
Transmission Scheduling for Multi-Channel Satellite
and Wireless Networks ∗

Anand Ganti, Eytan Modiano, John N. Tsitsiklis
Massachusetts Institute of Technology

e-mail: aganti@mit.edu, modiano@mit.edu, jnt@mit.edu

Abstract

We consider a slotted system with N queues, and i.i.d. Bernoulli arrivals at
each queue during each slot. Each queue is associated with a beam and a channel
that changes between “on” and “off” states according to i.i.d. Bernoulli processes.
We assume that the system has K identical transmitters (“servers”). Each server,
during each slot, can transmit up to C0 packets from a queue associated with an
“on” channel. We show that when K is arbitrary and C0 = 1, as well as when
K = 1 and C0 is arbitrary, a policy that assigns the K servers to the “on” channels
associated with the K longest queues is optimal. We also consider a “fluid” model
under which fractional packets can be served, for the case K = N , and subject
to a constraint that at most C packets can be served in total over all of the N
queues. We show that there is an optimal policy which serves the queues so that
the resulting vector of queue lengths is “Most Balanced.”

1 Introduction

Wireless and satellite nodes are often limited to a small number of transmitters and
channels, and these have to be allocated to users in the face of competing demands.
For example, satellite systems employ hundreds or even thousands of narrow beams over
which information can be transmitted at high data rates. Each of the downlink beams
covers a different region within the satellite’s footprint. Data packets to be transmitted
along the different beams arrive at the satellite, either from the ground or from one of its
neighboring satellites, and are stored in on-board buffers. In this context, there is often
only a limited number of transmitters on-board the satellite, so that not all beams can
be served by the transmitters simultaneously. This gives rise to a scheduling problem
involving the allocation of the transmitters to the different downlink beams. Further
complicating matters is the fact that, due to weather and atmospheric conditions, the
transmission rate along the different beams varies with time; hence, the quality of the
links must be taken into account in making scheduling decisions. Similarly, a wireless
base station typically has far fewer channels available for transmissions than the number
of users to be served. Again, this raises a nearly identical problem of allocating channels
to the different users. This scheduling problem has received attention recently in the
context of next generation wireless data systems [2, 3, 4, 5, 6, 7, 8, 10].

We model the system as a discrete time queueing system, with arrivals and channel
states described by independent Bernoulli processes. More specifically, we assume that

∗This research is supported in part by NSF Grant No. NCR-9627610 and by DARPA under the Next
Generation Internet Initiative



the numbers of arrivals to the ith queue at time n, denoted by Ai(n), are independent
Bernoulli random variables, with the same parameter for all i and n. Furthermore, we
assume that the state of the ith channel at time n, denoted by Gi(n), can only take
one of two values, namely, 0 or 1. We designate 0 as an “off” state, and 1 as the “on”
state. When the channel is in the “off” state, no transmission is possible. When the
channel is in the “on” state, the channel can be utilized. Again, we assume that the
Gi(n) are independent and identically distributed Bernoulli random variables, which are
also independent from the arrival processes. Finally, we let Bi(n) represent the number
of packets in the ith queue at the beginning of time slot n.

The satellite has K transmitters. Each transmitter can only serve one queue, and can
only be assigned to a queue whose channel is “on.” At each slot, each transmitter can
transmit up to C0 packets, and the total number of transmitted packets cannot exceed
C. The parameter C0 corresponds to the power limitation on an individual transmitter
and C corresponds to the power limitation on the entire satellite.

Such queueing systems, with multiple queues and stochastically varying service rates,
have been studied in [2] where the authors show that, when K = 1 (single transmitter),
a policy called the Longest Connected Queue (LCQ) maximizes the stability region of the
system, and also results in optimal average queue lenghts. Furthermore, [3] shows that
the LCQ policy results in a maximal stability region under more general assumptions
on the arrival and channel state processes. The models considered in the present work
extend this previous work in various directions.

