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Abstract

We develop a novel auction-based algorithm to allow users to fairly compete
for a wireless fading channel. We use the second-price auction mechanism whereby
user bids for the channel, during each time-slot, based on the fade state of the
channel, and the user that makes the higher bid wins use of the channel by paying
the second highest bid. Under the assumption that each user has a limited budget
for bidding, we show the existence of a Nash equilibrium strategy. And the Nash
equilibrium leads to a unique allocation under certain common channel distribution.
For uniformly distributed channel state, we establish that the aggregate throughput
received by the users using the Nash equilibrium strategy is at least 3/4 of what
can be obtained using an optimal centralized allocation that does not take fairness
into account. We also show that the allocation resulted from the Nash equilibrium
strategy is pareto optimal.

1 Introduction

Network resources such as bandwidth and power are often limited in wireless and satellite
networks. When demand exceeds supply, it is desirable to have a systematic procedure
in place for fair allocation. However, there is no consensus on the notion of fairness. Any
centrally imposed notion of fairness may appear to be unfair from an individual user’s
perspective. In this paper, we address the problem of fair resource allocation by allowing
individual users to compete for resources through bidding for the use of the channel.

A fundamental characteristic of a wireless network is that the channel over which
communication takes place is often time-varying. This variation of the channel quality
is due to constructive and destructive interference between multipaths and shadowing
effects (fading). In a single cell with one transmitter (base station or satellite) and
multiple users communicating through fading channels, the transmitter can send data at
higher rates to users with better channels. In a time slotted system such as the HDR
system, time slots are allocated among users according to their channel qualities.

The problem of resource allocation in wireless networks has received much attention in
recent years. In [1] the authors try to maximize the data throughput of an energy and time
constrained transmitter communicating over a fading channel. A dynamic programming
formulation that leads to an optimal transmission schedule is presented. Other works
address the similar problem, without consideration to fairness, include [7] and [8]. In [5],
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the authors consider scheduling policies for maxmin fairness allocation of bandwidth,
which maximizes the allocation for the most poorly treated sessions while not wasting any
network resources, in wireless ad-hoc networks. In [4], the authors designed a scheduling
algorithm that achieves proportional fairness, a notion of fairness originally proposed by
Kelly [6]. In [9], the authors present a slot allocation that maximizes expected system
performance subject to the constraint that each user gets a fixed fraction of time slots.
The authors did not use a formal notion of fairness, but argue that their system can
explicitly set the fraction of time assigned to each user. Hence, while each user may get
to use the channel an equal fraction of the time, the resulting throughput obtained by
each user may be vastly different.

The following simple example illustrates the different allocations that may result from
the different notions of fairness. We consider the communication system with one trans-
mitter and two users, A and B, and the allocations that use different notions of fairness
discussed in the previous paragraph. We assume that the throughput is proportional to
the the channel condition. The channel state for user A and user B in the two time slots
are (0.1, 0.2) and (0.3, 0.9) respectively (channel coefficient ranges from 0 to 1, and 1
is the best channel condition). The throughput result for each individual user and for
total system under different notions of fairness constraint are given in Table I. When
there is no fairness constraint, to maximize the total system throughput would require
the transmitter to allocate both time slots to user B. To achieve maxmin fair allocation,
the transmitter would allocate slot one to user B and slot two to user A, thus resulting
in a total throughput of 0.5. If the transmitter wants to maximize the total throughput
subject to the constraint that each user gets one time slot (i.e., the approach of [9]), the
resulting allocation, denoted as time fraction fair, is to give user A slot one and user B
slot two. As a result, the total throughput is 1.0.

Throughput for A Throughput for B Total throughput

No fair constraint 0 1.2 1.2
Maxmin fair 0.2 0.3 0.5
Time fraction 0.1 0.9 1.0

Table 1: Throughput results using different notions of fairness.

In the above example, the transmitter selects an allocation to ensure an artificially
chosen notion of fairness. From Table I, we can see that from the user’s perspective,
no notion is truly fair as both users want slot two. In order to resolve this conflict,
we use a new approach which allows users to compete for time slots. In this way, each
user is responsible for its own action and resulting throughput. We call the fraction
of bandwidth received by each user competitive fair. Using this notion of competitive
fairness, the resulting throughput obtained for each user can serve as a reference point
for comparing various allocations.

