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Abstract --We consider power and server allocation in a
multi-beam satellite downlink which transmits data to N
different ground locations over N time-varying channels.
Packets destined for each ground location are stored in sep-
arate queues, and the server rate for each queuei depends
on the power pi(t) allocated to that server and the channel
stateci(t) according to a concave rate-power curveµi(pi, ci).
We establish the capacity region of all arrival rate vectors
(λ1,...,λN) which admit a stabilizable system. For the case
when channel states and arrivals areiid from timeslot to
timeslot, we develop a particular power allocation policy
which stabilizes the system whenever the rate vector lies
within the capacity region. Such stability is guaranteed even
if the channel model and the specific arrival rates are
unknown. As a special case, this analysis verifies stability of
the “Choose-the-K-Largest-Connected-Queues” policy
when channels can be in one of two states (ON or OFF) and
K servers are allocated at every timestep (K<N). These
results are extended to treat a joint problem of routing and
power allocation, and a throughput maximizing algorithm
for this joint problem is constructed. Finally, we address the
issue of inter-channel interference, and develop a modified
policy when power vectors are constrained to feasible acti-
vation sets. Our analysis and problem formulation is also
applicable to power control for wireless applications.

I. INTRODUCTION

In this paper we consider power allocation in a satel-
lite which transmits data toN ground locations overN
different downlink channels. Each channel is assumed to
be time varying (e.g., due to changing weather condi-
tions) and the overall channel state is described by the

ergodic vector process . Packets

destined for ground locationi arrive from an input stream
Xi and are placed in an output queue to await processing
(Fig. 1). The servers of each of theN output queues may
be activated simultaneously at any timet by assigning to
each a power levelpi(t), subject to the total power con-

straint . The transmission rate of each

serveri depends on the allocated powerpi(t) and on the
current channel stateci(t) according to a general concave
rate-power curveµi(pi, ci). A controller allocates power to
each of theN queues at every instant of time in reaction to
channel state and queue backlog information. The goal of
the controller is to stabilize the system and thereby
achieve maximum throughput and maintain acceptably

low levels of unfinished work in all of the queues.
We establish the capacity region of the system: t

multi-dimensional region of all arrival rate vector
(λ1,...,λN) which admit a stabilizable system under som
power allocation policy. Stability in this region holds fo
general ergodic channel and packet arrival processes.
shown that if the channel model and arrival rates a
known, any power allocation policy which stabilizes th
system--possibly by making use of special knowledge
future events--can be transformed into a stabilizing poli
which considers only the current channel state. We n
consider the case of a slotted time system when arriv
and channel state vectors varyiid from one timeslot to the
next, but the channel model and the exact values of arri
rates (λ1,...,λN) are unknown. A particular power alloca
tion policy is developed which stabilizes the syste
whenever the rates (λ1,...,λN) are within the capacity
region. This result is extended to treat a joint routing a
power allocation problem, and a simple policy is deve
oped which maximizes throughput and ensures stabi
whenever the system is stabilizable. Finally, we addre
the issue of interchannel interference due to bandwid
limitations, and develop a modified policy when powe
vectors are constrained to activation sets. This analy
makes use of a Lyapunov function defined over the st
of the queues.

Previous work on queue control problems for satelli
and wireless applications is found in [1-6]. In [1] a para
lel queue system with a single server is examined, wh
every timeslot the transmit channels of the queues va
between ON and OFF states and the server select
queue to service from those that are ON. The capac
region of the system is developed when packet arriv
and channel states areiid Bernoulli processes, and sto

C t( ) c1 t( ) … cN t( ), ,( )=

pi t( ) Ptot≤∑
U1(t)

U2(t)

UN(t)

µ1(p1(t), c1(t))

µ2(p2(t), c2(t))

µN(pN(t), cN(t))

X1(t)

X2(t)

XN(t)

p1 t( ) … pN t( )+ + Ptot≤

satellite with onboard
output queues

Figure 1: A multi-beam satellite withN time-varying
downlink channels andN onboard output queues.
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chastic coupling is used to show optimality of the “Serve-
the-Longest-Connected-Queue” policy in the symmetric
situation that arrival and channel processes are identical

for all queues (i.e., , ).

Such a server allocation problem can be viewed as a spe-
cial case of our power allocation formulation, and in Sec-
tion IV we verify stability of the “Serve-the-K-Longest-
Queues” policy for symmetric and asymmetric systems
with multiple servers.

In [2] a wireless network of queues is analyzed when
input packets arrive according to memoryless processes
and have exponentially distributed length. A Lyapunov
function is used to establish a stabilizing routing and
scheduling policy under network connectivity con-
straints. Such a technique for proving stability has also
been used in the switching literature [7-10]. In [7] an

packet switch with blocking is treated and input/
output matching strategies are developed to ensure 100%
throughput whenever arrival rates are within the capacity
region. In [9],[11] the method of Lyapunov stability anal-
ysis is improved upon and used to prove queues are not
only stable but have finite backlog moments.

