two logical links of a ring share a physical link.
A. Exact solution for ILP

We implemented this ILP using the CPLEX software
package.  CPLEX uses branch and bound techniques for
solving ILPs and is capable of solving ILPs consisting of
up to one million variables and constraints.  We have found
that the solution of the ILP can only be determined for
small problem instances. For example, with

10=N , 6=K , and 20=R rings, a physical topology
solution is found within 24 hours on a SPARC Ultra 10.
The resulting physical topology is shown in Figure 2.  Due
to the complexity of the ILP, this approach cannot be used
for general design.  However, attributes of the resulting
topologies found through experiments provide insights to
the physical topology design problem.  For example, we
find that (1) the physical topology does not contain a
Hamiltonian cycle and (2) the physical topology has a
multi-hub structure.  In Section IV we use these insights to
design physical topologies that are capable of embedding
all rings in a survivable manner.  Our designs are consistent
with observations (1) and (2) and in particular we use a hub
architecture.

 

Figure 2: Topology generated by ILP for K=6, R=20.
B.  Heuristics for solving the ILP

We examined a number of approaches for solving the
above ILP with very little success.  These included
attempting to bundle the physical link constraints (c) and
attempting to relax the integer constraints.  Another
approach for obtaining a feasible (but not optimal) solution
is to embed the rings sequentially rather than as a batch.
Expectedly, designing physical topologies by sequentially
embedding rings is not nearly as efficient as embedding the
rings as a batch.  For example, if we embed N  node rings
on an N  node topology sequentially, the first set of links
will be a Hamiltonian cycle that corresponds to the first
logical ring.  As mentioned above, the most efficient
physical topologies may not contain a Hamiltonian cycle.

One approach that did prove rather successful was to
embed a small batch of about 20 rings for which the above



ILP can be solved and then use the resulting physical
topology to sequentially embed additional rings, adding
physical links when necessary.  The intuition behind this
approach is that by embedding the small batch we avoid the
negative effect that results from the sequential embedding
of the first few rings.  Moreover, it is reasonable to expect
that the physical topology that results from embedding
even a small batch is relatively close to the optimal
topology for larger batches.

Hence, we combined the two approaches above, using
the ILP to embed a small batch of rings in order to obtain
an initial physical topology and then using this physical
topology to embed more logical rings sequentially, adding
physical links as required. Of course designing a physical
topology in this manner that can provably support all rings
requires embedding )!1( -N  rings which is impractical for

large N , even if the design is done off-line.  However, the
primary goal of this heuristic is to help obtain insight on
the architecture of a physical topology that is sufficient for
supporting all rings of size N .  For 9=N , embedding a
batch of ten logical 9 node rings led to the dual hub
architecture with an extra link between the hub nodes.  This
architecture uses 15 links and can support all 9 node rings.
We will show in the next section that this dual hub design
with N nodes can support all N node rings (for all N odd).

IV.  Physical Topology designs
The analytical and simulation (ILP) results provide

valuable insights in designing physical topologies that can
support ring permutations of various sizes.  From Lemma
1, we know that all degree 2 nodes must have neighbors of
degree 4 or higher.  The physical topologies designed
through the ILP simulations all have hub structures, i.e., a
small number of nodes with large degree and the remaining
nodes with small degree.  These insights are used to design
the following physical topology which can support all ring
permutations of size 2-£ NK .

Dual Hub Architecture: Consider a physical topology
with N  nodes, two of which are hub nodes.  Each non-hub
node has degree 2 and is connected to both hub nodes.  The
hub nodes each have degree 2-N .

An example of the resulting physical topology for
10=N  nodes is given in figure 3.  The dual hub

architecture contains )2(2 -N bi-directional physical links,
the minimum required by Theorem 5 for supporting all

2-N  node rings. The dual hub architecture of figure 3 can
support survivable routings of all logical rings of
size 2-£ NK  (for N  even). To show this we examine the
cases where the logical ring contains 0,1, or 2, of the hub
nodes. First consider the case where the ring logical
topology contains none of the hub nodes. Starting with any
node in the logical ring, a path can be found to the next
node via one of the hub nodes.  The path to the subsequent
node will then go through the other hub node. Thus
consecutive lightpaths in the logical ring alternate between

using each of the two hubs as intermediate nodes.  Each
hub node can be used as an intermediate node

2)2( -N times, thus we can support 2-N  lightpaths.

Proofs for the cases where the logical topology contains
one or both hub nodes are similar.

 

Figure 3: Topology that supports all 2-N  node rings.

