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Optimal Energy Allocation and Admission Control
for Communications Satellites

Alvin Fu, Eytan Modiano, and John Tsitsiklis

Abstract—We address the issue of optimal energy alloca-
tion and admission control for communications satellites in
earth orbit. These satellites receive requests for transmis-
sion as they orbit the earth, but may not be able to serve
them all, due to energy limitations. The objective is to choose
which requests to serve so that the expected total reward is
maximized. The special case of a single energy-constrained
satellite is considered. Rewards and demands from users
for transmission (energy) are random and known only at re-
quest time. Using a dynamic programming approach, an
optimal policy is derived and is characterized in terms of
thresholds. Furthermore, in the special case where demand
for energy is unlimited, an optimal policy is obtained in
closed form. Although motivated by satellite communica-
tions, our approach is general and can be used to solve a
variety of resource allocation problems in wireless commu-
nications.

Keywords— Satellite, Communication, Resource Alloca-
tion, Dynamic Programming

I. INTRODUCTION

F
OR most satellites, energy management is a critical
issue, for the simple reason that energy efficiency in

a satellite directly translates into cost savings. A satellite
with lower energy requirements requires a smaller energy
source (solar panel, reactor, etc.) and a lighter battery
pack, both of which translate into weight savings. The
weight savings generally provide an economic benefit - a
smaller launch vehicle might be selected, thus decreasing
cost, or more maneuvering fuel could be carried, which
would result in longer system life.

It is thus important to accurately anticipate energy in-
put and storage requirements for satellites. To do so, one
must model the operation of the satellite and its energy
consumption. If appropriate, it may be necessary to deter-
mine a strategy for energy consumption.

For instance, a television broadcast satellite in geosyn-
chronous orbit will enjoy continuous sunshine for its solar
cells except for brief periods of eclipse, while demand for
energy is relatively steady and unchanging [7]. With both
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input and output of energy relatively static, such a satellite
may not require a sophisticated energy consumption strat-
egy. On the other hand, a data communications satellite in
medium or low earth orbit will experience prolonged pe-
riods of darkness and lack of energy input. At the same
time, if the satellite is servicing a best-effort packet data
network (such as the Internet), demand for services will of-
ten be bursty, and the satellite must choose amongst users
to be served. In such a situation, the need for an energy
consumption strategy is obvious.

Energy input for a data communications satellite in earth
orbit generally consists of power from solar cells [10]. The
quantity and timing of the input are known and can be de-
termined well in advance. As for energy outflow, a major
source of energy expenditure is often the power needed to
transmit on the downlink connection back to earth. Re-
ceiving signals sent up from earth requires relatively lit-
tle power in comparison, and sending signals to neighbor-
ing satellites (if the satellite is part of a constellation with
satellite crosslinks) is generally not energy intensive. In
the presence of multiple competing demands for downlink
service, the optimization of energy consumption consists
of deciding which users to serve.

The amount of service demanded by users is often a
widely varying quantity. For instance, a satellite providing
wireless phone service will likely experience much more
demand when it is over New York than when it is over the
North Pole. Furthermore, the energy required for servic-
ing different users is usually not the same. Thunderstorms,
for example, can severely attenuate the satellite signals.
Users may differ in distance to the satellite, overhead at-
mospheric conditions, or even antenna size, all of which
imply that the satellite must expend a different amount of
energy to service each user. To complicate matters even
further, different users or user classes may provide differ-
ing payments and rewards for service by a satellite.

There is little prior research on the topic of optimal allo-
cation of satellite energy under limited power and finite en-
ergy storage conditions. In the 1970s, a study by Aein and
Kosovych [1] investigated capacity allocation for satellites
serving both switched and packet based networks, while
Shaft [12] looked at unconstrained allocation of power and
gain to service communication satellite traffic. Recently,
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many researchers have examined the use of satellites to
supplement terrestrial data networks [11] [13]. This work
is most often focused on design and performance evalu-
ation of such space networks, but there is little attention
paid to energy allocation issues for satellites in such a net-
work. Perhaps the closest study to our current work is one
by Ween et.al., [14] who studied resource allocation for
low-earth-orbit satellites providing GSM cellular services.
Resource allocation for satellite beams and path selection
has been studied, [9], as has the allocation of bandwidth
[2].

Much work has been done on design and analysis of
power systems for satellites. For instance, Kraus and
Hendricks have developed a model for estimating satellite
power system performance [8]. A study in 1986 examined
operational scheduling for the (then) proposed manned
space station [3], and centered on appropriately matching
the many power sources to power sinks on the space sta-
tion.

In general, current satellite operators follow heuristic
rules about energy allocation. For example, a simple rule
would be to serve all requests as long as sufficient energy
is available. Such a “greedy” approach is clearly subopti-
mal if different users require different amounts of energy
or provide different rewards for the same service.