The main contribution in this paper is the formula-
tion of a general power control problem for multi-beam
satellites and the development of throughput maximizing
power and server allocation algorithms for the system.
The method extends to other wireless networking prob-
lems where power allocation and energy efficiency is a
major issue. Recent work in [12] treats a problem of min-
imizing the total energy expended to transmit blocks of
data arriving to a single queue, and it is shown that power
control can be effectively used to extend longevity of net-
work elements. In [13] power allocation for wireless net-
works is addressed. The authors consider ON/OFF type
power allocation policies and observe that for random
networks, capacity regions are not extended much by
including more power quantization levels. Our capacity
results in Section III illustrate that the capacity region is
often considerably extended if multiple power levels are
utilized for the satellite downlink problem.

In the next section, we introduce the power and
server allocation problems. In Section III we develop
several stability results for single queue systems with
ergodic and non-ergodic processing ratesµ(t), and estab-
lish the capacity region of the satellite downlink with
power control. In Section IV a stabilizing power alloca-
tion policy is developed for systems withiid inputs and
channel states. In Section V a joint routing and power
allocation policy is treated using similar analysis, and in
Section VI we extend the problem to treat channel inter-
ference issues.

II. POWER AND SERVERALLOCATION

Consider theN queue system of Fig. 1. Each time
varying channeli can be in one of a finite set of statesSi.
We represent the channel process by the channel ve

, where .

Channels hold their state for timeslots of lengthT, with
transitions occurring on slot boundariest=kT. The chan-
nel process is assumed to be ergodic and yields ti

average probabilities for each state . At eve

timeslot, the server transmission rates can be control
by adjusting the power allocation vecto

subject to the total power con-

straint .

For any given stateci of downlink channeli, there is
a corresponding rate-power curveµi(pi, ci) which is
increasing, concave, and continuous in the power para
eter (Fig. 2). This power curve could represent the log
rithmic Shannon capacity curve of a Gaussian channel
could represent a rate curve for a specific set of codi
schemes designed to achieve a sufficiently low probab
ity of error in the given channel state. In general, an
practical set of power curves will have the concavi
property, reflecting diminishing returns in transmissio
rate with each incremental increase in signal power.

The continuity property is less practical. A real sys
tem will rely on a finite databank of coding schemes, a
hence actual rate/power curves restrict operation to
finite set of points. For such a system, we create a ne
virtual power curve by a piecewise linear inter-

polation of the operating points (see Fig. 3a). Such v
tual curves have the desired continuity and concav
properties, and are used as the true curves in our po
allocation algorithms. Clearly a virtual system whic
allocates power according to the virtual curves has
capacity region which contains that of a system restrict
to allocate power on the vertex points. However, th
capacity regions are in fact the same, as any point o
virtual curve can effectively be achieved by time-avera
ing two or more feasible rate-power points over man
timeslots. Indeed, in Section IV we design a stabilizin

λ1 … λN= = p1
on … pN

on= =

N N×

C t( ) c1 t( ) … cN t( ), ,( )= C t( ) S1 … SN××∈

π
C

C

P t( ) p1 t( ) … pN t( ), ,( )=

pi t( ) Ptot≤∑

rateµi

power p

µi(p, c1)

µi(p, c3)

µi(p, c2)

improving
channel
conditions

Figure 2: A set of concave power curvesµi(pi, ci) for

channel statesc1, c2, c3.

µ̃i pi ci,( )
2
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policy for any set of concave power curves which natu-
rally selects vertex points at every timeslot if power
curves are piecewise linear.

This power allocation formulation generalizes a sim-
pler problem of server allocation. Assume that there are
K servers, and every timeslot the servers are scheduled to
serveK of theN queues (K<N). A given queuei transmits
data at a fixed rateµi whenever a server is allocated to it,
and transmits nothing when no server is allocated. This
problem can be transformed into a power allocation prob-

lem by defining the virtual power constraint

and the virtual power curves:

Such a virtual curve contains the feasible points
,  (see Fig. 3b).

Example Server Allocation Algorithm:One might
suspect the policy of serving theK fastest, non-empty
queues would maximize data output and achieve stability.
However, we provide the following counterexample
which illustrates this is not the case. Consider a 3-queue,
2-server system with constant processing rates (µ1, µ2,
µ3) = (1, 1, 1/2). All arriving packets have lengthL=1 and
arrive accordingiid Bernoulli processes with the packet

arrival probabilities(p1, p2, p3) = (p, p, (1- p2)/2 + ε),
wherep<1/2 andε>0.

