
Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with
Application to Satellite Constellations

Jun Sun and Eytan Modiano1

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

fjunsun, modianog@mit.edu

Abstract

This paper considers the link capacity requirement for a
N�N mesh-torus network under a uniform all-to-all traffic
model. Both primary capacity and spare capacity for recov-
ering from link failures are examined. In both cases, we use
a novel method of “cuts on a graph” to obtain lower bounds
on capacity requirements and subsequently find algorithms
for routing and failure recovery that meet these bounds.
Finally, we quantify the benefits of path based restoration
over that of link based restoration; specifically, we find that
the spare capacity requirement for a link based restoration
scheme is nearly N times that for a path based scheme.

1. Introduction

The total capacity required by a satellite network to sat-
isfy the demand and protect it from failures contributes sig-
nificantly to its cost. To maximize the utilization of such a
network, we explore the minimum amount of spare capac-
ity needed on each satellite link, so as to sustain the orig-
inal traffic flow during the time of a link failure. In gen-
eral, for a link failure, restoration schemes can be classified
as link based restoration, or path based restoration. In the
former case, affected traffic (i.e. traffic that is supposed to
go through the failed link) is rerouted over a set of replace-
ment paths through the spare capacity of a network between
the two nodes terminating the failed link. Path restoration
reroutes the affected traffic over a set of replacement paths
between their source and destination nodes [1, 2, 3, 5, 6].
The obvious advantages of using the link restoration strat-
egy are simplicity and ability to rapidly recover from failure
events. However, as we will show later, the amount of spare
capacity needed for the link based scheme is significantly
greater than that of path based restoration since the latter
has the freedom to reroute the complete source-destination
using the most efficient backup path. On the other hand, the
path restoration scheme is less flexible in handling failures
[1, 2, 3].
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We investigate the optimal spare capacity placement
problem based on mesh-torus topology which is essential
for the multisatellite systems. An n � n mesh-torus is a
two-dimensional (2-D) n-ary hypercube and differs from a
binary hypercube in that each node has a constant number of
neighbors (4), regardless of n. For the remainder of the pa-
per, we will refer to this topology simply as a mesh. In par-
ticular, we are interested in the scenario where every node in
the network is sending one unit of traffic to every other node
(also known as complete exchange or all-to-all communica-
tion) [7]. This type of communication model is considered
because the exact traffic pattern is often unknown and an
all-to-all model is frequently used as the basis for network
design. Even in the case of a predictable traffic pattern, links
of a particular satellite will experience different traffic de-
mand as the satellite flies over different location on earth.
Thus, each link of that satellite must satisfy the maximum
demand. Again, all-to-all traffic model helps capturing this
effect. Hence we also assume that each satellite link has an
equal capacity. Our results, while motivated by satellite net-
works [9, 10, 11], are equally applicable to other networks
with a mesh topology such as multi-processor interconnect
networks [12, 13, 14] and optical WDM mesh networks [2,
3]. Furthermore, while our results are discussed in the con-
text of an n � n mesh for simplicity, they can be trivially
extended to a more general n �m topology, which is typi-
cally more representative in satellite constellations.

When using the path restoration schemes, the restoration
can be performed at the global level by rerouting all the traf-
fic (both those affected or unaffected by the link failure) in a
network. However, this level of restoration requires recom-
puting a new path for each source-destination pair, thus it
is impractical if a restoration time limit is imposed or when
disruption of existing calls is unacceptable. We can also
perform path restoration at the local level by rerouting only
the traffic which is affected by the link failure. Obviously,
the local level reconfiguration will require at least as much
spare capacity as the global level reconfiguration since the
former is a subset of the latter. Nevertheless, as we show in
section IV, the lower bound on the spare capacity needed,



No Link based Path based
restoration restoration restoration

Total Capacity (N odd) N3�N
4

N3�N
3

N2(N2�1)
2(2N�1)

Total Capacity (N even) N3

4
N3

3
N4

2(2N�1)

Spare Capacity (N odd) 0 N3�N
12

N3�N
4(2N�1)

Spare Capacity (N even) 0 N3

12
N3

4(2N�1)

Table 1: Capacity requirements under link based and path
based restoration.

using global level reconfiguration, can be achieved by us-
ing local level reconfiguration.

