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Abstract— We consider the throughput/delay tradeoffs
for scheduling data transmissions in a mobile ad-hoc net-
work. To reduce delays in the network, each user sends
redundant packet information along multiple paths to the
destination. Such redundancy improves delay at the cost
of increasing network congestion. Assuming the network
has a cell partitioned structure and users move according
to a simplified iid mobility model, we compute the exact net-
work capacity and delay when no redundancy is used. The
capacity achieving algorithm is a modified version of the
Grossglauser-Tse 2-hop relay algorithm and provides

�������
delay (where

�
is the number of users). We then show

that redundancy cannot increase capacity, but can signifi-
cantly improve delay. A lower bound on delay of

����� ���
is

computed for any algorithm (with or without redundancy)
which restricts packets to 2-hop paths. A scheduling pro-
tocol which uses redundancy is presented and shown to
achieve this delay bound when data rates of all sessions are
reduced to

����	�
�� ���
.

I. INTRODUCTION

We consider the effects of transmitting redundant
packet information along independent paths of an ad-hoc
wireless network with mobility. Such redundancy im-
proves delay at the cost of increasing overall network con-
gestion. We show that redundancy cannot increase net-
work capacity, but can significantly improve delay per-
formance, yielding delay reductions by several orders of
magnitude when data rates are sufficiently less than ca-
pacity.

We use the following cell partitioned network model:
The network is partitioned into 
 non-overlapping cells
of equal size (see Fig. 1). There are � mobile users in-
dependently roaming from cell to cell over the network,
and time is slotted so that users remain in their current
cells for a timeslot, and potentially move to a new cell at
the end of the slot. If two users are within the same cell
during a timeslot, one can transfer a single packet to the
other. Each cell can support exactly one packet transfer
per timeslot, and users within different cells cannot com-
municate during the slot. Multi-hop packet transfer pro-
ceeds as users change cells and exchange data. The cell
partitioning reduces scheduling complexity and facilitates

Fig. 1. A cell-partitioned ad-hoc wireless network with � cells and�
mobile users.

analysis. Similar cell partitioning has recently been con-
sidered by Cruz et. al in [1].

We consider the following simplified mobility model:
Every timeslot, users choose a new cell location inde-
pendently and identically distributed over all cells in the
network. Such a mobility model is of course an over-
simplification. Indeed, actual mobility is better described
by Markovian dynamics, where users choose new loca-
tions every timeslot from the set of cells adjacent to their
current cell. However, analysis under the simplified �����
mobility model provides a meaningful bound on perfor-
mance in the limit of infinite mobility. With this assump-
tion, the network topology dramatically changes every
timeslot, so that network behavior cannot be predicted
and fixed routing algorithms cannot be used. Rather, be-
cause information about the current and future locations
of users is unknown, one must rely on robust scheduling
algorithms.

We compute an exact expression for the per-user trans-
mission capacity of the network (for any number of users
����� ), and show that this capacity cannot be increased
by using redundancy. When no redundancy is used, a
modified version of the Grossglauser-Tse 2-hop relay al-
gorithm in [2] is presented and shown to achieve capacity.
The queueing delay in the network is explicitly computed
and shown to be ��������� �"!$#&%('�� (where ! is the per-user
network capacity, and %)' is the rate at which user � trans-
fers packets intended for its destination). Furthermore, it
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is shown that no scheduling algorithm can improve upon
����� � delay performance unless redundancy is used.

We then consider modifying the 2-hop relay algorithm
to allow redundant packet transmissions. It is shown that
no scheme which restricts packets to two hops can achieve
a better delay than ��� � � � . A scheduling protocol that
employs redundant packet transmissions is developed and
shown to achieve this delay bound when all users commu-
nicate at a reduced data rate.