2 The case of multiple servers and C0 = 1

We first consider the case where C = K and C0 = 1. That is, there are K servers, and
each server can serve at most one packet during each time slot. This is a generalization
of the system studied in [2], which dealt with the case where K = 1. We now describe
a policy that will be shown to be optimal in the current scenario, as well as in the case
where there is a single server that can serve upto C0 packets (see Section 3).

The Longest Connected Queues (LCQ) policy operates as follows. Consider the
set of queues i that are “connected,” i.e., Gi(n) = 1. Out of that set, select up to K
queues with the largest values of Bi(n), and serve min{Bi(n), C0} packets from each one
of them. Note that fewer than K queues will be selected if and only if the number of
nonempty connected queues is smaller than K. Moreover, in the event that there are
multiple queues with equal values of Bi(n) competing for a transmitter, the policy can
choose between them arbitrarily.

Our main result states that the LCQ policy is optimal in the stochastic ordering
sense [1]. The intuitive reason is that this policy tries to keep the queued packets spread
over multiple queues and has a better chance of avoiding idling when some channels are
off.

Theorem 1 Assume that C0 = 1 and C = K. Let Q(n) =
∑N

i=1 Bi(n) be the total
number of packets, starting from a given initial state, under some policy π. Let QL(n)

be the total number of packets when the LCQ policy is used. Then, {QL(n)}
st
≤ {Q(n)},

i.e., the process {QL(n)} stochastically dominates the process {Q(n)}.
A result of this type was proved in [2], for the case K = 1, using a coupling argument.

Our proof for the case of general K also uses a coupling argument. For brevity, we only
provide an outline here and refer the reader to [9] for complete proofs.



Let us note that optimality in the stochastic ordering sense is a rather strong notion.
It implies the optimality of the LCQ policy over either a finite or an infinite horizon,
involving one-step costs of the form E[f(Q(n))], where f is any nondecreasing function.
The same comment applies to Theorem 2 later in this paper.

Let ZN
+ be the set of nonnegative integers. We use Πd : �N �→ �N to denote the

function that sorts its arguments in decreasing order. We also let

∆(N)
�
= {δ ∈ {−1, 0, 1}N | δi > 0 ⇒ [δj ≥ 0, ∀j < i]}

be the set of vectors whose components are either minus one, zero, or one, with all
the ones appearing before all the negative ones. For example, [0, 1, 0, 1, 1, 0,−1, 0,−1]
belongs to ∆(9). Finally, we use

Z(N)
�
= {b ∈ ZN

+ : b1 ≥ b2 ≥ · · · ≥ bN}

to denote the set of nonnegative vectors whose components are nonincreasing. For ex-
ample, [9, 2, 2, 1] belongs to Z(4).
Proof Outline: We consider a system (to be referred to as “system 0”) that starts at an
initial state (b(0), g(0)) and is controlled by policy π. We will construct a policy π1 and a
corresponding “system 1” on the same probability space, by appropriately coupling the
arrival, service, and channel state processes, so that π1 acts similar to LCQ at n = 0, and
so that Q1(n) ≤ Q(n) at all times n, for every sample path. We will use a superscript
1 to denote various quantities, such as total queue length or channel state, under policy
π1 in system 1.

Both systems start with the same initial state (b(0), g(0)). If π behaves like LCQ at
time 0, we let π1 be equal to π, and we couple the two systems so that they evolve in an
identical fashion. In this case, the inequality Q1(n) ≤ Q(n) holds with equality for all n.

Suppose now that at time 0, π behaves differently from LCQ. We construct system 1
and policy π1 as follows.

At time 0, we have the same channel states g(0) in both systems. We apply an LCQ
policy to system 1. After subtracting the packet withdrawals at time 0, we arrange the
queue lengths of system 0 and system 1 in decreasing order We then couple any arrival
to the ith longest queue of system 0 to an arrival to the ith longest queue of system 1.