In our model, users compete for time-slots. For each time-slot, each user has a different
valuation (i.e., its own channel condition). And each user is only interested in getting
a higher throughput for itself. Naturally, these characteristics give rise to an auction.
In this paper we consider the second-price auction mechanism. Using the second-price
auction mechanism, users submit a “bid” for the time-slot and the transmitter allocates
the slot to the user that made the highest bid. Moreover, in the second-price auction
mechanism, the winner only pays the second highest bid [13]. The second-price auction



mechanism is used here due to its ”truth telling” nature (i.e., it is optimal for user to bid
its true value). Each user is assumed to have an initial amount of money. The money
possessed by each user can be viewed as fictitious money that serves as a mechanism
to differentiate the QoS given to the various users. This fictitious money, in fact, could
correspond to a certain QoS for which the user paid in real money. As for the solution of
the slot auction game, we use the concept of Nash equilibrium, which is a set of strategies
(one for each player) from which there are no profitable unilateral deviation.

In this paper, we consider a communication system with one transmitter and two
users. For each time slot, channel states are independent and identically distributed
with known probability distribution. Each user wants to maximize its own expected total
throughput subject to an average money constraint. Our major results include:

• We find the Nash equilibrium strategy for general channel state distribution.

• We show that the Nash equilibrium strategy pair leads to a unique allocation for
certain channel state distribution, such as the exponential distribution and the
uniform distribution over [0, 1].

• We show that the Nash equilibrium strategy of this auction leads to an allocations
at which total throughput is no worse than 3/4 of the throughput obtained by an
algorithm that attempts to maximize total system throughput without a fairness
constraint under uniform distribution.

• We show that the Nash equilibrium strategy leads to an allocation that is pareto
optimal (i.e., it is impossible to make some users better off without making some
other users worse off).

Game theoretical approaches to resource allocation problems have been explored by
many researchers recently (e.g., [2][12]). In [2], the authors consider a resource allocation
problem for a wireless channel, without fading, where users have different utility values
for the channel. They show the existence of an equilibrium pricing scheme where the
transmitter attempts to maximize its revenue and the users attempt to maximize their
individual utilities. In [12], the authors explore the properties of a congestion game
where users of a congested resource anticipate the effect of their action on the price of
the resource. Again, the work of [12] focuses on a wireline channel without the notion
of wireless fading. Our work attempts to apply game theory to the allocation of a
wireless fading channel. In particular, we show that auction algorithms are well suited for
achieving fair allocation in this environment. Other papers dealing with the application
of game theory to resource allocation problems include [3][16][17].

This paper is organized as follows. In Section 2, we describe the communication
system and the auction mechanism. In Section 3, the Nash equilibrium strategy pair is
presented for general channel distribution. We also show the uniqueness of the allocation
scheme derived from the Nash equilibrium when the channel state has the exponential
or the uniform [0, 1] distribution. In Section 4, we compare the throughput results of the
Nash equilibrium strategy with three other centralized allocation algorithms and show
that the Nash equilibrium strategy leads to a pareto optimal allocation. Finally, Section
5 concludes the paper.



2 Problem Formulation

We consider a communication environment with a single transmitter sending data to two
users over two independent fading channels. We assume that there is always data to
be sent to the users. Time is assumed to be discrete, and the channel state for a given
channel changes according to a known probabilistic model independently over time. The
transmitter can transmit to only one user during a particular slot with a constant power
P . The channel fade state thus determines the throughput that can be obtained.

For a given power level, we assume for simplicity that the throughput is a linear
function of the channel state. This can be justified by the Shannon capacity at low signal-
to-noise ratio, or by using a fixed modulation scheme [1]. For general throughput function,
the method used in this paper applies as well. Let Xi be a random variable denoting
the channel state for the channel between the transmitter and user i, i = 1, 2. When
transmitting to user i, the throughput will then be P ·Xi. Without loss of generality, we
assume P = 1 throughout this paper.

We now describe the second-price auction rule used in this paper. Let α and β be the
average amount of money available to user 1 and user 2 respectively during each time
slot. We assume that the values of α and β are known to both users. Both users know
the distribution of X1 and X2. We also assume that the exact value of the channel state
Xi is revealed to user i only at the beginning of each time slot. During each time slot,
the following actions take place: 1) Each user submits a bid according to the channel
condition revealed to it. 2) The transmitter chooses the one with higher bid to transmit.
3) The price that the winning user pays is the second-highest bidder’s bid. The user who
losses the bid does not pay.