To obtain the necessary minimum spare capacity, our ap-
proach is to first find the minimum capacity, say C1, that
each link must have in order to support the all-to-all traf-
fic. We then obtain a lower bound, C2, for the capacity
needed on each link to satisfy the all-to-all traffic when one
of the links fails. Consequently, the minimum spare capac-
ity needed, Cspare, should be greater than the difference
of C2 and C1. Since we do not restrict the reconfiguration
(global level or local level) used to calculateC2; C2�C1 is a
lower bound on Cspare, both at global level and local level.
We will show that this lower bound on Cspare is achiev-
able by using a path based restoration algorithm at a local
level. Thus, the minimum spare capacity needed using path
restoration strategy is Cspare. Table I summarizes capacity
requirements under link based and path based restoration.
Communication on a mesh network has been studied in [4,
11, 14]. In [4], the authors consider processors commu-
nicating over a mesh network with the objective of broad-
casting information. The work in [11] presents routing al-
gorithm generating minimum propagation delay for satel-
lite mesh networks. In [14], the authors propose new algo-
rithms for all-to-all personalized communication in mesh-
connected multiprocessors. These papers mentioned so far
did not look into capacity provisioning and spare capacity
requirement of the mesh network.

Path based and link based restoration schemes have been
extensively researched [1, 2, 3, 5]. In [1], the authors study
and compare spare capacity needed by using link based and
path based schemes. The work of [5] provides a method
for capacity optimization of path restorable networks and
quantify the capacity benefits of path over link restoration.
In [2, 3], the authors examines different approaches to re-
store mesh-based WDM optical networks from single link
failures. In all the aforementioned papers, the spare capac-
ity problem is formulated as an integer linear programming
problem which is solved by standard methods. Our paper
addresses the mesh structure for which we can get a closed
form results for the spare capacity.
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Figure 1: A 2-dimensional 5-mesh.

The structure of this paper is as follows: Section II gives
necessary definitions and statement of the problem. In sec-
tion III, a lower bound on C1 is given along with a routing
algorithm achieving this lower bound. The lower bound C 2

is presented also. We then show in section IV that the lower
bound onCspare, C2�C1, can be achieved by a path based
restoration algorithm. Section V concludes this paper.

2. Preliminaries
We start out with a description of the network topology and
traffic model, and follow it with a sequence of formal defi-
nitions and terminology that will be used in subsequent sec-
tions.

Definition 1. The 2-dimensional N -mesh is an undirected
graph G = (V;E), with vertex set

V = f~a j ~a = (a1; a2) and a1; a2 2 ZNg;
where ZN denotes the integers modulo N , and edge set

E = f(~a;~b) j 9 j such that aj � (bj � 1) mod N

and ai = bi for i 6= j; i; j 2 f1; 2gg:
The above definition is from [7]. A 2-dimensional N -

mesh has a total of N 2 nodes. Each node has two neighbors
in the vertical and horizontal dimension, for a total of four
neighbors. We associate each satellite with a fixed node,
(a1; a2), in the mesh. Undirected edges of the mesh are
also referred to as links. Fig. 1 shows a 2-dimensional 5-
mesh. The notion 2-dimensional1-mesh is used to denote
the case where N is arbitrarily large, and it is the same as
an infinity grid.

Definition 2. A cut (S; V � S) in a graph G = (V;E) is
partition of the node set V into two nonempty subsets, a set
S and its complement V � S.

Here the notation Cut-Set(S; V �S) = f(~a;~b) 2 E j ~a 2
S;~b 2 V � Sg denotes the set of edges of the cut (i.e. the
set of edges with one end node in one side of the cut and the
other on the other side of the cut).



Definition 3. The size of a Cut-Set(S; V � S) is defined as
C(S; V � S) =j Cut-Set(S; V � S) j.

For G = (V;E) and P(V ) denote the power set of the
set V (i.e. the set of all subsets of V ). Let Pn(V ) denote
the set of all n-elements subsets of V .