This paper develops a method that allocates energy for
a single satellite. As the satellite moves in its orbit, it
encounters different users with different overhead atmo-
spheric conditions, financial rewards, demand levels, and
so forth. For each unit of energy expended, the satellite
receives a certain amount of reward, which incorporates
distances, atmospheric conditions, and financial consider-
ations. The reward changes with each time step, and is
assumed to be random and unknown until the actual time
of service, although its probability distribution is known.
The satellite may also face a limit on the amount of energy
it can expend: there may be a physical power limit for its
transmitter, or there may simply not be enough customer
demand. The demand is again assumed to be random and
not known until the time of service. At the same time,
the parameters for available energy are largely known: the
satellite has a battery whose size is known and finite, and
receives energy from its solar cells according to a known
schedule. The objective is to expend the energy (service
the users) in a way that maximizes reward.

We present a method for optimizing energy consump-
tion to maximize reward. In addition, we provide useful
suboptimal heuristics for the general case based on cer-
tainty equivalent control and on a closed-form optimal so-
lution to the special case where demand is unlimited. Fi-
nally, although originally motivated by a satellite energy
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Fig. 1. Energy Flow

allocation problem, our approach has a natural application
to wireless networking, which we discuss in section V.

II. SYSTEM MODEL

We consider a satellite system with slotted time,
stochastic reward, stochastic demand, and a finite time
horizon. The satellite receives energy in each time slot ac-
cording to a fixed and known schedule and can store it in a
battery of finite size. At the same time, it serves customers
by expending energy. The reward obtained per unit en-
ergy changes randomly in each time step. The demand for
energy during each time step is random as well. The objec-
tive is to find an optimal policy that maximizes expected
reward by choosing how much (if any) of the demand to
service at each time.

Denote the energy available for the satellite to spend at
time slot k with the variable ak. It is assumed that during
any time slot, the satellite can spend the energy in its bat-
tery plus any incoming energy from the solar panels. Thus
ak consists of the energy in the battery plus the energy in-
put for time slot k, denoted bk.

The inputs bk represent incoming energy from the so-
lar panels or reactor. Because orbits and reactor perfor-
mance are predictable, the energy inputs bk are assumed to
be known in advance. In this model, the satellite starts with
energy a0 and at each time k > 0 receives energy input bk
according to a predetermined and known schedule.

At each time slot k, the satellite operator may elect to
consume an amount of energy ck (up to ak) in servicing
users. Any unused energy ŝk = ak � ck must be stored in
the battery, which has a capacity of Emax. Unused energy
that cannot be stored is lost. Therefore, for any time slot,
the energy in the satellite’s battery consists of available
energy from the previous stage minus consumption from
the previous stage, subject to a battery capacity limit. The
energy stored in the battery at time k for use in the next
stage, which we define as sk, is then given by the term
sk = min(Emax; ak � ck).

As can be seen in figure 1, the energy available for use
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by the satellite at time k + 1 is expressed as:

ak+1 = min(Emax; ak � ck) + bk+1 (1)

Alternatively, ak+1 can be written in terms of stored en-
ergy sk as

ak+1 = sk + bk+1 (2)

Each unit of energy consumed provides the satellite op-
erator with a reward rk. The reward rk is a non-negative
random variable with a probability distribution prk(rk)
that varies with time. Although prk(rk) is known a priori,
the actual value of rk is not known until time k. Similarly,
the user’s demand for energy, dk, is also a random variable
with a priori known probability distribution pdk(dk), but
the actual value of demand at time k is not known until
time k. The random variables rk and dk, k = 1; 2; : : : ; n,
are assumed independent.

The objective is to choose a consumption policy that
maximizes total expected reward over a time horizon of
n time steps. The total expected reward is given by
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where consumption is subject to demand and energy con-
straints.

Notice that implicit in equation (1) is the assumption
that any incoming energy during a time slot can be con-
sumed during that slot without being stored in the battery.
This amounts to assuming that energy input and consump-
tion rates are constant for the duration of a time slot, a
realistic assumption for sufficiently small slot durations.

Furthermore, there is an inevitable energy loss associ-
ated with charging and discharging a battery, and the en-
ergy of a battery varies with its discharge rate. Although
not currently captured, these battery effects can be incor-
porated into the model by proper adjustment of the reward
structure. It is also known that the pulsed discharge of a
battery yields significantly more energy than steady dis-
charge at the same current, and Chiasserini and Rao [5]
[6] have developed algorithms to exploit this property for
data transmission. This property could be included in our
formulation by the use of a model where reward probabil-
ities are dependent on previous consumption and energy
state. Due to the short duration of battery pulses, incorpo-
rating this effect would require the use of very short time
slots (e.g. one second or less).