The formulation of our auction is different from the type of auction used in economic
theory in several ways. First, we look at a case where the number of object (time slots) in
the auction goes to infinity (average cost criteria). While in the current auction research,
the number of object is finite [13][14][15]. Second, in our auction formulation, the money
used for bidding does not have a direct connection with the value of the time slot. Money
is merely a tool for users to compete for time slots, and it has no value after the auction.
Therefore, it is desirable for each user to spend all of its money. However, in auction
theory, an object’s value is measured in the same unit as the money used in the bidding
process, hence their objective is to maximize the difference between the object’s value and
its cost. Lastly, in our formulation, the valuation of each commodity (time-slot) changes
due to the fading channel model; a notion that is not common in economic theory.

Besides the second-price auction, the first-price auction and the all-pay auction are
two other commonly used auction mechanisms. In the first-price auction, each bidder
submits a single bid without seeing the others’ bids, and the object is sold to the bidder
who makes the highest bid. In the all-pay auction, each user independently submits a
single bid without seeing the others’ bids, and the object is sold to the bidder who makes
the highest bid. However, both users pay their bid regardless of whether they win or loss
[13]. We choose to use the second-price auction in this paper to illustrate the auction
approach to resource allocation in wireless networks. Also, second price auction results
in an allocation that is efficient. More specifically, it is pareto optimal.

The objective for each user is to design a bidding strategy, which specifies how a user
will act in every possible distinguishable circumstance, to maximize its own expected
throughput per time slot subject to the expected or average money constraint. Once a
user, say user 1, chooses a function, say f1, to be its strategy, it bids an amount of money



equal to f1(x) when it sees its channel condition is X1 = x.

3 Nash Equilibrium under Second-Price Auction

We present in this section a Nash equilibrium strategy pair (f ∗
1 , f ∗

2 ) for the second-price
bidding under general channel distribution. A strategy pair (f ∗

1 , f ∗
2 ) is said to be in Nash

equilibrium if f ∗
1 is the best response for user 1 to user 2’s strategy f ∗

2 , and f ∗
2 is the

best response for user 2 to user 1’s strategy f ∗
1 . We consider here the case where users

choose their strategies from the set F1 and F2 respectively. Each user’s strategy is a
function of its own channel state Xi. Thus, Fi is defined to be the set of continuous real-
valued functions over the support of Xi. Without loss of generality, we further assume
functions in Fi to be strictly increasing and bounded. We define A : (x1, x2) → {1, 2}
to an allocation that maps the possible channel state realization, (x1, x2), to either user
1 or user 2. Here we are interested in the allocation resulted from the Nash equilibrium
strategies.

We first consider a channel state Xi that is continuously distributed over a finite
interval [li, ui] where li and ui are nonnegative real number with ui > li. Later we will
consider the case that ui is infinite (e.g., when Xi is exponentially distributed).

We now illustrate our approach in finding the Nash equilibrium strategy pair. Given
user 1’s strategy f1 ∈ F1 with range from f1(l1) = a to f1(u1) = b, user 2 wants to
maximize its own expected throughput while satisfying its expected budget constraint.
For a given f1, if user 2 chooses a bidding function f2, the expected throughput or payoff
function for user 2 is given by

G2 = EX1,X2[X2 · 1f2(X2)≥f1(X1)]

where

1f2(X2)≥f1(X1) =

{
1 if f2(X2) ≥ f1(X1)
0 otherwise

Recall that in the second-price auction rule, the price that the winner pays is actually
the second highest bid. Therefore, the constraint that f2 must satisfy is given by:

EX1,X2 [f1(X1) · 1f2(X2)≥f1(X1)] = β

We first note that the inverse function f−1
1 (y) is well defined for y ∈ [a, b] since f1 is

strictly increasing over [a, b]. Therefore, we are able to define the following function:

h(y) =




l1 if y ≤ a
f−1

1 (y) if a < y < b
u1 if y ≥ b

Given user 1’s bidding strategy f1 and user 2’s bid at a particular time slot is y,
the probability that user 2 wins this slot, denoted as P2 win(y), is given by P2 win(y) =∫ h(y)

l1
pX1(x1) dx1.