Definition 4. Let G = (V;E) be a 2-dimensionalN -mesh,
the function "N : Z+ ! Z+ is defined as

"N(n) = min
S2Pn(V )

C(S; V � S):

The function "N(n) returns the minimum number of
edges that must be removed in order to split the 2-
dimensional N -mesh into two parts, one with n nodes and
the other with N 2 � n nodes. Similarly, "1(n) is defined
to be the minimum number of edges that must be removed
in order to split the 1-mesh into two disjoint parts, one of
which containing n nodes.

To achieve the minimum spare capacity, we consider the
shortest path algorithm. Shortest paths on 2-dimensional
N -mesh are associated with the notion of cyclic distance
which we will define next [8].

Definition 5. Given three integers, i, j, N , the cyclic dis-
tance between i and j modulo N is given by

DN (i; j) = minf(i� j)mod N); (j � i)mod N)g:

3. Capacity requirement without link failures

To obtain the necessary capacity, C1, that each link must
have in order to support the all-to-all traffic without link
failure, we first provide a lower bound on C1. An algorithm
achieving the lower bound will also be presented. For the
proof of the lower bound on C1, we are aware of the ex-
istance of a simpler proof (using Proposition 1 in [4]) than
the one we described below. However, the cut method we
used here will help us find the lower bound,C2, on the min-
imum capacity needed on each link in the event of a link
failure. Therefore, we decide to use the same cut method
consistently in proving the lower bound onC1 and the lower
bound C2.

3.1. A lower bound on the primary capacity

To find a lower bound on C1, we state the following lem-
mas which will prove to be useful tools in the subsequent
sections. Proofs of these lemmas are omitted for brevity,
and they can be found in [16].

Lemma 1. Let G = (V;E) be an infinite mesh. An arbi-
trary set Wn 2 V such that "1(n) = C(Wn;Wn) must
satisfy the following properties:

1. 8x 2 Wn; 9 y 2 Wn such that (x; y) 2 E. In other
words, nodes in Wn should be connected.

2. Nodes in Wn should be clustered together to form a
rectangular shape (including square) if possible.

3. "1(n) is an even number for all n 2 Z+.

4. "1(n) is a monotonically nondecreasing function of
n.

Lemma 2. Let G = (V;E) be an infinite mesh, then

"1(n2) = 4n

and

"1(n2 + k) =

�
4n+ 2 for 1 � k � n

4n+ 4 for n+ 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

The above lemma gives the minimum number of edges
that must be removed from E in order to split a specified
number of nodes from the mesh. Intuitively, the set of n
nodes to be removed from the mesh must be clustered to-
gether.

Corollary 1. For "1(n) defined in above lemma, "1(n) �
4
p
n for n 2 Z+.

Corollary 2. Let G = (V;E) be an infinite mesh with an
arbitrary link failure, then

"1(n2) = 4n� 1

and

"1(n2 + k) =

�
4n+ 1 for 1 � k � n

4n+ 3 for n+ 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

So far the function "1(n) has been the focus of our dis-
cussion. Since the satellite network that we model is a 2-
dimensional N -mesh, it is essential to know "N (n). In a 2-
dimensional N -mesh, a horizontal row of nodes (a vertical
column of nodes) forms a horizontal (vertical) ring. When n
is very small compared to N , splitting a set of n nodes from
the N -mesh is similar to cutting the set of n nodes from1-
mesh; more precisely, "1(n) = "N(n). The ring structure
of the 2-dimensional N -mesh does not affect the minimum
size of a cut when n is relatively small. Nevertheless, when
n is large, taking advantage of the ring structure of the 2-
dimensional N -mesh will result in "N(n) < "1(n).

Now, let’s define the following sets:

A1 �f1; 2; : : : ; N
2

4
g;



A2 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (x mod N) 6= 0g;

A3 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (x mod N) = 0g;

O1 �f1; 2; : : : ; N
2 � 1

4
g;

O2 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (x mod N) 6= 0g; and

O3 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (x mod N) = 0g:
Lemma 3. Let G = (V;E) be a 2-dimensional N -mesh,
for N even,

"N (n) =

8<
:

"1(n) for n 2 A1

2N + 2 for n 2 A2

2N for n 2 A3

for N odd,

"N(n) =

8<
:

"1(n) for n 2 O1

2N + 2 for n 2 O2

2N for n 2 O3

Theorem 1. On a 2-dimensional N -mesh, the minimum
capacity, C1, that each link must have in order to support
all-to-all traffic is at least N3

4 for N even, and N3�N
4 for N

odd.