Let β(n) be the vector of queue lengths in system 0, arranged in decreasing order,
so that β1(n) ≥ β2(n) ≥ · · · ≥ βN(n). Similarly define β1(n) for system 1. Let δ(n) =
β(n) − β1(n)

The following lemma (whose proof we omit) shows that δ(1) ∈ ∆(N), a result we will
use in describing the coupling procedure for n ≥ 1. The first part of the lemma shows
that if we first subtract the packet withdrawals under either policy, and then sort the
resulting queue length vectors, the difference belongs to the set ∆(N). The second part
establishes that after coupling the arrivals at time 0, as described earlier, the vector δ(1)
belongs to ∆(N).

Lemma 1 (a) Let b ∈ Z(N) and g ∈ {0, 1}N . Let r be a feasible packet withdrawal
vector, and let r̃ be the LCQ control, in state (b, g). Then Πd(b− r)−Πd(b− r̃) ∈ ∆(N).
(b) Let e ∈ {0, 1}N , b, b̃ ∈ Z(N), b− b̃ ∈ ∆(N). Then Πd(b + e) − Πd(b̃ + e) ∈ ∆(N).

We now describe the coupling and the policy π1 at positive times n.
Case I: Suppose that there exists some i such that δi(1) = 1 and β1

i (1) = 0. Since
δ(1) ∈ ∆(N) (Lemma 1), we must have δ(1) ≥ 0, i.e., the jth longest queue in system 0



has no fewer packets than the jth longest queue in system 1, for every j. We then let the
channel states, controls, and arrivals for the jth longest queue in system 1 be the same as
for the jth longest queue in system 1, at all positive times n. We obtain Q1(1) ≤ Q(1),
and the coupling also preserves this inequality for all times n.

Case II: Suppose now that for every i satisfying β1
i (1) = 0, we must also have

δi(1) = 0, which implies βi(1) = 0. We map the channel state of the ith longest queue
in system 0 to the the ith longest queue in system 1. If π serves a packet from the ith
longest queue in system 0, we have βi(1) > 0, which implies that β1

i (1) > 0, and we
let π1 serve a packet from the ith longest queue in system 1. To couple the arrivals,
we again subtract the packet withdrawals, arrange the queue lengths in system 0 and
1, respectively, in decreasing order, and couple any arrival to the ith longest queue of
system 0 to an arrival to the ith longest queue of system 1.

The next lemma (whose proof is omitted) states that δ(2) ∈ ∆(N), which we can
then use to repeat the coupling at time 1, for times n = 2, 3, . . ..

Lemma 2 Let e ∈ {0, 1}N , b, b̃ ∈ Z(N), b−b̃ ∈ ∆(N). Then Πd(b−e)−Πd(b̃−e) ∈ ∆(N).

For n = 2, 3, . . ., either the coupling has already been determined (if at some prior time
the condition for Case I was satisfied), or else we repeat the above coupling procedure
and use the fact

δ(n− 1) ∈ ∆(N) ⇒ δ(n) ∈ ∆(N)

(Lemmas 1 and 2).
We now show that Q1(n) ≤ Q(n) for all n. This statement clearly holds when n = 0.

We have also established it for Case I. For Case II, we have already noted that we can
always withdraw as many packets in system 1 as in system 0, which implies our assertion
for all n.

We have established that for every policy π, there exists a policy π1 that agrees with
the LCQ policy at time 0, and such that Q1(n) ≤ Q(n), for all n. By repeating the
construction, we obtain policies π1, π2, . . . such that the policy πk agrees with LCQ until
time k − 1, and such that Qk(n) ≤ Qk−1(n − 1) ≤ · · · ≤ Q1(n) ≤ Q(n), for all n. This
statement, in conjunction with a standard characterization of stochastic dominance [1]
completes the proof. �

3 The single server case

We now consider a variant of the problem in which there is a single server. This is another
extension of the problem studied in [2], where the server could only serve one packet per
slot. In our generalization, the server can serve up to C0 packets during the same slot,
but they must all be taken from the same queue. Without loss of generality, we assume
that if a queue with Bi(n) packets is served, then the number of packets withdrawn is
equal to min{Bi(n), C0}. We have the following result, which is again proved using a
coupling argument.

Theorem 2 Assume that K = 1. Let Q(n) =
∑N

i=1 Bi(n) be the total number of packets,
starting from a given initial state, under some policy π. Let QL(n) be the total number

of packets when the LCQ policy is used. Then, {QL(n)}
st
≤ {Q(n)}.