For N even, the dual hub architecture of Figure 3 can
support all size 1-N rings as well.   For N  odd, adding an
additional physical link connecting the two hub nodes
allows all rings of size less than or equal to N   to be
embedded.  Furthermore, when N is even it can be shown
that adding two diversely routed physical links to the dual
hub architecture can support all rings of size N in a
survivable manner (using a total of 2N - 2 links).

Shown in figure 4 is a physical topology for embedding
rings of size 4=K  (N=12).  In this physical topology
there are only nodes of degree 2 and degree 4.  All nodes of
degree 2 are connected to two nodes of degree 4 and all
nodes of degree 4 are connected to four nodes of degree 2.
Thus, there are twice as many degree 4 nodes as degree 2
nodes.  This example can be generalized to all values of N
divisible by 3 (N≥6).  It can be easily shown that the
resulting physical topology can support all rings of size

4=K . Since the above topology contains twice as many
degree 2 nodes as degree 4 nodes, clearly, it contains

34N physical links. By Theorem 2, this is the minimum

required to support all rings of size 4.

 
1 

7 3 

5 

12 

8 

4 

10 

9 

2 

6 

11 

Figure 4: Physical topology for K=4.



V.  Conclusion
We consider the problem of physical topology design for

embedding logical rings in a survivable manner.  This
problem is particularly important for service providers that
design their fiber infrastructure in order to support future
customer requests for lightpath connections.  Since rings
are a very commonly used logical topology (due to their
ability to recover from failures), we focused in this paper
on design for ring logical topologies.  Of course, a natural
extension of this work is general design for arbitrary (2-
connected) logical topologies.

We obtained some basic necessary conditions on the
physical topology in order to be able to route logical rings
in a survivable manner.  We also developed tight lower
bounds on the number of links that the physical topology
must contain in order to be able to support all possible
logical rings of size K  (for various values of K ).  Finally,
we designed a number of basic physical topologies that
meet these bounds.  One interesting result of our work is
that these physical topologies tend to have a multi-hub
architecture. An important area of future work is to
consider designs that do not use a hub architecture.

Finally, one may question our desire to support all K
node logical rings in a survivable manner.  The question
arises of whether we are over provisioning the physical
network in our quest to support all logical rings.  Notice,
however, that our designs use fewer than N2  physical
links to support all logical rings of size N  or smaller.  An
arbitrary N  node logical topology requires a minimum of
N  physical links in order to be 2-connected.  Furthermore,
our experiments show that attempting to embed just a small
number of logical rings requires very close to N2 physical
links; hence, requiring the design to support all possible
logical rings in fact does not result in a significant number
of additional physical links.  Moreover the ability to
support all logical rings is useful because it allows the
logical ring topology to be reconfigured. Such
reconfiguration has been shown to reduce network traffic
loads[12,13].

Appendix: Proofs of Theorems
Before proceeding to the proof of Theorem 3, we must first
give the following useful Lemma.

Lemma 2: A node of degree 4 or degree 5 can have a
physical link to at most one node of degree 2.

Proof: Suppose two nodes of degree 2 have physical
links to the same node of degree 5.  Then the cut set
consisting of the two degree 2 nodes and the degree 5 node
contains only five links, which is less than the 6 links
required by Theorem 1.

Proof of Theorem 3: Let id be the number of nodes

with degree i  in the physical topology. Then the number
of links in the physical topology, L , is

† 

L =
idi
2

i= 2

N-1

Â = d2 +
3d3

2
+ 2d4 +

5d5
2

+
idi
2

i= 6

N-1

Â .   (7)

From Lemma 1 we know that nodes of degree 2 must
have physical links to nodes of degree 4 or higher and from
Lemma 2, we know that at most one degree 2 node can
have a physical link to each node of degree 4 or degree 5,
therefore

† 

d2 £
d4
2

+
d5
2

+
i
2

i= 6

N-1

Â di . (8)

Substituting Eq. (8) into Eq. (7) yields

† 

L ≥ 2d2 +
3
2

d3 +
3
2

d4 + 2d5 . (9)

Since nodes of degree i  add a minimum of 2i physical

links to the physical topology,

† 

L ≥
2d2 + 3d3 + 4d4 + 5d5 + 6(N - d2 - d3 - d4 - d5)

2

  = 3N - 2d2 -
3
2

d3 - d4 -
3
2

d5

  (10)

Equations (9) and (10) require that the number of
physical links must be

† 

L ≥ max(2d2 +
3d3

2
+

3d4

2
+ 2d5,3N - 2d2 -

3d3

2
- d4 -

3d5

2
) . (11)