Previous work on the capacity of ad-hoc wireless net-
works is found in [1-6]. Gupta and Kumar present asymp-
totic results for static networks in [3], [4], where it is
shown that per-user network capacity is ������� � � � , and
hence vanishes as the number of users � increases. The
effect of mobility on the capacity of ad-hoc wireless net-
works was first explicitly developed in [2], where a 2-hop
relay algorithm was developed and shown to support con-
stant per-user throughput which does not vanish as the size
of the network grows. These works do not consider the
associated network delay, and analysis of the fundamen-
tal queueing delay bounds for general networks remains
an important open question.

In this paper, we consider the delay performance of-
fered by cell partitioned wireless networks. The contri-
butions are twofold: First, we demonstrate network delay
analysis which considers the full effects of queueing, and
show that delay grows as ����� � when no redundancy is
used. Second, we show that redundancy can be used to
improve delay at the cost of reducing capacity.

In the next section, we establish the capacity of the cell
partitioned network and analyze the delay of the capacity
achieving relay algorithm. In Section III we develop per-
formance bounds for transmission schemes with redun-
dancy, and in Section IV we provide scheduling protocols
which achieve these bounds.

II. CAPACITY, DELAY, AND THE 2-HOP RELAY

ALGORITHM

Consider a cell partitioned network such as that of Fig.
1. The shape and layout of cell regions is arbitrary, al-
though we assume that cells have identical area, do not
overlap, and completely cover the network area. We de-
fine:�

� = Number of Mobile Users�

 = Number of Cells�
��� ��� 
 = User/Cell density

Users move independently according to the full-
mobility model, where the steady state location of each
user is uniform over all cells. Let % '�� represent the
rate user � sends packets destined for user 	 (in units of
packets/slot). These packets are transmitted and routed

through the network to reach their destinations according
to some scheduling algorithm. A scheduling algorithm is
stable if the ��%('�� � data rates are satisfied for all users so
that queues do not grow to infinity and average delays are
bounded.

A. Network Capacity

We define the symmetric capacity region as the region
of all stabilizable data rates such that no user is transmit-
ting at a higher total rate than any other. Let 
 repre-
sent the maximum number of destination users to which a
source transmits (i.e., for each user � , at most 
 of the % '��
terms are nonzero).

Theorem 1. The symmetric capacity region of the net-
work has the form:

�
� % '�� � ��� #�
���� # ��
���� �� � � ����
 � � ���)� (1)

�
'
% '�� � ��� #�
 ��� # ��
 ��� �� � � ����
 � � ����	 (2)

Proof: The proof of this theorem is similar to the
proof of Theorem 2 below, and is omitted for brevity (see
[5] for details).

We now consider a special case of the above result
when all users communicate with the same rate % to a
unique destination user (i.e., 
���� ), similar to the situa-
tion treated in [4], [2]. We assume � is even and consider
the one-to-one pairing: ��� � , ��� � , !"!"! , ��� ##���$� � ;
so that user � communicates with user

�
and user

�
com-

municates with user � , user � communicates with user �
and user � communicates with user � , and so on. Other
source-destination scenarios can be treated similarly. In
the following, we compute an exact expression for the ca-
pacity % for every value of � , and then provide an al-
gorithm for achieving this capacity with bounded average
delay. Users move independently with a steady state prob-
ability ��� 
 of being in any particular cell.

Theorem 2. The capacity of the network is:

!%�'&��)(� � (3)

where

& �*� #'+,� #.-/1032 # 2 / +4� #5-/1062 � - (4)

( �*� #'+4� # -/87 062:9�; (5)

and hence the network can stably support users simulta-
neously communicating at any rate %=< ! .
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Proof: The proof of the above theorem involves
proving that % � ! is necessary for network stability, and
that % < ! is sufficient. Sufficiency is established in the
next subsection, where a bound on average delay is de-
rived. Here we prove necessity.