Note that the policy of serving the two fastest queues
removes a server from queue 3 whenever there are simul-
taneous arrivals at queues 1 and 2. This happens with

probability p2, and hence the time average processing

rate at queue 3 is no more than (1-p2)/2 (where the factor
1/2 is due to the rate of server 3). This effective service
rate cannot support the input rate, and hence queue 3 is
unstable under this server allocation policy. However, the
system is clearly stabilizable: The policy of always allo-
cating a server to queue 3 and using the remaining server
to process packets in queues 1 and 2 stabilizes all queues.

III. STABILITY AND THE DOWNLINK CAPACITY REGION

To understand the capacity region of the downlin
system, we first develop a simple criterion for stability o
a single queue with an input streamX(t) and a time vary-
ing processing rateµ(t) (Fig. 4). We assume the inpu
stream is ergodic with rateλ. However, because an arbi
trary power control scheme could potentially yield a no
ergodic processing rate, we must consider general p
cessesµ(t) which may or may not have well defined time
averages. We make the following definitions:

X(t) = Total amount of bits that arrived during [0,t].
U(t) = Unprocessed bits in the queue at timet.
µ(t) = Instantaneous bit processing rate in the serve

The above limits1 exist with probability 1. We
assume the processing rate is always bounded above
some maximum value ( for allt) and hence

. As a measure of the fraction of time th

unfinished work in a queue is above a certain valueM, we
define the following “overflow” functiong(M):

where the indicator function 1E used above takes the
value 1 whenever eventE is satisfied, and 0 otherwise.

Definition: A single server queueing system isstable
if  as .

Notice that if steady state behavior exists and if sam
ple paths of unfinished work in the queue are ergodic, t
overflow functiong(M) is simply the steady state proba
bility that the unfinished work in the queue exceeds t
value M. Stability in this case is identical to the usua
notion of stability defined in terms of a vanishing com
plementary occupancy distribution (see [2,7,11]).

Lemma1: For the single queue system (Fig. 4) wit
general input and server rate processesX(t) and µ(t), a
necessary condition for stability is . If the arriva

processX(t) and the rate processµ(t) evolve according to
an ergodic, finite state Markov chain, then a sufficie

powerp

rateµi(p)

0 1

µi

(a) (b)

Figure 3: Virtual power curves for systems with a finite
set of operating points.

pi t( ) K≤∑

µ̃i p( ) = µi p

µi

p 0 1,[ ]∈
p 1>

,
, (1).

p 0= µ̃i µi=,( ) p 1= µ̃i µi=,( )

1. Where thelim inf of a functionf(t) is defined:

U(t)
µ(t)X(t) (rateλ)

Figure 4: A single queue system with input streamX(t)
and time varying processing rateµ(t).

µ
t ∞→
lim= inf

1
t
--- µ τ( ) τd

0

t

∫λ X t( )
t

-----------
t ∞→
lim= , (2).

t ∞→
lim inf f(t)

t ∞→
lim=

τ t≥
inf f(τ)][ .

µ t( ) µmax≤

0 µ µmax≤ ≤

g M( )
t ∞→
lim= sup1

t
--- 1 U τ( ) M>[ ] τd

0

t

∫ (3)

g M( ) 0→ M ∞→

λ µ≤
3
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condition for stability is .

Proof: The sufficient condition for Markovian arriv-
als and linespeeds is well known (see large deviations
results in [12]). The necessary condition is proven in
Appendix A1 by showing that if , there exist arbi-

trarily large timesti such that the average fraction of time
the unfinished work is aboveM during [0, ti] is greater
than a fixed constant for any value ofM. ❑

We use this single queue result to establish the capac-
ity region of the power constrained, multi-channel system
of Fig. 1. We define the capacity region as the compact

set of points such that all queues of the sys-
tem can be stabilized (with some power allocation policy)

whenever the vector of input bit rates is

strictly in the interior ofΩ, and, conversely, no stabilizing

policy exists whenever . (The system may or may

not be stable if lies on the boundary of the capacity
region).

Assume arrivals and channel states are modulated by
an ergodic, finite state Markov chain, and transitions
occur on timeslots of durationT. Let represent the

steady state probability that the channel vector is in state

.

Theorem 1: The capacity region of the downlink
channel of Fig. 1 with power constraintPtot and rate-

power curvesµi(p, ci) is the set of all input rate vectors

such that there exist power levels satisfying

 for all channel states , and such that:

Proof: Using the stationary policy of allocating a

power vector whenever the system is

in channel state creates a Markov modulated process-
ing rateµi(t) for all queuesi, with an average rate given
by the right hand side of inequality (4). Lemma 1 thus

ensures stability whenever the vector satisfies (4) with
strict inequality in all entries.