Proof. Consider a fixed n between 1 and N 2 � 1. The
idea is to use a cut to separate the network (N -mesh) into
two disjoint parts, with one part containing n nodes and
the other containing N 2 � n nodes. Based on the all-
to-all traffic model, we know the exact amount of traf-
fic, Ccross = 2n(N2 � n), that must go through the cut.
Therefore, from max-flow min-cut theorem [15] we know
that simply dividing Ccross by the minimum size of cutset
"N (n) will give us a lower bound on C1, and let’s call this
bound Bn. It implies that each link in the network must
have capacity of at least Bn in order to satisfy the all-to-all
traffic demand. This prompts us to find BC1

max which is the
maximum ofBn over all n 2 f1; : : : ; N 2�1g. We say that
BC1
max is the best lower bound for C1 in the sense that it is

greater or equal to any other lower bound for C 1.
For N even, let

BC1

max = max
n2f1;::: ;N2�1g

�
2(N2 � n)n

"N (n)

�
(1)

= max

�
max
n2A1

�
2(N2 � n)n

"1(n)

�
;

max
n2A2

�
2(N2 � n)n

2N + 2

�
;

max
n2A3

�
2(N2 � n)n

2N

��
: (2)

The case for N odd is the same except thatA1;A2; and A3

in (2) are replaced by O1;O2; and O3. Solving the maxi-
mization problem, we get

BC1

max =

8<
:

max
n
�e;

N4

2(2N+1) ;
N3

4

o
for N even

max
n
�o;

N4�1
2(2N+1) ;

N3�N
4

o
for N odd

where �e (�o) in the above equation is the result of the
first term of equation (2) for N even (odd). Here, ex-
plicit evaluation of �e and �o is unnecessary. Instead, by
using Corollary 1, an upper bound on � e and �o will be
sufficient for us to solve the maximization problem. Since
"1(n) � 4

p
n for n 2 Z+, the following equation holds:

�e = max
n2A1

�
2(N2 � n)n

"1(n)

�
� max

n2Z+

�
2(N2 � n)n

"1(n)

�

� max
n2Z+

�
2(N2 � n)n

4
p
n

�
=

3N3

16
<

N3

4

�o <
N3�N

4 can be shown similarly. Thus, we have

BC1

max =

(
N3

4 for N even
N3�N

4 for N odd

Corollary 3. On a 2-dimensional N -mesh with an arbi-
trary link failed, the lower bound, C2, on the minimum ca-
pacity that each link must have in order to support all-to-all

traffic is N4

2(2N�1) for N even, and N2(N2�1)
2(2N�1) for N odd.

3.2. Algorithm achieving the lower bound on C1

In this section, we show that the lower bound on C1 can be
achieved by using a simple routing algorithm called the Di-
mensional Routing Algorithm. As we have mentioned ear-
lier, the routing algorithm will use the shortest path between
source and destination nodes. Below is a description of the
Dimensional Routing Algorithm:

1. From the source node ~p = (p1; p2), move horizon-
tally in the direction of shortest cyclic distance to
the destination node ~q = (q1; q2); if there is more
than one way to route the traffic, pick the one that
moves in the (+) direction (mod N ), i.e. (p1; p2) !
((p1 + 1) mod N; p2) ! ((p1 + 2) mod N; p2) !
� � � ! (q1; p2): Route the traffic for DN(p1; q1) hops
where DN (p1; q1) denotes the shortest cyclic dis-
tance (hops) between ~p and ~q in horizontal direction.



2. Move vertically in the direction of shortest cyclic
distance to the destination node; if there is more
than one way to route the traffic, pick the one that
moves in the (+) direction (mod N ). Route the traf-
fic for DN (p2; q2) hops where DN(p2; q2) denotes
the shortest cyclic distance (hops) between ~p and ~q in
vertical direction.

Theorem 2. Let G = (V;E) be a 2-dimensional N -mesh,
by using the Dimensional Routing Algorithm above, to sat-
isfy the all-to-all traffic, the maximum load on each link is
N3

4 for N even and N3�N
4 for N odd.