In the following sections, we formulate the energy al-
location problem within the framework of dynamic pro-
gramming [4]. Generating an optimal policy and a value

function from the dynamic programming recursion can be
computationally difficult. We prove concavity of the value
function and thereby obtain some properties of an opti-
mal policy. The concavity property is also the basis for
two separate methods of calculating the value function and
generating an optimal policy, both of which provide scala-
bility and a significant decrease in computation time. Next,
we analyze the certainty equivalent heuristic and show that
it has a simple structure in the special case where the ex-
pected reward per energy unit is the same at each period.
In addition, we derive an optimal policy for the special and
limiting case where demand is unlimited. Last, we present
a numerical example contrasting the performance of the
three algorithms with a greedy algorithm and examine an
alternative application in wireless networking.

III. DYNAMIC PROGRAMMING FORMULATION

In this section, we present a dynamic programming al-
gorithm for the problem formulated in the previous sec-
tion. As usual in dynamic programming, we introduce
the value function Jk(ak; rk; dk), which provides a mea-
sure of the desirability of the satellite having available en-
ergy level ak at time k, given that current demand is dk
and current reward is rk. The optimal value functions
Jk(ak; rk; dk) for each stage k are related by the follow-
ing dynamic programming recursion:

Jk(ak; rk; dk) = max
0�ck�ak

frk min(ck; dk)

+E(rk+1;dk+1)[Jk+1(min(ak � ck; Emax) + bk+1;

rk+1; dk+1)]g (4)

The two terms in the maximization represent the trade-
off in reward between consuming and saving energy. The
rk min(ck; dk) term represents the reward for consump-
tion; the satellite receives rk units of reward per unit of en-
ergy consumed, up to a maximum consumption of dk. The
expected value term represents the value of saving energy.
As discussed earlier, the satellite’s available energy in the
next stage, ak+1, is ak+1 = min(ak � ck; Emax) + bk+1.
The expected reward for having this much energy available
is given by the expectation E[Jk+1(ak+1; rk+1; dk+1)],
which is taken over the distribution of dk+1 and rk+1.

In order to maximize expected reward the satellite
should choose the consumption ck that maximizes the
right-hand side in equation (4). Notice that any consump-
tion beyond the demand dk is wasted, as is any energy
saved beyond Emax.

An alternative expression for the value function can be
obtained by using the stored energy term sk = min(ak �
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ck; Emax). Hence for stage k

Jk(ak; rk; dk) = max
0�sk�min(ak;Emax)

frk min(ak � sk; dk)

+E(rk+1;dk+1)[Jk+1(sk + bk+1; rk+1; dk+1)]g (5)

For both formulations, at the final stage, stage n, the
value function is given by

Jn(an; rn; dn) =rnmin(an; dn) (6)

This of course represents the reward for consuming the re-
maining energy in the satellite.

A. Concavity of the Value Function

The value function can be evaluated numerically; how-
ever, execution time can be slow. The major diffi-
culty is computing the expectation E(rk+1;dk+1)[Jk+1(sk+
bk+1; rk+1; dk+1)], for every ak, sk, and k. It is apparent
that there is a five-stage loop here: the algorithm must con-
sider all values of sk, ak, rk, and dk in each stage, and
there are a total of n stages. Fortunately, the execution
time can be considerably improved by taking advantage of
some properties of the value function.

Theorem 1:
Jk(ak; rk; dk) is concave in ak for any fixed rk and dk.

Proof:
Given in appendix -A.

Corollary:

Let us define Jk(ak) as

Jk(ak) = Er;d[Jk(ak; rk; dk)] (7)

Then Jk(ak) is concave in ak as well.

The concavity properties of the expected value function
Jk+1(ak+1) dictates the nature of an optimizing consump-
tion policy. In the dynamic programming recursion, the
expected value function for time k + 1 represents the ex-
pected reward for saving energy at time k. Since this func-
tion is concave, it translates into a decreasing marginal re-
ward for saving energy. The marginal reward for consum-
ing energy, on the other hand, is rk and then zero after the
demand limit is reached.

Let us assume from now on, and throughout the rest of
the paper, that the variables ak, sk, ck, dk, Emax, and bk are
all integer. This will allow us to consider computational
methods for solving the problem of interest.

Let �k(rk) be the smallest sk in the range 0 � sk �
Emax such that

Jk+1(sk + 1 + bk+1)� Jk+1(sk + bk+1) < rk

and set �k(rk) = Emax if such an sk does not exist.
Because of the concavity of Jk(ak), an optimal policy

can be obtained by setting sk to be

min(ak; Emax) for ak � �k(rk)
min(�k(rk); Emax) for �k(rk) < ak � �k(rk) + dk
min(ak � dk; Emax) for �k(rk) + dk < ak

In effect, �k(rk) is a threshold beyond which the reward
for consuming exceeds the reward for saving.