In Appendix A2 we show that restricting power con-
trol to such stationary policies (which use only the cur-

rent channel state when making power allocation
decisions) does not restrict the capacity region, and hence

the region in (4) captures all input rates which yield st
ble systems.❑

In the case when the channel does not vary but sta
fixed, we have one power curveµi(p) for each queuei,
and the expression for the capacity region above can
greatly simplified:

Corollary 1: For static channels, the capacity regio

is the set of all  vectors such that:

where

In Fig. 5 we illustrate a general capacity region fo
N=2 channels with fixed channel states and conca
power curvesµ1(p) andµ2(p). In this case of fixed chan-
nel states, one might suspect the optimal solution to
the one which maximizes the instantaneous output rate
every instant of time: allocate full power to one queu
whenever the other is empty, and allocate power to ma
mize the sum output rateµ1(p1)+µ2(p2) subject to

whenever both queues are full. Doing thi

restricts the capacity region to linear combinations of t
three operating points, as illustrated in Fig. 5. The shad
regions in the figure represent the capacity gains obtain
by power allocation. Note that the region is restricted fu
ther if only ON/OFF allocations are considered.

Corollary 2: For the K-server allocation problem
where the channel rate of queuei is µi when it is allocated
a server (and 0 otherwise), the capacity region is the po

tope set of all  vectors such that:

Proof: Using the virtual power curves and constrain
given in Section II, we find that the region described b
(5) and (6) contains the true capacity region. Howeve
theK-server problem is constrained to allocate rates on
on the vertex points of the capacity region (see Fig. 6

λ µ<

λ µ>

Ω 0 ∞ ),[ N⊂

λ λ1 … λN, ,( )=

λ Ω∉

λ

π
C

C c1 … cN, ,( )=

λ

pi
C

pi
C Ptot≤

i 1=

N

∑ C

λi π
C

µi pi
C ci,( )

C

∑≤ (4).

P
C

p1
C … pN

C, ,( )=

C

λ

C t( )

λ

µi
1– λi( )

i 1=

N

∑ Ptot≤

µi
1– λi( ) = The smallestp such thatµi(p)=λ

∞ if no suchp exists. ❑

µ1

µ2

Figure 5: A capacity region for 2 static channels.

slope = -1

p1 p2+ Ptot≤

λ

λi

µi
----

i 1=

N

∑ K≤

λi 0 µi,[ ]∈ for all i.

(5)

(6)
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Timesharing amongst vertex points, however, yields any
desired point within the polytope.❑

IV. A STABILIZING POWERALLOCATION ALGORITHM

Here we assume that channel state vectors varyiid
from timeslot to timeslot with probability distribution

. Likewise, assume that packets bring a new batch of

unfinished workiid from timeslot to timeslot in the form

of an arrival vector , with distribution

f(a1,...,aN) and expectation . Note that entries
of the channel state vector and the arrival vector may be
correlated within the same timeslot. We assume that new

arrivals have bounded second moments: .

Let represent the vector of

unfinished work in each queue at timet (wheret=kT). We

assume channel and queue state vectors and
are known at the beginning of each timeslot, and seek a
control policy which allocates power based on this infor-

mation. Assuming this power allocation is held con-
stant during the full timeslot [t, t+T], the unfinished work
dynamics proceed according to the one-step equation:

Notice that for a given stationary power allocation
policy, the unfinished work vector at timestept+T is
independent of the past given the current value of unfin-
ished work. Hence, the system can be viewed as evolving
according to a Markov chain on anN-dimensional,

uncountably infinite state space . For stability analysis,

we define the Lyapunov function (for

arbitrary positive weights {θi}) and make use of a well
developed theory of stability in Markov chains using neg-
ative Lyapunov drift (see [13], [2], [6], [9]). Below we
state a sufficient condition for the system to be stable and
have a well defined steady state distribution of unfinished

work . The statement below is new in that it involves a
Markov chain on an uncountably infinite state space,
although the proof differs only cosmetically to that given
in [15] and is omitted for brevity.

Theorem2: For the given Lyapunov function ,

if there exists a compact regionΩ of and a number
α>0 such that:

1.   for all

2.

whenever

then a steady state distribution on the vector exis
(clearly with the property that as

for all i) and hence the system is stable.2 ❑

Now consider the following power allocation policy

At the beginning of each timeslot, observe and

and allocate a power vector

such that:

where {θi} is any set of positive weights. This policy

chooses to maximize subject to

Notice that the policy acts only through the current valu

of and without specific knowledge of the

arrival rate vector or the channel state probabilitie
Intuitively, we desire a policy that gives more power t
queues with currently high data rates (to achieve ma
mum throughput) as well as gives more power to queu
with large backlog (to ensure these queues are sta
lized). The above policy does both by considering as
metric the product of backlog and data rate for ea
queue.