4. Capacity requirement for recovering from a
link failure

Under the condition of an arbitrary link failure, we in-
vestigate the spare capacity needed to fully restore the orig-
inal traffic, using the link based restoration method and path
based restoration method.

4.1. Link based restoration strategy

Consider that an arbitrary link, l~u~v (connecting nodes ~u and
~v), failed in the 2-dimensional N -mesh. We know from the
previous section that there are N3�N

4 (N
3

4 ) units of traffic
on l~u~v have to be rerouted for N odd (even). Since the link
based restoration strategy is used here, these N3�N

4 units of
traffic in and out of node ~u have to be rerouted through the
remaining three links connecting to node ~u (l~u~v is already
broken). We then have the following theorem:

Theorem 3. Using link based restoration strategy in the
event of a link failure, the minimum spare capacity that each
link must have in order to support the all-to-all traffic is
N3�N
12 for N odd and N3

12 for N even.

Proof in [16].

4.2. Path based restoration strategy

4.2.1. Lower bound on the minimum spare capacity.

Theorem 4. On a 2-dimensionalN -mesh with an arbitrary
failed link, the minimum spare capacity, Cspare, that each
link must have in order to support all-to-all traffic is at least

N3

4(2N�1) for N even, and N3�N
4(2N�1) for N odd.

Proof in [16].

4.2.2. Algorithm using minimum spare capacity.

In this section, we will show that the minimum spare capac-
ity needed on each link is N3

4(2N�1) for N even and N3�N
4(2N�1)

for N odd. In other words, the lower bound in Theorem 4

is tight. We show the achievability by presenting a primary
routing algorithm, and subsequently, a path-based recovery
algorithm which fully restores the original traffic by using
the minimum spare capacity in case of a link failure. We
focus on the case of N odd for simplicity. To show the
achievability for N even, a different set of primary routing
algorithm and recovery algorithm is needed (not presented
in this paper).

First, we describe the primary routing algorithm that we
call Rotational Symmetric Routing Algorithm, or RS Rout-
ing Algorithm, used to route the all-to-all traffic. We use the
RS Routing Algorithm instead of the Dimensional Routing
Algorithm as our primary routing algorithm because the for-
mer simplify the construction and analysis of the restoration
algorithm. Specifically, with the Dimensional Routing Al-
gorithm, the traffic routes on horizontal and vertical links
are not symmetric; hence a different restoration algorithm
would be required for vertical and horizontal link failure. In
contrast, the RS Routing Algorithm is symmetric and verti-
cal or horizontal link failure can be treated using the same
recovery algorithm. The case of a horizontal link failure is
the same as the vertical link failure if we rotate the topology
by 90Æ.

RS routing algorithm

Each node ~a in a 2-dimensional N -mesh has a pair of inte-
gers (a1; a2) associated with it. To route one unit of traffic
from the source node ~p to the destination node ~q, do the
following:

1. Change coordinate and compute the relative position
of the destination node with respect to the source
node. Specifically, shift the source node to (0; 0) by
applying the transformation T~p. Here, the transfor-
mation T~p : ZN � ZN ! ZN � ZN is defined
as ~d = T~p(~q) = T~p(q1; q2) = (d1; d2), where for
i = 1; 2

di =

8>>>>>><
>>>>>>:

qi � pi;

if � N�1
2 � qi � pi � N�1

2
(qi � pi) mod N;

if � (N � 1) � qi � pi < �N�1
2�([�(qi � pi)] mod N);

if N�1
2 < qi � pi � N � 1

Here, (�n) mod p is defined as p� n mod p if 0 <
n mod p < p. Thus, we will have T~p(~p) = (0; 0).
Fig. 2 illustrates this transformation.