B. Computation of the Value Function

The concavity of Jk(ak) not only dictates an optimal
policy, but also can be exploited to quickly calculate the
value function itself. Two different methods have been de-
veloped to do so. The first method is based on the fact
that knowing �k(rk) eliminates the need to maximize over
consumption in equation (4). Moreover, �k(rk) is inde-
pendent of the demand and available energy. Because of
this, the expectation of the value function over dk becomes
similar to a convolution while rk is held fixed. It is only
necessary to weigh and sum over rk to get the expectation
over rk and complete the calculation for Jk(ak).

Using this strategy, the expected value function can be
expressed as

Jk(ak) = Er;d[Jk(ak; rk; dk)]

=

1X
rk=0

pr(rk)Ed[Jk(ak; rk; dk)jrk] (8)

where ak, rk, and dk are taken as discrete and integer for
the purposes of computation.

It can be shown that whenever ak < �k(rk),

Ed[Jk(ak; rk;dk)jrk]

= Er;d[Jk(ak; rk; dk)]

= Jk+1(min(ak; Emax) + bk+1) (9)

and when ak � �k(rk),

Ed[Jk(ak; rk; dk)jrk]

=

ak��(rk)X
dk=0

pdk(dk)Jk+1(min(ak � dk; Emax) + bk+1)

+ [1� F dk(ak � �k(rk))]

� [rk(ak � �k(rk)) + Jk+1(min(�k(rk); Emax))]

+ rkF dk(ak � �k(rk)) (10)

where F dk is defined as

F dk(x) =
xX

dk=0

pdk(dk)
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In practice this method is frequently able to obtain a
dramatic improvement in computation speed over the stan-
dard dynamic programming algorithm, in some cases over
two orders of magnitude.

The second method of calculating expected value is fre-
quently even faster than the one detailed above. The basis
of this method is a change in the order of summation and
the concavity properties explored earlier. The algorithm
essentially chooses the maximum of either the expected
marginal reward from saving or from consuming for each
incremental unit of energy it is able to use.

It can be shown that for ak > 0, the expected value
function Jk(ak) is equal to:

Jk(ak) = Ĵk+1(ak) +

akX
ck=1

Fdk(ck)Gk(ak � ck) (11)

and for ak = 0,

Jk(0) = Ĵk+1(0) (12)

where Ĵk+1(ak) is the expected future reward if the current
consumption is set to zero. More precisely,

Ĵk+1(ak) =E(r;d)[Jk+1(min(Emax; ak)

+ bk+1; rk+1; dk+1)] (13)

Also, Fdk(x) and Gk(x) are defined by

Fdk(x) =

1X
dk=x

pdk(dk)

Gk(x) = erk(dĴ
0
k+1(x)e) � Ĵ 0k+1(x)Frk(dĴ

0
k+1(x)e)

where d�e is the ceiling operator that rounds up, and

Frk(x) =

1X
rk=x

prk(rk)

erk(x) =

1X
rk=x

rkprk(rk)

and Ĵ 0k+1(x) is the first difference of Ĵk+1(x), defined by

Ĵ 0k+1(x) = Ĵk+1(x+ 1)� Ĵk+1(x) (14)

The above equations may appear complicated, but are
relatively easy to evaluate numerically. Note that Frk(x)
and erk(x) do not change unless the probability distribu-
tions for rk change with time. For problems with unchang-
ing probability distributions, this algorithm is even faster
than the first method detailed above. While both algo-
rithms must loop over ak and k, the first method must also
loop over rk and sum over dk, while the second method
only needs to sum over ck.

C. Certainty Equivalent Policies

Certainty equivalent (CEQ) control is a heuristic pol-
icy that at each stage applies a decision that would have
been optimal if the future rewards rk and demands dk were
all deterministic and equal to their expectations E[rk] and
E[dk], respectively. As seen above, dynamic programming
requires taking expectations over random variables. This
process is computation intensive and can be extremely
slow. In the certainty equivalent heuristic, the decision at
each stage is found by solving a much easier deterministic
problem.

The dynamic programming recursion for the determin-
istic problem underlying the CEQ policy is given by

Jk(ak) = max
0�sk�min(ak;Emax)

fE[rk]min(ak � sk; E[dk])

+ Jk+1(sk + bk+1)g (15)

and

Jn(an) =E[rn]min(an; E[dn]) (16)

Once the value functions Jk(ak) are available, a decision
at time k < n � 1 is obtained by setting ck = ak � sk,
where sk is the maximizing value in the expression

max
0�sk�min(ak;Emax)

frk min(ak � sk; dk)

+ Jk+1(sk + bk+1)g (17)

The decision at time n is set to cn = an.
In the special case where rewards in each time step are

independent and identically distributed (i.e., prk(rk) =
pr(r) and E[rk] = E[r] is the same for all k), the certainty
equivalent value function takes on a particularly simple
form, and the resulting consumption policy is relatively
easy to analyze:

Theorem 2:
Assume that E[rk] is the same for all k. Then, the value

function Jk(ak) for the underlying deterministic problem
is of the form

Jk(ak) = E[r][min(ak; Æk) + 
k] (18)

where Æk and 
k are some constants and Æk � E[dk].