Theorem3: The power allocation policy of choosing

the power vector

stabilizes the system whenever the arrival rate vector
interior to the capacity region given in (4).
Proof: Consider the one-step drift in the Lyapunov func
tion from Theorem 2. For ease of notation, letUi = Ui(t),

ai = ai(t), and let . From (7), we have

µ2

µ1

µ3

λ2

λ1

λ3

Figure 6: An example illustration of the capacity region for
theK-server allocation problem withN=3, K=2.

C

π
C

A a1 … aN, ,( )=

E A[ ] λT=

E ai
2[ ] ∞<

U t( ) U1 t( ) … UN t( ), ,( )=

C t( ) U t( )

P t( )

Ui t T+( ) max U t( ) ai t( ) µi pi t( ) ci t( ),( )T–+ 0,( )= (7).

U

L U( ) θiUi
2∑=

U

2. In [10,11] it is shown that if stronger conditions on the
Lyapunov function are satisfied (such that the negative drift gets lar

in magnitude as increases) the moments of unfinished work
finite and can be bounded.

L U( )

ℜN

E L U t T+( )( ) U t( )[ ] ∞< U ℜN∈

E L U t T+( )( ) L U t( )( )– U t( )[ ] α–≤

U Ω∉

U

Pr Ui u>[ ] 0→ u ∞→

U

U t( ) C t( )

P t( ) p( 1 t( ) … pN t( ) ), ,=

P t( ) = arg max
pi Ptot≤∑

θiUi t( )µi pi ci,( )∑ (8)

P θiUiµi∑ pi Ptot≤∑

U t( ) C t( )

λ

P t( ) = arg max
pi Ptot≤∑

θiUi t( )µi pi ci,( )∑
λ

µi µi pi t( ) ci t( ),( )=

Ui
2 t T+( ) Ui ai µiT–+( )2≤

Ui
2 2TUi µi

ai

T
----– 

 – µi
2T2 ai

2+ +≤ (9).
5



e
te
nt

at

a

FF,

e
m
n
ng
he

m

al
he

o

-

the
ues

c-

c-
n
l
int

-

ol-
From (9) it is clear that property 1 of Theorem 2
holds. Now define the following constants:

Taking conditional expectations of (9), scaling by
weightsθi and summing over alli, we have:

where theiid nature of the packet arrivals has been used

in the identity . Now notice that the term

maximizes the value of

over all vectors in the capacity region

(4). To see this, note that for any in the capacity region,

there is a set of { } values such that:

Now, because the arrival rate vector is assumed to
be strictly in the interior of the capacity region, we can
add a positive vector to produce another

vector which is in the capacity region. Hence,

, and we have:

Using (17) in (12), we find that

Choose any number and define the compact

region: .

we find from (18) that the Lyapunov drift is less than -α
whenever . ❑

Using the results of [10], it can be shown from th
strong negative drift condition in (18) that the steady sta
unfinished work in all queues has a finite first mome

and satisfies .

Note that the positive weights {θi} can be chosen
arbitrarily. Choosing weightsθi=1 for all i yields a policy

which chooses a power vector that maximizes

every timestep. The following corollary makes use of
different set of weights.

Consider again theK-server allocation problem
where each queue has only 2 channel states, ON or O
and these states varyiid over each timeslot as anN-
dimensional vector. When a server is allocated to queui
while it is in the ON state, the server transmits data fro
the queue at a rateµi (the transmission rate is zero whe
in the OFF state or when no server is allocated). Defini
the virtual rate-power curves as in Section II, we have t
following corollary:

Corollary: For theK-server allocation problem with
ON/OFF channel states, the policy of allocating theK
servers to theK longest ON queues stabilizes the syste
whenever the system is stabilizable.
Proof: Assume the system operates according to virtu
power curves as in Section II (eq. (1)), and define t

Lyapunov function . With this

Lyapunov function, we know that allocating power t

maximize (where

) stabilizes the system. Clearly the opti

mization needs not place any power on queues in
OFF state, so the summation can be restricted to que
that are ON:

However, notice that the above maximization effe

tively chooses a rate vector within the polytope capa
ity region specified in (5) and (6). The optimal solutio
for maximizing a linear function over a polytope wil
always be a vertex point. Fortunately, such a vertex po
corresponds to the feasible allocation ofK servers (with
full power pi=1) to K queues. Considering (19), the opti
mal way to do this is to choose theK queues with the
largest value ofUi(t). ❑

Using the same reasoning as in the proof above, it f

β max= T2 θiµi
2 pi ci,( )∑[ ]

C pi
i

∑ Ptot=,

B β θiE ai
2[ ]∑+=

(10)

(11).