Consider any stabilizing scheduling strategy, perhaps
one which uses full knowledge of future events. Let��� ����� represent the total number of packets transferred
over the network from sources to destinations in � hops
during the interval � �
	��
� . Fix ����� . For network stabil-
ity, there must be arbitrarily large values of � such that
the sum output rate is within � of the total input rate:������ - ��� ������ � ��%�#�� (6)

The total number of packet transmissions in the net-
work during � �
	��
� is at least

� ���� - � ��� ����� . This value
must be less than or equal to the total number of transmis-
sion opportunities � ��� � , and hence:����� - �

��� ����� ��� ����� (7)

where � ����� represents the total number of cells contain-
ing at least 2 users in a particular timeslot, summed over
all timeslots ��	 � 	"!"!"!�	�� . By the law of large numbers, it
is clear that -� � ��� ��� 
 & as ��� � , where & is the
steady state probability that there are two or more users
within a particular cell, and is given by (4).

From (6) and (7), it follows that

�� � - ��� � � �! ����%�#�� � # �� � - �����#" � �� � �����
and hence

%=� -� � ����� � -� � - ����� � � �� � (8)

It follows that maximizing % subject to (8) involves
placing as much rate as possible on the single hop paths.
However, the time average rate -� � - ����� of 1-hop com-
munication between source-destination pairs is bounded.
Indeed, the probability ( that a particular cell contains a
source-destination pair during a timeslot can be written as� minus the probability that no such pair is present. For
the source-destination matching � � � 	 � � �$	"!"!"! , this
probability is given as the value ( specified in (5). Let

( ����� represent the empirical fraction of time a cell con-
tains a source-destination pair (averaged over all cells), so
that ( ��� �%� ( . It follows that:

�� � - ������� 
 ( ����� (9)

Combining constraints (8) and (9) and taking limits as�&�'� , we have:

% � 
 &�� 
 ( � � �� �
The necessary condition follows by using the user/cell
density definition � � ��� 
 , and noting that � can be cho-
sen to be arbitrarily small.

Taking limits as �(�'� , we find the network capacity
tends to the fixed value ��� # 
 ��� # ��
 ��� ��� � � � � , verifying
(1) and (2). This expression goes to zero when � tends
either to zero or infinity. Hence, for nonzero capacity, the
ratio ��� ��� 
 should be fixed as both � and 
 scale up.
The optimal user/cell density �$) and the corresponding
capacity !*) are: �+)�� ��!-,�. � � , !/) �0��! � �1. � . Thus, large
cell partitioned networks cannot support more than 0.1492
packets/slot, but can achieve arbitrarily close to this data
rate by scaling the number of cells 
 with � to maintain
a constant user/cell density �$) .

We note that the capacity arguments in Theorems 1 and
2 are the same if we assume packet scheduling uses redun-
dancy in transmissions, or even if scheduling is performed
using perfect knowledge of future events (see Appendix
A). We thus have the following corollary.

Corollary 1. Redundant packet transfers or perfect
knowledge of future cell states of all users does not in-
crease network capacity.

B. Delay Analysis and the 2-Hop Relay Algorithm

In this section, we consider the following modified
version of the Grossglauser-Tse relay algorithm of [2],
and show the algorithm is capacity achieving with a
bounded average delay.

Cell Partitioned Relay Algorithm: Every timeslot and for
each cell containing at least two users:

1) If there exists a source-destination pair within the
cell, randomly choose such a pair (uniformly over all
such pairs in the cell). If the source contains a new
packet intended for that destination, transmit. Else
remain idle.

2) If there is no source-destination pair in the cell, des-
ignate a random user within the cell as sender. Inde-
pendently choose another user as receiver among the
remaining users within the cell. With equal probabil-
ity, randomly choose one of the two options:�

Send a Relay packet to its Destination: If the
designated transmitter has a packet destined for
the designated receiver, send that packet to the
receiver. Else remain idle.
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Send a New Relay Packet: If the designated
transmitter has a new packet (one that has never
before been transmitted), relay that packet to the
designated receiver. Else remain idle.