Proof:
Consider the underlying deterministic problem. Since

the (expected) reward is the same at all times, an optimal
policy is to consume as much as possible at all times, and
Jk(ak) is equal to E[r] times the total consumption (in the
deterministic problem) over the entire horizon. Let 
k =
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Jk(0)=E[r]. As ak increases from 0, each additional unit
of available energy will be eventually consumed, and the
total reward increases linearly. However, once ak reaches a
certain threshold value Æk, any additional available energy
will have to be wasted and will not result in any additional
reward. The fact that Æk � E[dk] is immediate because any
available energy up to E[dk] can be profitably consumed
at time k and will not be wasted.

As seen by the preceding proof, the quantities 
k and
Æk have an intuitive interpretation that results in recursive
formulas for computing these constants. Indeed, assume
that 
k+1 and Æk+1 have already been determined. We then
have


k =Jk(0)=E[r]

=Jk+1(bk+1)=E[r]

=min(bk+1; Æk+1) + 
k+1 (19)

To determine Æk, we need to determine the maximum pos-
sible available energy ak that will not be wasted. The first
E[dk] units are not wasted because they can be consumed
immediately. Any further useful available energy cannot
exceed Emax, since this the most that can be conserved for
future use. At the next time, the maximum useful avail-
able energy is Æk+1. Since there will be a fresh supply
of bk+1 units, any useful transfer from time k is limited
to max(Æk+1 � bk+1; 0). Putting everything together, we
obtain

Æk = E[dk] + minfEmax;max(0; Æk+1 � bk+1)g (20)

The CEQ policy is determined by using the special form
of the value function in equation (17), to obtain

max
0�sk�min(ak;Emax)

frk min(ak � sk; dk)

+E[r][min(sk + bk+1; Æk+1) + 
k+1] (21)

If rk > E[r], the algorithm will consume as much as pos-
sible (up to dk) and then save any remaining energy. If
rk < E[r], the algorithm will save as much as possible,
up to Æk+1 � bk+1 units of energy, and try to consume the
rest. This policy appears to be a reasonable one, and in
tests the CEQ algorithm regularly obtained 80% to 90% of
the optimal reward.

D. Unlimited Demand Policy

When demand is unlimited one can obtain a closed-form
expression for an optimal consumption policy, described
by a simple threshold scheme. This formulation also ap-
plies to the case where demand is finite but is guaranteed

to always exceed the available energy. This policy can
be used as a heuristic to solve the general demand-limited
case.

As before, the objective is to choose a consumption pol-
icy that maximizes total expected reward over n time steps.
Since demand is unlimited, the dynamic programming re-
cursion becomes:

Jk(ak; rk) = max
0�ck�ak

frkck

+E[Jk+1(min(ak � ck; Emax) + bk+1; rk)]g (22)

For 1 � i � j � n, define the constants

�j
j = E[rj ]

�i
j = E[max(ri; �

i+1
j )]

�jj = Emax

�ij = max(�i+1j � bi; 0)

Theorem 3:
An optimal consumption policy, for 1 � k < n, is given

by the following: If rk � �k+1
n , then

ck = ak (23)

Otherwise,

ck = max(ak � �k+1j ; 0) (24)

where j is the smallest j in the range in the range k + 1 �
j � n such that rk < �k+1

j .
Furthermore, the value function is given by

Jk(ak; rk) =

[max(rk; �
k+1
n )�max(rk; �

k+1
n�1)] � [min(�k+1n ; ak)]

+ [max(rk; �
k+1
n�1)�max(rk; �

k+1
n�2)] � [min(�k+1n�1; ak)]

...

+ [max(rk; �
k+1
k+2)�max(rk; �

k+1
k+1)] � [min(�k+1k+2 ; ak)]

+ [max(rk; �
k+1
k+1)� rk] � [min(�k+1k+1 ; ak)]

+ rkak + ! (25)

where ! is a constant (the actual value of which does not
affect policy).

The physical intuition behind the constants above is as
follows: �ij represents the optimal expected reward in an
optimal stopping problem in which there is a unit of energy
that can be consumed at any time i; i + 1; : : : j between
stages i and j. (The reward rk for any given time step is
not known until the time step is reached, but the probability
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Fig. 2. Battery FIFO Queue

distribution for reward is known for each time.) Notice that
for a given i, �ij is non-decreasing with j.

The constant �i+1j represents Emax less the incoming
energy bi+1+� � �+bj�1 between time i+ 1 and time j�1,
as long as it does not become negative. Notice that �i+1j

is non-increasing with j. It is interpreted as the amount
of energy at time i that can be saved until time j, without
overflowing the battery, in view of the future energy inputs
bi+1; : : : ; bj�1.