E L U t T+( )( ) L U t( )( )– U t( )[ ] ≤

B 2T θiUi E µi U t( )[ ] λi–( )
i 1=

N

∑– (12)

E ai

T
---- U t( ) λi=

θiUiE µi U t( )[ ]∑ θiUiγ i∑
γ γ1 … γ N, ,( )=

γ

pi
C

θiUiγ i

i 1=

N

∑ θiUi π
C

µi pi
C ci,( )

C

∑
i 1=

N

∑≤

π
C

θiUiµi pi
C ci,( )

i 1=

N

∑
C

∑=

(13)

(14)

π
C

C

∑≤
pi∑ Ptot≤
max θiUiµi pi ci,( )

i 1=

N

∑

θiUiE µi U t( )[ ]
i 1=

N

∑=

(15)

(16).

λ

ε ε … ε, ,( )=

λ ε+( )

θiUiE µi U t( )[ ] Ui λi ε+( )∑≥∑
θiUi E µi U[ ] λi–( )∑ θiUi E µi U[ ] λi ε+( )– ε+( )∑=

ε≥ θiUi∑ (17).

E L U t T+( )( ) L U t( )( )– U t( )[ ] B 2Tε θiUi

i 1=

N

∑–≤ (18).

α 0>

Ω U ℜN θiUi
B α+
2Tε

------------- 
 ≤∑∈

 
 
 

=

U Ω∉

θiUi B 2Tε( )⁄≤∑

Uiµi∑

L U( ) Ui
2( ) µi⁄∑=

Ui t( )( ) µi⁄( )µi pi ci,( )∑
ci ON OFF,{ }∈

Ui t( )
µi pi ci,( )

µi
---------------------

i ci ON=
∑Maximize subject to pi K≤∑ (19).

µ

6



ta-

ut
a

r

n

rk

l

le.

le
er
lows that the power allocation policy (8) naturally
chooses a vertex point for any set of piecewise linear
power curves, such as the virtual curves described in Sec-
tion II. It follows that optimization can be restricted to
searches over the vertex points without loss of optimality.

The above theorem uses theiid assumptions on packet
arrivals and channel states to establish the negative drift
condition for the Lyapunov function. We conjecture that
the same policy stabilizes the system for general Mark-
ovian arrival and channel processes whenever the arrival

rate vector  is in the capacity region.

V. JOINT ROUTING AND POWERALLOCATION

Consider now the following joint routing and power
allocation problem: A stream of packets enters the satel-
lite and the goal is to simply transmit all data to the
ground as soon as possible, without regard to the specific
ground location. Such a problem arises when the ground
units are connected together via a reliable ground net-
work, and the wireless paths from satellite to ground
form the rate bottleneck (see Fig. 7).

As expected, treating all input streamsX1(t), X2(t),...,
XN(t) as an aggregate streamX(t) and exploiting the rout-
ing options considerably expands the capacity region of
the system. This capacity gain is achieved by utilizing the
extra bandwidth offered by the ground network.

Specifically, let the input streamX(t) (with rateλ) be
composed ofiid packet arrivals every timeslotT. Channel

states vary according to aniid state vector as before.

Every timeslot, we choose a power allocation .
Additionally, for every packet that enters the system, we
make a routing decision and route the packet to one of the
N queues. We assume that all queues have segregated
buffers and routing decisions must be made immediately
upon packet arrival.

In general, both the queue and channel state vectors

and are important in both the routing and
power allocation decisions. For example, clearly any
power allocated to an empty queue is wasted and should
be re-allocated to improve processing rates amongst the
non-empty queues. Likewise, a router is inclined to place
packets in faster queues, especially if the rates of those
queues are guaranteed to operate at high levels for one or
more timeslots. However, below we show that the routing
and power allocation problem can bedecoupledinto two

policies: a routing policy which considers only , and

a power allocation policy which considers only . The
resulting strategy maximizes total system throughput.

Theorem4: The satellite downlink with joint routing
and power allocation can stably support any arrival rateλ

such that , where we define the constant :

.

Furthermore, any arrival rate creates an uns
ble system under any routing/power allocation policy.

We prove the theorem by developing a throughp
maximizing strategy. The strategy is decoupled into
routing policy and a power allocation policy:
Power Allocation: For each timeslot, allocate a powe

vector that maximizes the sum

output rate  subject to .

Routing: Route every packet that arrives in a give
timeslot to the queuei with the least unfinished work
Ui(t) at the beginning of the timeslot.

Proof of Instability when :Notice that the power
allocation maximizes the sum rate =

at every instant of time. We make the

simple sample path observation that the unfinished wo
in a single-server queue with input streamX(t) and time
varying processing rateµ(t) is always less than or equa
to the total unfinished work in a system ofN parallel
queues with transmission ratesµ1(t),..., µN(t) such that

for all t (see [16]). From Lemma 1, we

know that a single queue system with is unstab

Hence, the multi-queue system will also be unstab
under any power allocation and routing policy whenev

.