Therefore, the optimization problem that user 2 faces can be written as the following:

max

∫ u2

l2

x2pX2(x2)P2 win(f(x2)) dx2 = max

∫ u2

l2

x2pX2(x2)

∫ h(f2(x2))

l1

pX1(x1) dx1 dx2

subj. to

∫ u2

l2

∫ h(f2(x2))

l1

f1(x1)pX1(x1)pX2(x2) dx1 dx2 = β

(1)



where the integration is over the region that user 2’s bid is higher than user 1’s bid. The
constraint term denotes the expected money that user 2 has to pay over the region which
it has a higher bid than user 1. To solve the above optimization problem, we use the
optimality condition in [11]. First, we write the Lagrangian function below:

∫ u2

l2

∫ h(f2(x2))

l1

x2pX1(x1)pX2(x2) dx1 dx2 − λ2

( ∫ u2

l2

∫ h(f2(x2))

l1

f1(x1)pX1(x1)pX2(x2) dx1 dx2 − β
)

=

∫ u2

l2

[ ∫ h(f2(x2))

l1

(x2 − λ2f1(x1))pX1(x1) dx1

]
pX2(x2) dx2 − λ2β

(2)

We then choose a function f2 to maximize the above equation. Also, a positive λ2 is
chosen such that the expected money constraint is satisfied. Specifically, for each value
x2, we find

max
f2(x2)

∫ h(f2(x2))

l1

(x2 − λ2f1(x1))pX1(x1) dx1 (3)

For convenience, we let y = f2(x2). Then, Eq. (3) becomes

max
y

L1(y) =

∫ h(y)

l1

(x2 − λ2f1(x1))pX1(x1) dx1. (4)

For fixed x2, the term x2 − λ2f1(x1) is a strictly decreasing function in x1 since f1(x1) is
strictly increasing. To maximize L1(y), the optimal value y∗ should be chosen such that
x2 − λ2f1(h(y

∗)) = 0. However, if x2 − λ2f1(h(y)) > 0 for all y ∈ [a, b], we let y∗ = b.
Similarly, if x2 − λ2f1(h(y)) < 0 for all y ∈ [a, b], we let y∗ = a. Thus, the optimal
bidding function has the following form

f2(x2) ≤ a for x2 ∈ [l2, θ1]
f2(x2) = c2 · x2 for x2 ∈ [θ1, θ2]
f2(x2) ≥ b for x2 ∈ [θ2, u2]

where θ1, θ2 ∈ [l2, u2] and c2 · θ1 = a, c2 · θ2 = b. The above discussion states that for
user 2 to maximize its throughput given user 1’s strategy f1, the optimal strategy is not
unique. For x2 ∈ [l2, θ1], as long as f2(x2) ≤ a, user 2 always losses the bid, and the
throughput for user 2 does not change. However, from second-price bidding rule, user
2’s strategy affects user 1’s strategy through the expected budget constraint that user 1
must satisfy. This way, user 2 will choose f2(x2) = a for x2 ∈ [l2, θ1]. Intuitively, even if
user 2 knows that it will not win a particular time slot, it will still choose to maximize
its bid in order to force user 1 to pay more.

Similarly, given user 2’s bidding function f2, we can carry out the same analysis to
find that the optimal bidding function for user 1 is f1(x1) = c1 · x1. The value of c1 and
c2 can be chosen such that the following two constraint are both satisfied:

EX1,X2[f(X2) · 1f1(X1)≥f2(X2)] = α (5)

EX1,X2[f(X1) · 1f2(X2)≥f1(X1)] = β (6)

The Nash equilibrium strategy discussed above in general may not be unique. How-
ever, under a continuous channel state distribution that starts with zero, such as the
uniform distribution over [0, 1] or the exponential distribution, the Nash equilibrium bid-
ding strategies lead to a unique allocation. Next, we will discuss the Nash equilibrium
strategy pair of these two distribution.



3.1 Uniform channel distribution

In this section, we examine the two users case with the channel state Xi uniformly
distributed over [0, 1]. Following the approach discussed in the previous section, we find
the unique allocation resulted from the Nash equilibrium strategy. Given a strategy pair
(f ∗

1 , f ∗
2 ) to be in Nash equilibrium, we first investigate the bids that users submit when

the channel state Xi is equal to 0 (i.e., the value of f ∗
1 (0) and f ∗

2 (0)). The result is stated
in the following lemma.

Lemma 1 For a strategy pair (f ∗
1 , f ∗

2 ) to be a Nash equilibrium strategy pair, we must
have f ∗

1 (0) = f ∗
2 (0) = 0 when the channels are uniformly distributed over [0, 1].

With the above lemma, we can get the exact form of the Nash equilibrium strategy pair.