The policy can be interpreted as follows: If the current
reward rk is greater than the expected reward for consum-
ing at an optimally chosen time between time k + 1 and
time n, then the policy consumes all available energy im-
mediately. In other words, if the expected reward for sav-
ing is less than the reward for consuming, the policy con-
sumes.

If not, the policy finds the smallest time j such that cur-
rent reward is less than the expected reward given that the
user must consume between time k + 1 and time j. The
policy then consumes available energy less �k+1j (subject
to the constraint that consumption cannot go below zero).
Note that in all instances the policy consumes any energy
that cannot be saved in the battery.

This closed form solution has an execution time depen-
dent only on the number of stages n and the number of
possible values for the rewards rj .

Proof of Theorem 3:
The theorem can be verified through tedious algebraic

manipulation of equation (22). However, there is another
approach that is more intuitive. Notice that it is never op-
timal to save more energy than the battery capacity. Any
amount of saved energy greater than the battery capacity is
wasted, whereas one can always obtain some reward (how-
ever minimal) by consuming, since demand is unlimited.

With this observation in mind, let us consider the battery
as a queue for energy packets with a capacity of Emax.
Assume without loss of generality that each energy packet
is of size one. At each time k, bk energy packets arrive, and
the satellite can “service” any number of energy packets in
the queue to obtain rk units of reward per unit energy. The
task is to find the service policy that generates the greatest
expected reward.

Now consider the class of first-in-first-out (FIFO) poli-
cies for managing this queue. First, notice that any energy
packet in the queue must be serviced or discarded as soon
as Emax additional energy packets arrive after it. If the
energy packet is not serviced, queue capacity is exceeded
and the energy packet will be wasted.

Since the schedule for energy packet arrivals is known,
each energy packet in this queue has an effective expiration
time. The expiration time for each energy packet is the
time at which a total of Emax additional energy packets
arrive after it. Under an optimal policy, the energy packet
must be serviced by this time. Note that as one moves from
the head of the queue to the end of the queue, the time until
expiration for each energy packet is non-decreasing.

Given these expiration times, an optimal FIFO policy
simply picks the best time between the current time and
the expiration time of the energy packet to service it. This
involves solving an optimal stopping problem for each en-
ergy packet.

The solution to the optimal stopping problem is well
known: For an energy packet with expiration time j, an op-
timal strategy is to compare current reward rk with �k+1

j .

If rk < �k+1
j the satellite should save the energy packet;

if not, it consumes the energy packet. If the satellite con-
sumes an energy packet with expiration time j, it also will
want to consume all energy packets with expiration times
before j. At time k, the number of energy packets with
expiration time before j is given by max(ak � �k+1j ; 0).
This leads us to the optimal policy described above.

Since the time until expiration is shorter as one moves
toward the head of the queue, the satellite will always ser-
vice energy packets according to FIFO ordering. We have
thus obtained an optimal FIFO policy for servicing energy
packets. Finally, note that because the energy packets are
indistinguishable, an optimal FIFO policy is also an opti-
mal policy in general.

IV. EXAMPLE: A LOW EARTH ORBIT SATELLITE

Three procedures for allocating energy have been intro-
duced: the optimal algorithm for the general case, the cer-
tainty equivalent method, and the optimal algorithm for the
unlimited demand case, which can be used as a heuristic
for the general case. We now apply these three procedures
to a hypothetical satellite in low earth orbit and compare
their performance to a simple greedy algorithm that ex-
pends as much energy as it can - min(ak; dk) units of en-
ergy - during each time step.

The objective of the algorithms is to maximize total re-
ward obtained over a 24 hour time period, which is divided
into 15 minute time slots. The hypothetical satellite has a



IEEE INFOCOM 2002 8

0 50 100 150
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

R
ew

ar
d 

(p
er

ce
nt

ag
e 

of
 o

pt
im

al
)

Battery Capacity

CEQ Algorithm             
Unlimited Demand Algorithm
Greedy Algorithm          
Optimal Algorithm         

Fig. 3. Performance of Algorithms as a Function of Battery
Capacity, � = 15
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Fig. 4. Performance of Algorithms as a Function of Battery
Capacity, � = 50

90 minute orbital period, half of which is spent in sunlight,
half in darkness. Accordingly, the satellite sees a pattern
of three time slots with incoming energy, followed by three
time slots without. The satellite starts with 10 units of en-
ergy and receives 10 units of energy from its solar cells
during each time slot it is in sunlight.

At each time slot k, the satellite can expend up to dk
units of energy for rk units of reward per unit energy. The
demand dk is Poisson distributed with parameter �, and
the reward rk has a discrete uniform distribution between
1 and 50.