Because packets that have already been relayed are re-
stricted from being transmitted to any user other than their
destination, the above algorithm restricts all routes to 2-
hop paths. The algorithm schedules packet transfer oppor-
tunities without considering queue backlog. Performance
can be improved by allowing alternative scheduling op-
portunities in the case when no packet is available for the
chosen transmission. However, the algorithm as stated ad-
mits a nice decoupling between sessions, where individual
users see the network only as a source, destination, and in-
termediate relays, and transmissions of packets for other
sources are reflected simply as random ON/OFF service
opportunities.

We assume data arrives to the source every slot as
an independent Bernoulli stream of rate % . Using the
above Cell Partitioned Relay Algorithm and assuming
��� � mobility each slot, the source queue becomes a
Bernoulli/Bernoulli queue, and can be shown to be re-
versible [7], [8]. Because of the correlations at the relay
queues of the network, namely, that a relay cannot trans-
mit when receiving from the source, and that no two relays
can simultaneously receive or transmit, the relay queues
are not Bernoulli/Bernoulli. However, these queues indi-
vidually receive Bernoulli streams from the output of the
source, and have individual Markov chains which can be
written as a simple birth-death process [7].

Theorem 3. Consider a cell partitioned network (with �
users and 
 cells) under the 2-hop relay algorithm, and
assume that users change cells ����� and uniformly over
each cell every timeslot. If the exogenous input stream
to user � is a Bernoulli stream of rate % ' (where % ' < ! ),
then the total network delay � ' for user � traffic satisfies:

��� � '�� � � # � # % '
! #&% ' (10)

where the capacity ! is defined in (3).

Proof: The proof of this theorem uses reversibility
of the first stage queue, and is omitted for brevity.

Note that the decoupling property of the cell partitioned
relay algorithm admits a decoupled delay bound, so that
the waiting time for user � packets depends only on the
rate of the input stream for user � , and does not depend on
the rate of other streams—even if the rate of these streams
is greater than capacity. It follows that the network is sta-
ble with bounded delays whenever all input streams are
less than capacity, i.e., when %)' < ! for all users � . Thus,

the relay algorithm achieves the capacity bound given in
(3) of Theorem 1. The form of the delay expression is
worth noting. First note the classic ��� �"! # % '�� behavior,
representing the asymptotic growth in delay as data rates
are pushed towards the capacity boundary. Such behav-
ior is typical of single queue systems (consider for exam-
ple the classic P-K formula for an M/G/1 queue [7]), and
hence the behavior of the entire network is similar to the
behavior of a single queue. Second, note that for a fixed
loading value � ' � % ' � ! , delay is ������� , growing linearly
in the size of the network.

It is remarkable that exact delay analysis of a capacity
achieving control strategy can be obtained for this multi-
user wireless network. The analysis is enabled by the
Bernoulli input assumption. If inputs are assumed to be
Poisson, we cannot derive exact delay expressions. How-
ever, the delay theory in [6], [5] can be used in this case to
develop a delay bound, and the bound for Poisson inputs
is not considerably different from the exact expression for
Bernoulli inputs given in (10). These results can also be
extended to the case when the mobility model conforms
to a Markovian random walk, rather than an ����� mobility
model [6], [5].

III. FUNDAMENTAL DELAY BOUNDS

In the previous subsection we showed that the cell
partitioned relay algorithm yields an average delay of
������� �"!$#&% '���� . Inspection of (10) shows that this �������
characteristic cannot be removed by decreasing the data
rate % . The following questions emerge: Can another
scheduling algorithm be constructed which improves de-
lay? What is the minimum delay the network can guaran-
tee, and for what data rates is this delay obtainable? More
generally, for a given data rate % (assumed to be less than
the system capacity ! ), we ask: What is the optimal delay
bound, and what algorithm achieves this? In this section
we present several fundamental bounds on delay perfor-
mance, which establishes initial steps towards addressing
these general questions.
A. Scheduling Without Redundancy

Suppose that no redundancy is used: that is, packets
are not duplicated and are held by at most one user of the
network at any given time.

Theorem 4. Algorithms which do not use redundancy
cannot achieve an average delay of less than ������� .