For the purposes of the proof of this theorem, we expand the set of policies to include
policies that may add extra packets to queues. We let Φa be the expanded set of policies.
We let Φna (“no additions”) be the set of all policies that never add extra packets. We
say that a policy has the LCQ property at time t if at that time it can only serve packets
from a longest connected queue. We let Lτ be the set of all policies that have the LCQ
property for all times t ≤ τ , and which do not add any packets before time τ . We will
use a(n) to denote arrivals, g(n) to denote channel states, b(n) to denote queue sizes,
and hi(n) to denote packets added to queue i, at time n.
Proof Outline: The core of the proof consists of the following two steps.

0. We start with a policy π in Lτ−1 ∩ Φna acting on a queueing system with initial
state (b(0), g(0)). We call this system 0. Such a policy has the LCQ property until
time τ − 1, and never introduces additional packets.

1. We construct a new policy π̃ in Lτ (i.e., π̃ has the LCQ property until time τ ,
and does not introduce additional packets before time τ), and a corresponding
system 1 on the same probability space, so that π̃ “dominates” π, in the sense that
Q1(n) ≤ Q(n) for all n.

(We use a superscript of 1 to denote various quantites in system 1 and no superscript to
denote related quantities in system 0.)

We now describe the construction of π̃. Before time τ , we let π̃ be identical to π, and
let arrivals and channel states be the same for both systems. In particular, b(τ) = b1(τ).
At time τ , we let the state of each channel be the same for both systems.
Step 1.1. Policy π̃ at time τ .

If π serves a longest connected queue at time τ , we let π̃ do the same, and set
a1(τ) = a(τ), h1(τ) = 0. In this case, we have b1(τ + 1) = b(τ + 1).

Suppose now that π chooses to serve at time τ some queue which is not a longest
connected queue. Without loss of generality, let us assume that π serves queue 2 and
that queue 1 is a longest connected queue. Thus, b(τ) is of the form

b(τ) =



M
m
s


 ,

for some s ∈ ZN−2
+ and M > m. We distinguish three cases.

(i) Suppose that C0 ≤ m < M . Policy π removes C0 packets from queue 2. We let
policy π̃ remove C0 packets from queue 1. We also let h1(τ) = 0 and a1(τ) = a(τ).
The resulting configurations are of the form

b(τ + 1) =




M
m− C0

s


 + a(τ), b1(τ + 1) =



M − C0

m
s


 + a(τ).

(ii) Suppose that m < M ≤ C0. In this case, π drives m down to zero. We let π̃ serve
queue 1, also driving it down to zero. Furthermore, π̃ adds packets to queue 2 to
drive it up to M , i.e., h1

2(τ) = M −m. We also let

a1
i (τ) =




a2(τ), if i = 1,
a1(τ), if i = 2,
ai(τ), otherwise.



The resulting configurations are of the form

b(τ + 1) =



M
0
s


 + a(τ), b1(τ + 1) =




0
M
s


 + a1(τ).

Thus, b1(τ + 1) and b(τ + 1) are permutations of each other.

(iii) Suppose finally that m < C0 < M . In this case, π drives m down to zero. We let π̃
serve queue 1 and remove C0 packets. We also let π̃ add C0 −m packets to queue
2, i.e., h1

2(τ) = C0 −m, driving it up to C0. The resulting configurations are of the
form

b(τ + 1) =



M
0
s


 + a(τ), b1(τ + 1) =



M − C0

C0

s


 + a(τ).

This completes the description of policy π̃ at time τ . We will now construct π̃, for times
t > τ , so that at any time one of the following three relationships holds:

(i) b(t) = b1(t).

(ii) b(t) and b1(t) differ only in their first two components, and

b1(t) = b12(t), b2(t) = b11(t).