Theorem 1 With the channel states, X1 and X2, uniformly and independently dis-
tributed over [0, 1], the Nash equilibrium pair (f ∗

1 , f ∗
2 ) has the following form: f ∗

1 (x1) =
c1 · x1 and f ∗

2 (x2) = c2 · x2 where c1 and c2 are chosen such that the expected money
constraints are satisfied. Furthermore, any other Nash equilibrium strategies, if exist,
will lead to the same allocation.

The proof is omitted for brevity. It can be followed from the analysis in the general
distribution section.

We now calculate the exact value of c1 and c2. Without loss of generality, we assume
that user 2 has more money than user 1 (i.e., α < β). Since the form of the optimal
bidding strategy for both users is known, we need to get the exact value of c1 and c2

from the budget constraint that users must satisfy. Thus, from Eq.(5) and Eq. (6), the
constraint for user 1 is given by:

∫ 1

0

∫ f−1
2 (f1(x1))

0

f2(x2) dx2 dx1 = α ⇒
∫ 1

0

∫ c1
c2

x1

0

c2 · x2 dx2 dx1 = α (7)

Note that the function f−1
1 (f2(x2)) is well defined for f2(x2) ∈ [0, c1]. Therefore, the

constraint for user 1 is given by:

∫ c1
c2

0

∫ f−1
1 (f2(x2))

0

f1(x1) dx1 dx2 +

∫ 1

c1
c2

∫ 1

0

f1(x1) dx1 dx2 = β (8)

∫ c1
c2

0

∫ c2
c1

x2

0

c1 · x1 dx1 dx2 +

∫ 1

c1
c2

∫ 1

0

c1 · x1 dx1 dx2 = β (9)

Solving the two equations, we get

c1 = 2(2α + β), c2 = 2(2α + β)2/(3α) (10)

The throughput of each user is then given by

G1 = α/(β + 2α), G2 = 1/2− 3α2/(2(β + 2α)2) (11)

Note that the linear bidding function leads to the following allocation: Given that the
channel states are x1 and x2 during a time slot, the transmitter assigns the slot to user 1
if x1 ≥ c · x2, and to user 2 otherwise. As we will see later, this form of allocation leads
to the pareto optimality.



3.2 Exponential distribution

When the channel state Xi is exponentially distributed with rate µi, the analysis in
the general distribution section is still valid with minor modifications. For example,
the set Fi is not assumed to be bounded over the support [0,∞). The unique Nash
equilibrium strategy pair has the same form as the uniform case: f ∗

1 (x1) = c1 · x1 and
f ∗

2 (x2) = c2 · x2. Using Eq.(5) and Eq.(6), we get a relationship between c1 and c2 to be
c1/c2 = (α · µ1)/(β · µ2). Thus, the optimal allocation is given by:

A∗(x1, x2) =

{
2 if x2 > (c1/c2)x1

1 otherwise

Write the decision in another form µ2X2 > (α/β)µ1X1. We see that only the normalized
channel state distribution (i.e., µ2X2 and µ1X1) are used in the comparison. The expected
throughput for each user is given by:

G1 =
1

µ1
[1− β2

(α + β)2
], G2 =

1

µ2
[1− α2

(α + β)2
]. (12)

4 Comparison with Other Allocations

To this end, we have a Nash equilibrium strategy pair and the resulting throughput when
both players choose to use the Nash equilibrium strategy. Inevitably, due to the fairness
constraint, total system throughput will decrease as compared to the maximum through-
put attainable without any fairness constraint. Hence we would like to compare the total
throughput of the Nash equilibrium strategy to that of an unconstrained strategy. We
address this question by first considering an allocation that maximizes total throughput
subject to no constraint. Then, we investigate the throughput of another centralized al-
location that maximize the total throughput subject to the constraint that the resulting
throughput of individual user is kept at certain ratio. For simplicity, we let the channel
state be uniformly distributed over [0, 1].

4.1 Maximizing Throughput with No Constraint

To maximize throughput without any constraints, the transmitter serves the user with a
better channel state during each time slot. Then the expected throughput is E[max{X1, X2}].
Since X1 and X2 are independent uniformly distributed in [0, 1], we have E[max{X1, X2}] =
2
3
. Using the Nash equilibrium strategy, the total expected system throughput, G1 +G2,

is 1
2
in the worst case (i.e., one users gets all of the time slots while the other user is

starving). Thus, the channel allocation proposed here can achieve at least 75 percent
of the maximum attainable throughput. This gives us a lower bound of the throughput
performance of the allocation derived from the Nash equilibrium pair.