Proof: The minimum delay of any packet is com-
puted by considering the situation where the network is
empty and user 1 sends a single packet to user 2. It
is easy to verify that relaying the packet cannot help,
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and hence the delay distribution is geometric with mean

 � ��� � .

Hence, the relay algorithm not only achieves capacity,
but achieves the optimal ������� delay performance among
all strategies which do not use redundancy. Other policies
which do not use redundancy can perhaps improve upon
the delay coefficient, but cannot change the ������� charac-
teristic.

B. Scheduling With Redundancy

Here we consider schemes using redundancy. Although
redundancy cannot increase capacity, it can considerably
improve delay. Clearly, the time required for a packet
to reach the destination can be reduced by repeatedly
transmitting this packet to many users of the network—
improving the chances that some user holding an origi-
nal or duplicate version of the packet reaches the desti-
nation. Consider any network algorithm (which may or
may not use redundancy) that restricts packet transfers to
2-hop paths.

Theorem 5. No algorithm (with or without redundancy)
which restricts packets to 2-hop paths can provide an av-
erage delay better than ��� � � � .

The theorem is proved by again considering the situa-
tion of sending a single packet from source to destination.
Clearly the optimal scheme is to have the source send du-
plicate versions of the packet to new relays whenever pos-
sible, and for the packet to be relayed to the destination
as soon as either the source or a duplicate-carrying relay
enters the same cell as the destination.

We let
��� � 2 � represent the expected time to reach

the destination under this scheme for transmitting a sin-
gle packet. The following lemma reveals that

��� � 2 � is
��� � � � , which proves Theorem 5.

Lemma 1. For large � , we have:


 ��� � � � � � � 2 � � � �  �� #�
 ��� � �� "
Proof: (a) Lower Bound: To prove the lower

bound, note that during timeslots
� ��	 � 	"!"!"!�	 � � � , there

are fewer than
� � users holding the packet. Hence,��� � � 2 � � � � � ��� #=��� 
 � � 2 � 2 (where ��� # ��� 
 � � 2

is the probability that nobody within a group of
� � par-

ticular users enters the cell of the destination during a
given timeslot). Recall that the user/cell density � is de-
fined ���� ��� 
 . Thus:

��� � 2 � � ��� � 2
	 � 2 � � ��� ��� � � 2 � � � �
�
�
�  � # �

� " 2 � 
 ��� � �

(b) Upper Bound: To prove the upper bound, note that� � � 2 � ��
 - � 
 ; , where 
 - represents the expected
number of slots required to send out duplicates of the
packet to

� � different users, and 
 ; represents the ex-
pected time until one user within a group of

� � users
containing the packet reaches the cell of the destination.
The probability of the source meeting a new user is at least� #&��� # ��� 
 � 2 � � 2 for every timeslot where fewer than� � users have packets, and hence the average time to
reach a new user is less than or equal to the inverse of this
quantity (i.e, the average time of a geometric variable).
Hence:


 - �
� �� # ��� # ��� 
 � 2 � � 2 �

� �� #�
 ���
To compute 
 ; , note that

� ���������"
���� � , the probability that
one of the

� � users reaches the destination during a slot,
satisfies: � ���������"
���� � � � # ��� # ��� 
 � � 2

� � # ��� # � � � � 2��� �
� � #�
 ��� 9 � 2

where the last inequality follows because ��� # � � ��� 2 in-
creases to 
 ��� as � � � . A success occurs after a se-
quence of Bernoulli trials, and hence:


 ; � �
� #�
 ��� 9 � 2

� �
� # � � # � � � � � � ; � � � � �"!

�
� �

� # � ; �#� � � �$! � � � � �

where the second to last inequality1 follows because
 �&% � � #(' � ' ; � � whenever ' � � . Summing 
 -
and 
 ; proves the result.