(iii) b(t) and b1(t) differ only in their first two components, and there exists a positive
integer k such that for either (i, j) = (1, 2) or for (i, j) = (2, 1), we have

bj(t) ≤ min{b11(t), b12(t)} ≤ max{b11(t), b12(t)} ≤ bi(t),

b1i (t) = bi(t) − kC0, b1j(t) = bj(t) + kC0,

We will use b1(t) � b(t) to indicate that b(t) and b1(t) are related in one of the above three
ways. Note that our construction of π̃ at time τ guarantees that b1(τ + 1) � b(τ + 1).
Step 1.2. Policy π̃ at times t > τ .

We now construct the policy π̃ for times t > τ . We proceed recursively. For time
τ + 1, this is already accomplished. Suppose that π̃ has been defined up to some time
t− 1 and that b1(t) � b(t). We consider three cases, which correspond to the three cases
in the definition of the relation �.

Case (i): If b(t) = b1(t), we let the channel states, arrivals, and controls be the same
for both systems, which ensures that b1(t + 1) = b(t + 1) and b1(t + 1) � b(t + 1).

Case (ii): Suppose that b1(t) is obtained from b(t) by permuting the first two com-
ponents. For queues i /∈ {1, 2} we let the channel states, arrivals, and controls be the
same for both systems. For queues 1 and 2, we let channel states, arrivals, and controls
for queue 1 in system 0 be the same as for queue 2 in system 1, and vice versa. Then, the
last N − 2 components of b1(t + 1) and b(t + 1) are equal, whereas the first two remain
permutations of each other. In particular, b1(t + 1) � b(t + 1).

Case (iii): We finally consider the remaining case (iii) in the definition of �. Without
loss of generality, we assume that the first component of b(t) is at least as large as the



second component. In particular, for some m and M , with m < M , for some positive
integer k, and for some s ∈ ZN−2

+ , we have

b(t) =



M
m
s


 , b1(t) =



M − kC0

m + kC0

s


 .

The rest of the argument will be different, depending on whether we have m + kC0 ≤
M − kC0 (“Type I”) or m + kC0 > M − kC0 (“Type II”).

Type I: Suppose that m+kC0 ≤ M −kC0. We couple the channel states and arrivals
by letting g1(t) = g(t) and a1(t) = a(t). (a) If π serves queue 1, bringing it down to
M − C0, policy π̃ also removes C0 packets from queue 1. (This is posssible because
M − kC0 ≥ m + kC0 ≥ C0. The resulting configuration is

b(t + 1) =



M − C0

m
s


 + a(t), b1(t + 1) =



M − (k + 1)C0

m + kC0

s


 + a(t),

and we have b1(t+1) � b(t+1). (b) If π removes u packets from queue 2 (note that either
u = C0 if m ≥ C0, or u = m otherwise), then π̃ removes the same number of packets
from queue 2. (This is done by removing C0 packets and then adding h1

2(t) = C0 − u
packets.) The resulting configuration is

b(t + 1) =




M
m− u

s


 + a(t), b1(t + 1) =




M − kC0

m− u + kC0

s


 + a(t).

(c) Finally, if π serves some queue j > 2, we let π̃ do the same. In all subcases, we have
b1(t + 1) � b(t + 1).

Type II: Suppose now that m + kC0 > M − kC0. We let g1
1(t) = g2(t), g

1
2(t) = g1(t),

and g1
j (t) = gj(t) for j > 2. That is, we “couple” the channel state for queue 1 under

policy π̃ to that for queue 2 under policy π, and vice versa. For all other queues, channel
states coincide under the two policies.

(a) Suppose that π serves some queue j > 2. Then, π̃ removes the same number of
packets from the same queue, which is possible because b1j(t) = bj(t) and g1

j (t) = gj(t).
We then let a1(t) = a(t).

(b) Suppose that π serves queue 1 (in particular, g1(t) = 1), bringing it down to
M −C0. We then let π̃ serve queue 2, bringing it down to m+(k−1)C0. This is possible
because g1

2(t) = g1(t) = 1 and b12(t) = m + kC0 ≥ C0. We then let a1(t) = a(t). The
resulting configuration is

b(t + 1) =



M − C0

m
s


 + a(t), b1(t + 1) =




M − kC0

m + (k − 1)C0

s


 + a(t).