λ

C t( )

P t( )

U t( ) C t( )

U t( )

C t( )

λ µ< µ

µ π
C

C

∑= max
pi Ptot≤∑

µi pi ci,( )
i 1=

N

∑
λ µ>

P t( ) p1 t( ) … pN t( ), ,( )=

µi pi t( ) ci t( ),( )∑ pi t( )∑ Ptot≤

1

2

N

X(t)

µ1(p1(t), c1(t))

µ2(p2(t), c2(t))

µN(pN(t), cN(t))

Satellite

Connected

Ground Network

Figure 7: A joint routing/power allocation problem where the
goal is to transmit the data to any node of the reliable ground net-
work.

λ µ>
µ t( )

µ1 t( ) … µN t( )+ +

µi t( ) µ t( )≤∑
λ µ>

λ µ>
7
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Proof of stability when :Again define the Lyapunov

function . Let A(t) represent the total

amount of bits from packets arriving in timeslot [t, t+T],
and let (a1(t),..., aN(t)) represent the bit length of packets

routed to queues (where ,

and ). Letµi represent the transmission rate
µi(pi(t), ci(t)) of queuei during timeslot [t, t+T] under the
specified power allocation policy. As in the proof of The-
orem 4, we have:

For a fixed power allocation policy, theai values are
the only variables dependent upon our routing decisions.
Define the constant:

Summing (20) over all , taking conditional

expectations, and noting that  yields:

where is the expected processing rate of

server i under the given power allocation policy and
channel state probabilities. Now notice that the strategy

of routing all bits to the queuei with the smallest

value of leads to a term in the above

inequality which minimizes the function

for all positive vectors subject to . If ,

then there exists an such that .

Hence, adding and subtracting theε values in the summa-
tion of (22), we find:

Defining anyα>0 and choosing the compact setΩ to
be:

ensures the negative drift condition of Theorem 3 when-

ever . ❑

This separate buffer scenario is useful in cases when
it is economical to segregate buffers among queues, or

when the parallel queues are physically aboard differe
satellites within a space constellation. In cases wher
shared buffer can be used and packets can be rou
immediately when the next server becomes empty,
stronger stability result can be obtained: Allocatin
power as before and using the shared buffer to emp
this work conserving routing strategy ensures that t
unfinished work in the system is no more than (N-1)Lmax

bits in excess of any other routing and power allocatio
strategy, whereLmax is the bit length of the maximum
size packet (see [16]).

A variation of this joint routing and power allocation
scenario restricts the routing options for each da
stream. Traffic intended for a certain ground location c
be routed to a subset of neighboring locations, but can
be routed to ground nodes outside of this subset (Fig.
Inputs are divided intoM traffic classesX1,...,XM corre-
sponding toM disjoint queue clustersQ1,...,QM. Packets
from streamXj can be routed to any queue in clusterQj.

Such a problem can be treated using the analysis a
of this section as well as Section IV. Indeed, maximu
throughput can be achieved using the algorithms fro
these sections in a hierarchical manner. First, each qu
clusterQj is treated as a single virtual queue with a rat
power curve defined as:

where represents the vector of channel states for
queues in clusterQj. It can be shown that the functions

are concave in the power variablep. The first

level of control decisions uses the power allocation po
icy of Section IV to allocate power (p1,...,pM) (subject to

) to the M queue clusters to maximize

, where represents the tota

unfinished work in queues from clusterQj. For the sec-
ond level of the hierarchy, each queue cluster carries
the joint power and routing algorithm specified in thi
section, using the Join-the-Shortest-Queue strategy

λ µ<

L U( ) Ui
2∑=

i 1 … N, ,{ }∈ A t( ) ai t( )∑=

E A[ ] λT=

Ui
2 t T+( ) Ui

2 2TUi µi

ai

T
----– 

 – µi
2T2 ai

2+ +≤ for all i.
(20)

C T2 E µi
2[ ]∑ E A2[ ]+= (21).

i 1 … N, ,{ }∈

A2 ai
2∑≥

E L U t T+( )( ) L U t( )( )– U t( )[ ] ≤

C 2T Ui µi E
ai
T
---- U t( )– 

 

i 1=

N

∑– (22)

µi E µi[ ]=

ai∑
Ui UiE

ai
T
---- U t( )∑

Φ γ( ) Uiγ i∑=

γ γ i λ≥∑ λ µ<

ε 0> µi ε–( ) λ≥∑

E L U t T+( )( ) L U t( )( )– U t( )[ ] C 2Tε Ui

i 1=

N

∑–≤

Ω U ℜN Ui
C α+
2Tε

-------------- 
 ≤∑∈

 
 
 

=

U Ω∈

X1

XM

Q1

QM

µ2 p2 c2,( )

µ1 p1 c1,( )

µN pN cN,( )

Figure 8: A joint routing/power allocation scenario withM
different routing clusters {Qj}.

