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Abstract: We consider the tradeoffs in computation complexity and network delay for a multi-
user wireless network with dynamic routing and power allocation. Data arrives to each node of
the network randomly, and power allocation and routing decisions are made under the assump-
tion that the computational processing speed at each node is constrained to C floating point oper-
ations per second. We develop a scheduling algorithm that can be implemented with arbitrarily
low complexity, and provides 100% throughput and worst-case delay guarantees. The delay
bound is explicitly computed and shown to be inversely proportional to the processing speed C.
I. INTRODUCTION -- We consider a multi-node wireless network supporting multiple traffic

streams. Nodes communicate with each other via wireless data links, and the instantaneous
transmission rate µij between nodes i and j is determined by the power pij(t) allocated to link
(i,j) according to a concave rate-power curve µij(pij). All nodes are power constrained so that
instantaneous power allocations satisfy  for all time and for all nodes i.

Previous work in power allocation for wireless systems is found in [1-3], and complexity-
aware scheduling algorithms are treated in [4-6]. The contributions in this paper are twofold:
(i) We develop a dynamic power allocation algorithm which stabilizes the system with
unknown and/or time varying data rates, and (ii) We consider scheduling complexity and show
delay is inversely proportional to the processing capability of each node. The algorithm is
based on iteratively solving a minimum clearance time problem. Minimum clearance time is
also treated in [6], where a polynomial complexity link scheduling algorithm is developed.
II. MINIMUM CLEARANCE TIME -- Assume each node contains unfinished work

Uij at time zero, representing the amount of bits in node i which are destined for node j. No
new packets arrive, and a power allocation and routing policy is to be developed that clears all
current data in minimum time. Data is assumed to flow as a fluid.

Theorem 1: Optimal power control and routing strategies can be restricted to constant power
allocation strategies.

Proof: Consider an optimal strategy which minimizes the clearance time T. Let pij(t) repre-
sent the (potentially time-varying) power allocations associated with this optimal strategy, and
define as the empirical average power allocated for link (i,j) during [0, T]. Note that the

values satisfy the power constraint . Furthermore, by Jensen’s inequality and
concavity of the rate-power functions:

Thus, using a constant power allocation creates a larger average transmission rate for
each link (i,j). It can be shown that these resulting rates are sufficient to support a multi-com-
modity data flow over the network which also clears backlog in the minimum time T. ❑

Using this theorem, it is straightforward to develop a power allocation and routing algorithm
which clears data in minimum time. The policy computes the routes and the constant

power allocations as the solution of a standard convex optimization problem, which can be
implemented in a distributed fashion.
III. DYNAMIC CONTROL FOR RANDOM TRAFFIC -- Let Λ represent the capacity region of the sys-

tem, i.e., the region of all data rates (λij) that the network can stably support. Let Xij(t) repre-
sent the amount of bits that arrive to node i which are destined for node j during the interval [0,
t]. We assume that traffic satisfies the following time varying leaky bucket constraints over all
time intervals:

for some positive values σ, ε. Here, λij(t) represents the instantaneous traffic rate of the Xij(t)

∑ j
pij t( ) ≤ Pi

tot

i 1 … N, ,{ }∈

pij
pij ∑ j

pij ≤ Pi
tot

1
T
--- µij pij τ( )( ) τ µ ij pij( )≤d

0

T

∫
pij

πmin

X ij t T+( ) X ij t( ) σ λ ij τ( ) τd
t

t T+

∫+≤–

where λ ij t( ) ε+( ) Λ∈ for all t



stream, σ represents the traffic burst parameter, and ε represents the distance the instantaneous
rates are to the boundary of the capacity region. Such leaky bucket constraints are consistent
with the temporary sessions model for input traffic described in [7]. The values of λij(t), σ,
and ε are unknown to the network controllers.

Iterative Minimum Emptying Time strategy (IMET):
1. If the system is empty, wait for new data to enter.
2. Start iteration k (and define this starting time as tk) by observing the current backlog

Uij[k] in the system and computing the solution to the minimum clearance time algo-
rithm πmin (which clears all data Uij[k] in time Tk). Hold the routing decisions and power
allocations associated with this solution fixed for duration Tk.

3. Repeat for iteration k+1.
Theorem 2: The IMET algorithm guarantees a worst case bit delay of 2σ/ε.

Proof: Let , and notice that . Thus, it can be shown

that there exists a matrix (λij*) where , and rate matrix (λij*) can be supported by

a multi-commodity flow on a network with link capacities achieved by a constant

power allocation . To start an inductive proof, assume that . Because Tk+1 is

the minimum time required to clear the backlog seen at the start of the (k+1)th interval, it is

less than the clearance time achieved by the constant power allocations , and hence:

It follows that  for all k. Delay is held within two consecutive intervals Tk,Tk+1. ❑

IV. COMPLEXITY/DELAY TRADEOFFS -- The IMET algorithm requires the solution of a convex
optimization problem to be computed instantaneously (at the beginning of each iteration). A
feasible implementation is to allow the optimization to proceed while the system allocates the
fixed powers determined by the computation result of the previous iteration. A modified pol-
icy can be developed which uses this principle, allowing more time to compute the solution of
the minimum clearance time problem at the expense of using out-of-date backlog information.
This idea is similar to our work in [4], where algorithms are designed to stabilize
packet switches with explicit tradeoffs in complexity and average delay guarantees.

Using this simple idea, it can be shown that a modified IMET strategy provides bounded
worst case delay guarantees even when nodes have arbitrarily small processing capabilities.
Let represent the worst case delay when all nodes operate with a computation
rate of C operations/second. Using the modified IMET algorithm, we have:

Theorem 3: , where C is the processing speed (in
Mega-Flops) and represents the number of operations required to solve the minimum
clearance time problem  for a network of size N. ❑
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APPENDIX:

A. The convex program for the min-clearance time problem πmin:

where T = 1/γ represents the corresponding minimum clearance time. (Note that  takes

the value 1 if i=c, and 0 else.) The resulting power and routing values (pij) and ( ) specify

the power settings and the flows for the multi-commodity routing (where  represents the

flow of data destined for node c along the (i,j) link).

B. The modified IMET algorithm to achieve a delay guarantee of:

Modified IMET:

1. Start iteration k by using the fixed power allocation and routing values (pij) and ( ) com-

puted during the previous time interval Tk-1.

2. Hold these allocations fixed for duration Tk = max(1/γ, aN/C), where 1/γ is the time required
to clear the Uij[k-1] backlogs.

3. During interval Tk, compute the solution of the min clearance time problem πmin for the
Uij[k] backlogs.

4. Repeat for iteration k+1.

f ij
c( ) 0≥

Maximize      γ

Subject to:

f ai
c( )

f ib
c( )

b 1=

N

∑–
a 1=

N

∑ γU ic– δi c– γU jc
j 1=

N

∑+=

f ij
c( ) µij pij( )≤

c 1=

N

∑

pij Pi
tot≤

j 1=

N

∑

δi c–

f ij
c( )

f ij
c( )

T worst case– C( ) 3max σ ε⁄ aN C⁄,( )≤

f ij
c( )