Notice that m ≤ m + (k − 1)C0, because k is positive. In particular,

m ≤ min{M − kC0,m + (k − 1)C0} ≤ max{M − kC0,m + (k − 1)C0} ≤ M − C0.

We then see that b1(t + 1) � b(t + 1). (If k = 1, we have case (i) in the definition of �;
if k > 1, we have case (iii).)



(c) Suppose, finally, that π serves queue 2 and removes u = min{m,C0} packets,
bringing it down to m − u. In particular, g1

1(t) = g2(t) = 1. If M − kC0 ≥ C0, then, π̃
removes C0 packets from queue 1, bringing it to M − (k+ 1)C0, and adds h1

2(t) = C0 −u
packets to queue 2, bringing it to m + (k + 1)C0 − u. We then let a1(t) = a(t). The
resulting configuration is

b(t + 1) =




M
m− u

s


 + a(t), b1(t + 1) =




M − (k + 1)C0

m− u + (k + 1)C0

s


 + a(t).

We then have b1(t+1) � b(t+1) (case (iii) in the definition of �). It remains to consider
the case where M−kC0 < C0. In that case, we have m ≤ M−kC0 ≤ C0, so that π drives
queue 2 down to zero. Policy π̃, drives queue 1 from M − kC0 down to zero, and it adds
enough packets to queue 2 to drive it up to M . We then let a1

1(t) = a2(t), a
1
2(t) = a1(t)

and a1
j(t) = aj(t), for j > 2. The resulting configuration is

b(t+1) =



M
0
s


+




a1(t)
a2(t)

[a3(t), . . . , aN(t)]T


 , b1(t+1) =




0
M
s


+




a2(t)
a1(t)

[a3(t), . . . , aN(t)]T


 ,

and we have b1(t + 1) � b(t + 1) (case (ii) in the definition of �).
At this point, we have completed the recursive construction of π̃. The new policy π̃

dominates π, has the LCQ property until time τ , and does not add any packets before
time τ .

The remainder of the proof of Theorem 2, which we omit, proceeds as follows. We
modify the policy π̃ to obtain yet another policy π̂ in Lτ ∩ Φna (in particular, π̂ never
adds extra packets), and which dominates π̃. We then repeat the preceding steps for
τ = 0, 1, . . ., to obtain a policy with the LCQ property at all times and with no added
packets, and which dominates the policy that we started with. �

4 The case of one server per queue (K = N)

In this section, we assume that packets can be served from all connected queues simulta-
neously, subject to a bound C on the total number of packets that can be served during
one time slot. If we further assume that C = 1, we are back to the model in [2], and
the LCQ policy is optimal. The case of general C is an open problem. However, if we
slightly modify the model to allow serving a noninteger number of packets from each
queue, we can show that a generalization of LCQ, which we call the “Most Balanced”
policy is optimal.

Suppose that at time n we have (B(n), G(n)) = (b, g), for some vectors b and g. Let
U(b, g) denote the set of feasible vectors of packet withdrawals, when the system is in
state (b, g), i.e,

U(b, g) =

{
u ∈ �N

+

∣∣∣ if gi = 0 then ui = 0;
N∑
i=1

ui ≤ C

}
.

The Most Balanced policy chooses a u ∈ U(b, g) so that
∑

i ui is as large as possible,
and in addition, so that it minimizes

max
i:gi=1

(bi − ui).



For example, if b = [5, 4, 3, 2, 6, 1], g = [1, 1, 1, 1, 0, 0], and C = 2, a most balanced policy
will let u = [1.5, 0.5, 0, 0, 0, 0], resulting in the configuration b− u = [3.5, 3.5, 3, 2, 6, 1]. It
is not hard to show that the most balanced policy is uniquely defined. Finally, we let F
be the set of all functions f : �N

+ �→ � that are convex, nondecreasing, and symmetric
(permutation invariant).

Theorem 3 Let B(n) be the vector of queue sizes at time n. For any function f ∈ F
and for every n ≥ 0, the Most Balanced policy minimizes E[f(B(n))].