We can determine the values of 2d , 3d , 4d , and 5d that

minimize the number of physical links required.  The
minimum value occurs when,

54325432 2

3

2

3
232

2

3

2

3
2 ddddNdddd ----=+++ , i.e.,

when 
2

2

5

2

5
33

2
543

2

dddN
d

---
= .  Substituting this

value of 22d  into Equation (9) yields

† 

L ≥
3N
2

+
d4
4

+
3d5
4

≥
3N
2

.                                   (12)

QED.
To prove Theorem 4, we first develop the following

three lemmas that are derived from Theorem 1.
Lemma 3: A node of degree 6 or degree 7 can have

physical links to at most two nodes of degree 2.
Proof: Suppose three nodes of degree 2 have physical

links to a single degree 7 node.  Then the cut set consisting
of the three degree 2 nodes and the degree 7 node contains
only seven links, which is less than the 8 links required by
Theorem 1.

Lemma 4: A degree 3 node can have a physical link to
at most one other degree 3 nodes.

Proof: Suppose a node of degree 3 has physical links to
two other nodes of degree 3.  Then the cut set  consisting of
the three degree 3 nodes contains only five links, which is
less than the 6 links required by Theorem 1.

Lemma 5: A degree 4 node can have physical links to at
most two degree 3 nodes.

Proof: Suppose a node of degree 4 has physical links to
three nodes of degree 3.  Then the cut set  consisting of the
three degree 3 nodes and the degree 4 node contains only
seven links, which is less than the 8 links required by
Theorem 1.



Proof of Theorem 4: Let id be the number of nodes

with degree i  in the physical topology. Then the number
of links in the physical topology, L , is

† 

L = d2 +
3d3
2

+ 2d4 +
5d5
2

+ 3d6 +
7d7

2
+

idi
2

i= 8

N-1

Â . (13)

From Lemmas 1, 2, and 3, we get the following
restriction on the number of degree 2 nodes:

† 

d2 £
d4
2

+
d5
2

+ d6 + d7 +
i
2

i= 8

N-1

Â di. (14)

Substituting Eq. (14) into Eq. (13) yields

† 

L ≥ 2d2 +
3
2

d3 +
3
2

d4 + 2d5 + 2d6 +
5
2

d7 . (15)

Lemmas 4 and 5 yield the following restriction on the
number of degree 3 nodes:

† 

3d3 £ d3 + 2d4 + i
i= 5

N-1

Â di . (16)

Substituting Eq. (16) into Eq. (13) yields

† 

L ≥ d2 +
5
2

d3 + d4 . (17)

Since nodes of degree i  add a minimum of 2i physical

links to the physical topology,

765432

765432

7

2

2

1

2

3
2

2

5
34  

2

)(8

ddddddN

ddddddNid
L i

i

------=

------+Â
≥ =

.    (18)

Equations (15), (17), and (18) require that the number of
physical links must be

† 

L ≥ max(2d2 +
3d3

2
+

3d4

2
+ 2d5 + 2d6 +

5d7

2
,d2 +

5d3

2

+d4,4N - 3d2 -
5d3

2
- 2d4 -

3d5

2
- d6 -

d7

2
)

(19)

We minimize the right hand side of Equation (19) using
a linear program to find that NL 55.1≥  for all values of N.
QED.

To prove Theorem 5 we show that for any physical
topology with fewer than )2(2 -N  links, we can find an

2-N  node ring logical topology where each logical link
requires two physical links (for a total of )2(2 -N links).
Hence a physical topology with fewer than )2(2 -N  links
cannot support all 2-N node logical topologies. The proof
of Theorem 5 uses Lemma 6 below.

Lemma 6: Consider an N  node physical topology with
52 -£ N physical links. Let id  be the degree of the

thi largest degree node in the N  node topology and
assume each node has a minimum degree of two. Then

.
2102

i

iN
di

+-
£

Proof: Since there are at most 52 -N physical links in
the physical topology, the sum of the degrees of all the
nodes must be less than or equal to 104 -N .  Equivalently,

104
1

1

1
-£Â++Â

+=

-

=
Nddd

N

ik
ki

i

k
k . (20)

To determine an upper bound on id , move the sums on

the left hand side of Equation (20) to the right hand side.
Since the degree of each node is at least two,

)(2
1

iNd
N

ik
k -≥Â

+=
, thus

.2102      

)(2104

1

1

1

1

Â-+-=

Â----£

-

=

-

=

i

k
k

i

k
ki

diN

diNNd
(21)

Since id is the degree of the thi largest degree node, we

know that its degree must be less than the average of the of

the larger degree nodes, i.e., 
1

1

1

-

Â
£

-

=

i

d
d

i

k
k

i .  Equivalently,

)1(
1

1
-≥Â

-

=
idd i

i

k
k . (22)

Substituting Equation (22) into Equation (21) yields,

i

iN
di

2102 +-
£ . (23)

Proof of Theorem 5:  The proof is by construction of an
2-N  node logical topology that requires at least 42 -N

physical links.  The proof is divided into four cases
corresponding to physical topology size.  In the first case,
we show that the Theorem holds for all rings of size greater
than or equal to 12.  The other three cases establish the
proof for rings of size less than 12.