Figures 3 and 4 show the performance of the algorithms
in garnering reward as battery capacity changes from 5 to
150, with � = 15 and � = 50 respectively. Figure 5 shows
the performance of the policies resulting from each algo-
rithm as � changes from 2 to 60 and for a fixed battery ca-
pacity of 50 energy units. In each figure, every data point
is the average performance observed in 50 simulations of
a policy over the 24-hour horizon. The reward obtained by
each policy is plotted as a fraction of the reward obtained
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Fig. 5. Performance of Algorithms as a Function of � (Average
Demand)

by the policy resulting from the optimal algorithm.
As can be seen from the figures, the three algorithms

introduced earlier significantly outperformed the greedy
algorithm. The certainty equivalent heuristic always ob-
tained at least 80% of the optimal reward, while the un-
limited demand heuristic was always above 70%. Figure
5 also shows that the unlimited demand policy performed
particularly well when the average demand was relatively
high. Also notice from figures 3 and 4 that the perfor-
mance of every suboptimal algorithm deteriorated as bat-
tery capacity increased. The explanation is that a larger
battery leads to more choices as to when to consume en-
ergy, which the heuristics do not handle as well as the opti-
mal algorithm. In contrast, when the battery capacity was
small, all algorithms performed similarly, as the opportu-
nity to save energy was limited by the battery capacity.

Note that while the plots show the relative performance
of the greedy algorithm deteriorating with increasing bat-
tery capacity and increasing demand, the total rewards ob-
tained by the greedy algorithm actually remained fairly
constant. It is easy to see that increasing battery capacity
would have little impact on the total reward obtained by
the greedy algorithm, which stores as little energy as pos-
sible. Similarly, the greedy algorithm would not be able to
take advantage of increased demand levels by saving en-
ergy for future, higher reward opportunities. Hence, the
deteriorating relative performance of the greedy algorithm
in the simulation was due mainly to the increased reward
obtained by the other algorithms, which were able to ex-
ploit higher battery capacity and demand levels in making
consumption decisions.

The algorithms were run on a Pentium III computer us-
ing Matlab 5.0. Computing value functions and policies
for a typical data point from figure 5 required roughly .92
seconds when using the second method for calculating an
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optimal value function (equation (11)). The unlimited de-
mand algorithm required .51 seconds and the CEQ algo-
rithm .39 seconds. In contrast, the greedy algorithm re-
quired only .006 seconds, while a direct calculation of the
optimal value function required about 26 minutes, 39 sec-
onds.

V. OTHER APPLICATIONS

The algorithms and analysis presented above are appli-
cable in many situations where there is a stored resource
that can be expended for a reward. For instance, the oper-
ator of a hydroelectric dam with a limited supply of water
could use a similar algorithm to maximize revenue when
faced with a fluctuating price for power.

One particularly interesting application is that of maxi-
mizing throughput in a fading channel given finite battery
capacity. Assume that a mobile transmitter seeks to trans-
mit over a fading channel where throughput per unit en-
ergy expended is not known until the time of transmission.
The probability density of the throughput is independently
distributed over time and known. We also impose a power
limit on the transmitter and a deadline by which the trans-
mission must take place.

This application gives rise to two problems that can be
solved using the approach described in this paper. First,
one may seek to maximize expected total throughput dur-
ing a fixed time period and given a limited amount of en-
ergy. Second, one may seek to minimize the energy ex-
pected to be consumed given a fixed amount of data to
send during a fixed time period.

For the first problem, if throughput is seen as a reward
rate and power limit seen as demand, the resulting for-
mulation is almost identical to the satellite energy alloca-
tion problem. There are only two places where the prob-
lems differ. First, energy inputs for the mobile transmit-
ter are zero for all time. Second, in most cases power
constraints will be static and known a priori. These two
conditions will tend to significantly simplify calculations;
nevertheless, the algorithms detailed above will be com-
pletely applicable. In particular, note that the unlimited
power/demand algorithm degenerates to an optimal stop-
ping problem.

The second problem can be solved with techniques sim-
ilar to the ones used for the first problem; however, the
problem is a minimization rather than a maximization, and
some modification of our approach will be necessary.

VI. CONCLUSION

This paper developed a dynamic programming formu-
lation for optimizing satellite energy allocation and pre-
sented three methods for efficiently obtaining a solution.

The three methods trade off computational complexity
with optimality and their performance and properties have
been analyzed. The approach developed is general and can
be used for other stored resource allocation problems, in-
cluding throughput maximization for wireless communi-
cations.

There are a number of areas for further investigation.
The algorithms and policies presented thus far are valid
only for a single satellite. Additional work needs to be
done on extending the results to a constellation of satel-
lites. It would also be interesting to explore the use of
these algorithms as a satellite design tool rather than as an
aid to operation. Because the algorithms run quickly on a
computer, it is easy to see the effects of a reduction in bat-
tery capacity or an increase in average demand. Another
natural extension of our model would be to capture bat-
tery charge/discharge effects, as discussed earlier. Finally,
it would be interesting to investigate the use of extremely
short time steps: the algorithms could be used to decide
whether to accept or reject individual packets.