2. Divide the nodes of the 2-dimensional N -mesh into
four quadrants with the source node as the origin
(shown in Fig. 2). Specfically, let

Q1 = f(a; b) j a; b 2 ZN
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Figure 2: Change of coordinate by using transformation T ~p.

and 0 � a � N � 1

2
; 0 < b � N � 1

2
g;

Q2 = f(a; b) j a; b 2 ZN

and � N � 1

2
� a < 0;�N � 1

2
� b � 0g;

Q3 = f(a; b) j a; b 2 ZN

and � N � 1

2
� a � 0;�N � 1

2
� b < 0g; and

Q4 = f(a; b) j a; b 2 ZN

and 0 < a � N � 1

2
;�N � 1

2
� b � 0g:

3. If ~d = T~p(~q) 2 (Q1 [Q3), route the traffic vertically
in the direction of shortest cyclic distance to the des-
tination node by DN(p2; q2) hops. Then, route the
traffic horizontally in the direction of shortest cyclic
distance to the destination node by DN (p1; q1) hops.

If ~d = T~p(~q) 2 (Q2 [ Q4), route the traffic horizon-
tally in the direction of shortest cyclic distance to the
destination node by DN(p1; q1) hops. Then, route
the traffic vertically in the direction of shortest cyclic
distance to the destination node by DN (p2; q2) hops.

Now, considering all traffic that has a particular node ~c

as their destination, their routing paths are rotational sym-
metric by the above algorithm. That is, rotating all of the
routing paths by an integer multiple of 90Æ will result in
having the same original routing configuration. RS routing
algorithm also achieves the lower bound on C1. The proof
is straightforward and thus omitted here.
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Figure 3: Routing path of the restoration algorithm

Our goal here is to recover the original traffic flow by
adding an extra amount of capacity, which is equal to the
lower bound calculated in Theorem 4, on each link. Now,
we present an example to illustrate the key ideas of the
recovery algorithm. Without loss of generality, suppose
that link l

~c~d
failed in the 2-dimensional 7-mesh shown in

Fig. 3(a). We need to find all possible source destination
pairs (S-D pairs) that are affected by the failed link first.
From the RS routing algorithm, these S-D pairs can be de-
termined exactly. Specifically, let the source node be ~s and
destination node be ~t. The set of failed traffic F is defined
as F = F1 [ F2 [ F3 [ F4 [ F5 [ F6 where

F1 = f(~s;~t) j ~s 2 A2 and ~t 2 L4;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F2 = f(~s;~t) j ~s 2 L2 and ~t 2 A3;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;



F3 = f(~s;~t) j ~s 2 A4 and ~t 2 L2;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F4 = f(~s;~t) j ~s 2 L4 and ~t 2 A1;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F5 = f(~s;~t) j ~s 2 L4 and ~t 2 L2;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g; and

F6 = f(~s;~t) j ~s 2 L2 and ~t 2 L4;DN(s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g:

In the 2-dimensional 7-mesh with a link failure, the sets
A1, A2, A3, A4, L2 and L4 are shown in Fig. 3(a). More
generally, with a failed vertical link connecting nodes ~v =
(v1; v2) and ~u = (v1; (v2+1)modN), after taking the trans-
formation T~v, we can define these sets as the following:

A1 = f(a; b) j a; b 2 ZN and 1 � a � N � 1

2
;

1 � b � N � 1

2
g;

A2 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1;

1 � b � N � 1

2
g;

A3 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1;

� [
N � 1

2
� 1] � b � 0g;

A4 = f(a; b) j a; b 2 ZN and 1 � a <
N � 1

2
;

� [
N � 1

2
� 1] � b � 0g;

L2 = f(a; b) j a; b 2 ZN and a = 0;

1 � b � N � 1

2
g; and

L4 = f(a; b) j a; b 2 ZN and a = 0;

� [
N � 1

2
� 1] � b � 0g:

A simple way for recovering a failed traffic is to reverse
its routing order. That is, if the primary routing scheme is
to route the traffic horizontally in the direction of shortest
cyclic distance first, the recovery algorithm will route the
traffic vertically first (shown in Fig. 3(b)). Thus, traffic that
is supposed to go through the failed link will circumvent
the failed link. Consider now the vertical links crossing line
� in Fig. 3(a) and the affected traffic in the set F1 [ F2 [

F3 [ F4. Rerouting (i.e. reversing the routing order) all of
the affected traffic in F1[F2 [F3 [F4 through the vertical
links crossing line �will add an additional 12 units of traffic
on each of these six vertical links. Fig. 4(a) illustrates the
recovering paths of the traffic (originating from nodes a 0, b0,
and c0) in the set F1, which are being rerouted through the
link l~c0 ~d0