Proof Outline: The proof uses a dynamic programming argument. Let V ∗
n (b, g) be the

least possible value of E[f(B(n))], starting from the initial state (b, g) at time zero. We
then have V ∗

0 (b, g) = f(b), and

V ∗
n (b, g) = min

w∈U(b,g)


∑

a

∑
g̃

pA(a)pG(g̃)V ∗
n−1(b + a− w, g̃)


 ,

for every positive n. Here, pG(g̃) is the probability that the next vector of channel states
is g̃, and pA(a) is the probability that the vector of queue arrivals is a.

We use the above equation and induction to show that the functions V ∗
n belong to

F , for all n. The convexity and symmetry of V ∗(n), together with the form of the above
dynamic programming equation, can be used to show that more balanced configurations
are always preferable. �

Using Theorem 3, it is easily seen that the most balanced policy is optimal for a
wide variety of performance criteria, such as a discounted sum of the E[f(Q(n))] over a
finite or infinite horizon, or an undiscounted sum over a finite horizon. Furthermore, the
theorem covers the important special case of f(b) = b1 + · · · + bN (total queue length).

5 Discussion

Let us remark that Theorems 1 and 2 remain valid for certain generalizations of the model.
For example, always assuming that the arrivals Ai(n) are independent and identically
distributed, the Bernoulli assumption can be relaxed. Instead, it suffices to assume that
the random variable Ai(n) can be expressed as a sum of independent Bernoulli random
variables, with possibly different parameters. The special case of equal parameters allows
the Ai(n) to have a binomial distribution. For another generalization, we can relax the
assumption that the distribution of the Ai(n) is the same for different times n. For
example, we can assume that it is Bernoulli with a parameter which is itself random and
independent at different times (a deterministically changing parameter is a special case).
In the same spirit, the probability that a channel is “on” can also vary with time.

It turns out that the results also remain valid in certain situations where the arrivals
at different queues (respectively, the channel states) at a given time are dependent, as
long as the dependence is “symmetric,” in the sense that it leads to permutation-invariant
distributions.

References
[1] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, John Wiley,

1983.



[2] L. Tassiulas and A. Ephremides, “Dynamic Server Allocation to Parallel Queues with
Randomly Varying Connectivity, IEEE Transactions on Information Theory, 1993, Vol.
39, No. 2, pp. 466-478.

[3] M. Andrews, A. Stoylar, K. Kumaran, R. Vijayakumar, K. Ramanan, and P. Whiting,
“Scheduling in a Queueing System with Asynchronously Varying Service Rates”, IEEE
Transactions on Communications, Vol. 39, No. 2, 2001, pp. 466-478.

[4] R. A. Berry, and R. Gallager, ”Communication Over Fading Channels with Delay Con-
straints,” IEEE Transactions on Information Theory, Vol. 48, No. 5, May 2002, pp.
1135-1149.

[5] M. Neely, E. Modiano and C. Rohrs, “Power and Server Allocation in a Multi-Beam
Satellite with Time Varying Channels,” IEEE INFOCOM 2002, New York, June, 2002.

[6] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained Queueing Systems
and Scheduling Policies for Maximum Throughput in Multihop Radio Networks,” IEEE
Transactions on Automatic Control, Vol. 37, no. 12, Dec. 1992.

[7] N. Bambos and G. Michailidis, “On Parallel Queueing with Random Server Connectivity
and Routing Constraints”, Probability in Engineering and Information Sciences, 2002, in
press.

[8] M. Armory and N. Bambos, “Queueing Dynamics and maximal Throughput Scheduling in
Switched Processing Systems”, technical report Net-Lab-2001-09.01, Stanford University,
Stanford, CA 2001.

[9] A. Ganti, Transmission Scheduling for Multi-Beam Satellite Systems, doctoral thesis, dept.
of EECS, MIT, Cambridge, MA, 2002.

[10] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, P. Whiting,
“Scheduling in a Queueing System with Asynchronously Varying Service Rates, preprint,
October 2000.