APPENDIX

A. Proof of Theorem 1: Concavity of the Value Function

The dynamic programming equations for stochastic re-
ward and stochastic demand energy allocation are given
by

Jk(ak; rk; dk) = max
0�sk�min(ak;Emax)

frk min(ak � sk; dk)

+E(rk+1;dk+1)[Jk+1(sk + bk+1; rk+1; dk+1)]g (26)

and

Jn(an; rn; dn) =rnmin(an; dn) (27)

We now show that Jk(ak; rk; dk) is concave with respect
to ak, for every rk and dk.

Definition:
A function f : < ! < is concave if for 0 � � � 1 and

�+ � = 1 we have

f(�y + �z) � �f(y) + �f(z) (28)

for all y; z 2 <.

Lemma 1:
If f and g are concave and � � 0, then f + g and �f

are concave.

Proof:
Follows from definition of concavity.
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Lemma 2:
If 0 � � � 1 and �+ � = 1, then

�min(a; b) + �min(c; b) � min(�a+ �c; b) (29)

Proof:
For fixed b, the function min(a; b) is a concave function

of a and the result follows.

Theorem:
Jk(ak; rk; dk) is concave in ak for any fixed rk and dk.

Proof:
We use induction. First, note that the value function

Jn(an; rn) is concave in an and the expected value func-
tion E[Jn(an�1 + bn; rn)] is concave in an�1. Indeed,
from the problem formulation, we see that

Jn(an; rn; dn) = rnmin(an; dn)

is a piecewise linear and concave function of an.
Jn(an�1 + bn; rn; dn) is concave in an�1 as well, and by
lemma 1, the expectation Er;d[Jn(an�1 + bn; rn; dn)] is
also concave to an�1 since it is a weighted sum of concave
functions.

Now assume Er;d[Jk+1(ak + bk+1; rk+1; dk+1)] is con-
cave in ak. We show that Jk(ak; rk; dk) is concave
to ak. To complete the induction, we also show that
Er;d[Jk(ak�1 + bk; rk; dk)] is concave in ak�1.

Let us look at Jk(x; rk; dk) and Jk(y; rk; dk). We have

Jk(x;rk; dk) = max
0�sk�min(x;Emax)

frk min(x� sk; dk)

+Er;d[Jk+1(sk + bk+1; rk+1; dk+1)]g

There must be an optimizing value for sk. Denote this by
sxk . Then

Jk(x;rk; dk) = rkmin(x� sxk; dk)

+Er;d[Jk+1(s
x
k + bk+1; rk+1; dk+1)]

Similarly,

Jk(y;rk; dk) = rk min(y � syk; dk)

+Er;d[Jk+1(s
y
k + bk+1; rk+1; dk+1)]

where syk is an optimizing value for sk in the equation for
Jk(y; rk; dk). Combining the two equations and weighting

by � or �,

�Jk(x; rk; dk) + �Jk(y; rk; dk)

=�frk min(x� sxk; dk)

+Er;d[Jk+1(s
x
k + bk+1; rk+1; dk+1)]g

+ �frk min(y � syk; dk)

+Er;d[Jk+1(s
y
k + bk+1; rk+1; dk+1)]g

=rk(�min(x� sxk; dk) + �min(y � syk; dk))

+ �Er;d[Jk+1(s
x
k + bk+1; rk+1; dk+1)]

+ �Er;d[Jk+1(s
y
k + bk+1; rk+1; dk+1)]g

The terms min(x� sxk; dk) and min(y� syk; dk) are piece-
wise linear and concave. By the induction hypothesis,
we also know that Er;d[Jk+1(s

x
k + bk+1; rk+1; dk+1)] and

Er;d[Jk+1(s
y
k+bk+1; rk+1; dk+1)] are concave in sk. Then

�Jk(x;rk; dk) + �Jk(y; rk; dk)

� rk min(�x+ �y � �sxk � �syk; dk)

+Er[Jk+1(�s
x
k + �syk + bk+1; rk+1; dk+1)]

Now examine the range of the maximization. Since sxk �
min(x;Emax) and syk � min(y;Emax),

�sxk + �syk � �x+ �y

and

�sxk + �syk � �Emax + �Emax

Combining,

�sxk + �syk � min(�x+ �y;Emax)

and

�Jk(x; rk; dk) + �Jk(y; rk; dk)

� max
0�sk�min(�x+�y;Emax)

frk min(�x+ �y � sk; dk)

+Er;d[Jk+1(sk + bk+1; rk+1; dk+1)]g

=Jk(�x+ �y; rk; dk) (30)

This shows that Jk(ak; rk; dk) is concave in ak. A di-
rect application of lemma 1 shows that Er;d[Jk(ak�1 +
bk; rk; dk)] is also concave in ak�1 and the induction is
complete.
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