It is also possible to compute a bound for general du-
plication algorithms which do not restrict to 2-hop paths.
Indeed, considering the single packet, single destination
scenario, it is clear that an optimal algorithm schedules all
users to send duplicate versions of the packet whenever
possible. In this way, the number of users containing the
packet grows (roughly) geometrically with time, and min-
imum delay is ���*),+.-)������� . However, this method causes
complications in a multi-user situation, because a single
packet quickly uses up all resources of the network. We
consider multi-user scheduling in the next section.

� Note that /1032
4�5�6 �87 4 7 5�9;: ��<>=#? 0 when
�

is suitably large.
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IV. SCHEDULING FOR DELAY IMPROVEMENT

In the previous section an ��� � ��� delay bound was de-
veloped for redundant scheduling by considering a single
packet for a single destination. Two complications arise
when designing a general scheduling protocol using re-
dundancy: (1) All sessions must use the network simul-
taneously, and (2) Remnant versions of a packet that has
already been delivered to its destination create excess con-
gestion and must somehow be removed.

Here we show that the properties of the 2-hop relay al-
gorithm make it naturally suited to treat the multi-user
problem. The second complication of excess packets is
more troublesome. Clearly a network with global feed-
back could deal with the complication by sending imme-
diate feedback to all users over a low bandwidth control
channel whenever a packet has been received by its des-
tination. However, such feedback is impractical for large
networks. Below we present a scheduling protocol which
uses only partial, in-cell feedback, requiring only that a
receiving node tell its transmitter which packet it is look-
ing for before transmission begins. We assume all packets
are labeled with send numbers 
 � , and the in-cell feed-
back is in the form of a request number � � delivered by
the destination to the transmitter just before transmission.
Partial Feedback Scheme with Redundancy: The 2-hop
relay algorithm is used to establish transmission oppor-
tunities for all users. Additional protocol is as follows:

1) Users send each packet
� � times, sending out du-

plicate versions every time they are scheduled to
transmit to a new node until either

�
� have been

transmitted, or the user transmits to the intended des-
tination.

2) When a user is scheduled to transmit a relay packet
to its destination, the following handshake is per-
formed:�

The destination delivers its current � � number
for the packet it desires.�
The transmitter deletes all packets in its buffer
intended for this destination which have 
 �
numbers lower than � � .�
The transmitter sends packet � � to the receiver.
If the transmitter does not have the requested
packet � � , it remains idle for that slot.

Thus, no packet is ever transmitted twice to its destina-
tion. Notice that the destination thus receives all packets
in order.

Theorem 6. The Partial Feedback Scheme achieves the
��� � � � delay bound, with user data rates of ������� � ��� .

Proof: A full proof is omitted for brevity (see [5]).
The intuition is that the time required for a new packet

to reach its destination is at most
� ��
 - � 
 ; , where
 - and 
 ; respectively represent the time required to send

out
� � transmissions and the time required to reach the

destination given that
� � users have the packet. The ex-

pectations of 
 - and 
 ; can be computed similarly to the
proof of Lemma 1. Blocking due to other sessions in-
creases delay but does not change the ��� � � � delay char-
acteristic because the average number of blockers in any
cell does not scale with � .

Using similar techniques, we can develop a scheduling
protocol which uses redundancy with an unconstrained
number of hops, to achieve ���*),+.- ������� delay with
data rates of ��� -2 ������� 2 � � . We thus have the following
achievable capacity/delay performance tradeoffs:

scheme capacity delay
no redundancy ������� ����� �
redundancy 2-hop ������� � ��� ��� � ���
redundancy multi-hop ��� -2 �����	� 2 � � ���*),+.- ��� ���

A simple observation reveals that ��
�
���
 � � ���,
 �
������� . We conjecture that this inequality is a necessary
condition. However, it is likely that improvements on the
scheduling algorithms developed here can lead to constant
factor improvements in the delay coefficients. Further
note that the ‘redundancy 2-hop’ entry in the table demon-
strates that a cell partitioned mobile network can emulate
the delay/capacity performance of a Gupta-Kumar static
network [4], [3]. It is interesting to explore whether this
result generalizes to other mobility models.
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