In Case 1, we consider physical topologies of
size 12≥N . We start by removing the two largest degree
nodes from the physical topology.  The resulting physical
topology, P , has 2-= Nm nodes, with degrees 3d

through Nd .  We show below that there exists a logical

ring topology that traverses these 2-N nodes and requires
more than 52 -N physical links.

 Consider the inverse of the m node physical topology,

denoted P
)

, where if link Pji œ),( , then Pji
)

Œ),(  and if

Pji Œ),( , then Pji
)

œ),( . We show below that there exists

a Hamiltonian cycle in this inverse graph. The existence of
a Hamiltonian cycle in the inverse graph implies that there
exists a sequence of 2-N  nodes with direct physical links
connecting them in the inverse topology.  Hence, these

2-N  nodes cannot be connected using direct physical
links in the original physical topology, thus each logical
link must utilize at least two physical links in the original
physical topology.     Thus the logical ring corresponding
to the Hamiltonian cycle in the inverse graph requires a



minimum of 42 -N physical links in the original topology.
Next, we must prove our claim that a Hamiltonian cycle
exists in the inverse topology.  Let i be the index of the

thi largest degree node in the original topology and let id
)

denote its degree in the inverse graph P
)

. Since P
)

 has

2-N  nodes, ii dNd --≥ 3
)

. If some of the links of the
thi largest degree node in the original topology were

connected to nodes 1=i  and 2=i , then the degree of

node id
)

 is strictly greater than idN -- 3 .  Thus 1+id
)

 can

be less than id
)

. However, the degree of the smallest degree

node in P
)

 is always 33 dN --≥ and the degree of the

next smallest degree node is always 43 dN --≥ , etc.  Let

je  denote the degree of the thj  smallest degree node in

P
)

. Then 23 +--≥ jj dNe .

Before we can proceed we must cite the following
Lemma which provides a sufficient condition for the
existence of a Hamiltonian cycle in a graph.

Lemma 7 [11, p.350]:  Given a graph with m nodes with
degrees meee ££ ...21 .  If je j >  for 21 mj <£ ,  the

graph contains a Hamiltonian cycle.
Applying the above Lemma to the inverse graph, the

inverse graph P
)

contains a Hamiltonian cycle if the degree
of the nodes in the inverse graph are such that je j >  for

21 mj <£ . Rewriting the requirement for a Hamiltonian

cycle in terms of id  and N  yields,

232 ->--≥- idNe ii  for 1
2

3 +<£
N

i .         (24)

Using Equation (23) as an upper bound for id  in

Equation (24), with some algebraic manipulation yields the
following requirement:

† 

(N - i - 3)i - 2N +10 > 0  for 1
2

3 +<£
N

i .         (25)

The roots of the left hand side of equation (25) occur at
2=i and 5-= Ni .  Hence, Equation (25) is true if
2>i and 5-< Ni .  Thus, Equation (24) is satisfied if

51
2

-£+ N
N

.  Consequently, there exists a Hamiltonian

cycle in the inverse graph P
)

 for all 12≥N .  The resulting
Hamiltonian cycle corresponds to a logical topology that
requires for each logical link a minimum of two physical
links in the original physical topology, i.e., this logical
topology cannot be embedded in the original physical
topology with fewer than 42 -N physical links.

For case 2, we consider physical topologies of size
6=N and 7=N .  Recall from Theorem 2 that a minimum

of 34N  physical links are required to support rings of size

4.  Since 3452 NN <-  for 7£N , 4 node rings cannot

be supported, thus Theorem 5 holds.  Similarly, case 3
corresponds to physical topologies of size 8=N  and

9=N .  From Theorem 3, a minimum of 23N physical

links are needed to support rings of size 6.  Again,
2352 NN <-  for 9£N  and Theorem 5 still holds.

Finally, case 4 corresponds to physical topologies of size
10=N  and 11=N . Theorem 4 requires a minimum of

† 

1.55 N physical links to support rings of size 8.  Since

† 

2N - 5 < 1.55 N for 

† 

N £ 11, Theorem 5 still holds and

† 

2N - 5 < 1.55 N physical links are insufficient to support
rings of size 2-N  for all 

† 

N £ 11.
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