. Recovering paths for the traffic in F2, although
not shown here, is just a flip of Fig. 4(a) with respect to the
line �. The total amount of rerouted traffic in F1[F2 added
on link l~c0 ~d0

, which is 12, exceeds the lower bound of spare

capacity,C2�C1 = d N3�N
4(2N�1)e = 7. However, utilizing the

ring structure of the mesh topology, we can reroute half of
the affected traffic through links crossing line � (illustrated
in Fig. 4(b)). This way, we have a total of six units traffic
through the link l~c0 ~d0

(three fromF1 and three from F2). For
the traffic in the set F5[F6, we can reroute half of them (six
units) through the link l~g~a. The remaining six units of traffic
can be routed evenly through the six vertical links crossing
line �. Thus, we can restore the original traffic flow by
using only an additional C2 � C1 amount of capacity on
each vertical link.

a

b

d

c

e

f

g

α

βa

b

d

e

f

g

c

β

α

(a) (b)

a’

b’

c’

d’

e’

f’

g’

Figure 4: Restoration path for the 2-dimensional 7-mesh

So far we have only discussed the load on a vertical link.
Now, we will address the question of whether the additional
traffic on each horizontal link will exceed C2 � C1. For
example, on the link l ~d0~d

in Fig. 3(a), one may find that
the number of rerouted traffic from the set F1 [ F2, nine,
exceedsC2�C1 = 7 after reversing the routing order of the
affected traffic. However, as we reroute the affected traffic
circumventing the failed link, we not only put an additional
nine units of traffic (~s 2 A2;~t = ~d) on link l~d0~d

but also
take nine units of traffic (~s 2 L2;~t 2 L3) away from link
l~d0 ~d

. Overall, we have zero additional rerouted traffic from
the set F1 [ F2 go through link l ~d0~d

. Nevertheless, traffic
in the set F5 [ F6 does add extra units of traffic on the link
l~d0 ~d

. By rerouting half of the traffic in F5 [F6 (six) through
the link l~g~a (without using any horizontal link), we can then



distribute the rest of the traffic in F5 [F6 (six) evenly, so as
to satisfy the spare capacity constraint.

As we have mentioned earlier, only the traffic in the setS6
i=1 Fi are being rerouted in our path based recovery algo-

rithm. Traffic which is unaffected by the failed link remains
intact in the recovery algorithm.

Lastly, we cannot include the full details of the path
based restoration algorithm in this paper due to space lim-
itation. For the same reason, we state the following theo-
rem, which shows that the lower bound on the spare capacit
(C2 � C1) is indeed achievable, without proof.

Theorem 5. On a 2-dimensional N -mesh, to restore the
original all-to-all traffic in the event of a link failure, we
need a spare capacity of N3�N

4(2N�1) on each link for N odd

and N3

4(2N�1) for N even by using the restoration algorithm.

5. Conclusion

This paper examines the capacity requirements for mesh
networks with all-to-all traffic. This study is particularly
useful for the purpose of design and capacity provisioning
in satellite networks. A novel technique of cuts on a graph
is used to obtain a tight lower bound on the capacity re-
quirements. This cut technique provides an efficient and
simple way of obtaining lower bounds on spare capacity re-
quirements for more general failure scenarios such as node
failures or multiple link failures.

Another contribution of this work is in the efficient
restoration algorithm that meets the lower bound on capac-
ity requirement. Our restoration algorithm is relatively fast
in that only those traffic streams affected by the link fail-
ure must be rerouted. Yet, our algorithm utilizes much less
spare capacity than link based restoration (factor of N im-
provement). Furthermore, in order to achieve high capacity
utilization, our algorithm makes use of capacity that is re-
linquished by traffic that is rerouted due to the link failure
(i.e. stub release [5]).

Interesting extensions include the consideration of node
failures, for which finding an efficient restoration algorithm
is challenging, as well as considering the impact of multi-
ple link failures. Finally, for the application to satellite net-
works, it would also be interesting to examine the impact of
different cross-link architectures.
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