4.2 Maximizing Throughput with Throughput Ratio Constraint

Now, we investigate an allocation with a fairness constraint that requires the resulting
throughput of the users to be kept at a constant ratio. Specifically, let G1 and G2

denote the expected throughput for user 1 and user 2 respectively. We have the following
optimization problem: for some nonnegative a,

max G1 + G2, subj. G1/G2 = a (13)



The optimal allocation is to divide the possible channel state realization, (x1, x2),
into two regions by the separation line x2 = c · x1, where c is some positive real number.
Above the line (i.e., x2 > c · x1), the transmitter will assign the slot to user 2. Below the
line (i.e., x2 < c · x1), the transmitter will assign the slot to user 1.

To prove the above, we use a method that is similar to the one in [9]. By using an
allocation A, the resulting throughput for user 1 and user 2 are GA

1 = E[X1 · 1A(X1,X2)=1]
and GA

2 = E[X2 · 1A(X1,X2)=2] respectively. Now, we define an allocation as follows:

A∗(x1, x2) =

{
1 if x1(1 + λ∗) ≥ x2(1− a · λ∗)
2 otherwise

where λ∗ is chosen such that GA∗
1 /GA∗

2 = a is satisfied.
Consider an arbitrary allocation A that satisfies GA

1 /GA
2 = a. We have

E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2]

= E[X1 · 1A(X1,X2)=1] + E[X2 · 1A(X1,X2)=2] + λ∗(E[X1 · 1A(X1,X2)=1]− aE[X2 · 1A(X1,X2)=2])

= E[(X1 + λ∗X1) · 1A(X1,X2)=1] + E[(X2 − aλ∗X2) · 1A(X1,X2)=2]

≤ E[(X1 + λ∗X1) · 1A∗(X1,X2)=1] + E[(X2 − aλ∗X2) · 1A∗(X1,X2)=2]

= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2] + λ∗(E[X1 · 1A∗(X1,X2)=1]− aE[X2 · 1A∗(X1,X2)=2])

= E[X1 · 1A∗(X1,X2)=1] + E[X2 · 1A∗(X1,X2)=2]

The inequality in the middle is from the definition of A∗. Specifically, if we were asked
to choose an allocation A to maximize E[(X1 + λ∗X1) · 1A(X1,X2)=1] + E[(X2 − aλ∗X2) ·
1A(X1,X2)=2]. Then, A∗ will be an optimal scheme from its definition. Thus, A∗(X1, X2)
is an optimal solution to the optimization problem in (13).

So far, we have shown that the optimal allocation for the problem in (13) has the
same form as the allocation scheme resulted from the Nash equilibrium strategy of second
price auction. Examining the optimization problem in (13), we see that the resulting
throughput obtained is pareto optimal, which also implies the pareto optimality of the
allocation resulted from equilibrium strategy (i.e., no other allocation performs strictly
better).

4.3 Proportional fairness

In this section, we examine the well-known proportional fairness allocation. Let G1, G2, A
be defined similarly as in the previous section. The objective of proportional fairness is to
max(logG1 + logG2) [4]. For brevity, we omit the proof and state the optimal allocation
below:

A∗(x1, x2) =

{
1 if x1 ≥ c · x2

2 otherwise

where the constant c = GA∗
1 /GA∗

2 . Again, we find the allocation with proportional fairness
criteria has the same form as the allocation that resulted from the Nash equilibrium
strategy. Therefore, by giving each user an appropriate amount of money, the resulting
throughput for each user can achieve proportional fairness.

5 Conclusion

We apply an auction algorithm to the problem of fair allocation of a wireless fading chan-
nel. Using the second price auction mechanism, we are able to obtain the Nash equilib-



rium strategies for general channel state distribution. Our strategy allocates bandwidth
to the users in accordance with the amount of money that they possess. Hence, this
scheme can be viewed as a mechanism for providing quality of service (QoS) differentia-
tion; whereby users are given fictitious money that they can use to bid for the channel.
By allocating users different amounts of money, the resulting QoS differentiation can be
achieved. We also show that the Nash equilibrium strategy of this auction leads to an
allocation at which total throughput is no worse than 3/4 the maximum possible through-
put when fairness constraints are not imposed (i.e., slots are allocated to the user with
the better channel). Moreover, the equilibrium strategies leads to an allocation that is
pareto optimal.
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