µ̃ j p Cj,( ) max=
pi p≤

i Q j∈
∑

µi pi ci,( )
i Q j∈
∑

Cj

µ̃ j p Cj,( )

pj Ptot≤∑
µ̃ pj Cj,( )Ũ j t( )

j
∑ Ũ j t( )
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each traffic streamXj and queue clusterQj. Such a hierar-
chical strategy stabilizes the system whenever it is stabi-
lizable.

VI. CONNECTIVITY CONSTRAINTS

It has been assumed throughout that all transmit chan-
nels can be activated simultaneously, subject only to the
total power constraint for all timet.
Hence, it is implicitly assumed that there is no interchan-
nel interference. Such an assumption is valid when there
is sufficient bandwidth to ensure potentially interfering
channels can transmit using different frequency bands.
However, in bandwidth limited scenarios, power alloca-
tion vectors may be additionally restricted to chan-
nel activation sets: finite setsP1,...,PR, where each setPi
is a convex set of points (p1,...,pN) representing power
vectors which, when allocated, ensure interchannel inter-
ference is at an acceptable level. This use of activation
sets is similar to the treatment in [2], where activation
link sets for scheduling ON/OFF links in a wireless net-
work are considered. Here, the definition has been
extended from sets of links to sets of power vectors to
treat power control.

As an example of an activation set, consider the system
of Fig. 1 and suppose that downlink channels 1, 2, and 3
can be activated simultaneously if all other transmitters
are silent. Such an activation set can be represented:

Pj =

Another type of system constraint is when power allo-
cation is further restricted so that no more thanK trans-
mitters are active at any given time. Such a constraint
corresponds to  convex activation sets.

In the following, we assume that each activation set
incorporates the power constraint . Consider
the downlink system of Fig. 1. Packets arrive according
to a random arrival vector (iid on each timeslot) with
rates , and channel states varyiid every
timeslot with steady state probabilities . Each timeslot
a power allocation vector is chosen such that it lies
within one of the activation setsP={ P1,...,PR}.

Theorem5: (a) The capacity region of the system is

the set of all arrival rate vectors  such that:

where addition and scalar multiplication of sets has been

used above.3

(b) The policy of allocating a power vector

=(p1,...,pN) at each timestep to maximize the quantity

(subject to )

stabilizes the system whenever the vector is in the in
rior of the capacity region.

We note that the allocation policy specified in part (b

of the theorem involves the non-convex constraint
Optimizing the given metric over individual activation
setsPj is a convex optimization problem, although a com
plete implementation of the given policy is non-trivial i
the number of activation sets is large.

However, the proof of parts (a) and (b) are simp
extensions of the analysis presented in Sections III a
IV.

Proof of (a):To establish that is a necessary con
dition for stability, suppose the system is stable usin

some power allocation function which satisfie

for all time. We thus know that for alli

(Lemma 1), and the proof proceeds as the proof of The
rem 1 (Appendix A2), where for any fixed we ca

find a large time such that the following entrywise vec
tor inequality is satisfied:

The main difference from Theorem 1 is that th
above integral is broken into a double summation ov

intervals when the channel is in state and when t

power vector is in setPj. Let represent the intervals

of time during when the channel is in state , an

let represent the subintervals of when th

power function  is in activation setPj. We have:

where .
3. For setsA, B and scalarsα, β, the setαA+βB is
defined as {γ | γ = αa+βb for some , }.

pi t( ) Ptot≤∑

P t( )

p1 p2 p3 0 … 0, , , , ,( ) ℜN pi 0≥ pi Ptot≤
i 1=

3

∑,∈
 
 
 

N
K 

 

pi Ptot≤∑

λ1 … λN, ,( ) C t( )
π

C
P t( )

λ

λ ∈ Convex HullΩ = µ P C,( ) P P j∈( ){ }
j 1=

R

 
 π

C
C

∑

a A∈ b B∈

P

Ui t( )µi pi ci t( ),( )
i 1=

N

∑ P P∈ P 1 … P R, ,{ }=

λ

P P∈

λ Ω∈

P t( )

P t( ) P∈ λi µi≤

ε 0>
t̃

λ µ 1
t̃
--- µ P τ( ) C τ( ),( ) τ ε+d

0

t̃

∫≤ ≤

C

T
C

t̃( )

0 t̃,[ ] C

T
C P j, t̃( ) T

C
t̃( )

P t( )

λ µ
T

C P j,
t̃( )

t̃
---------------------------- 1

T
C P j,

t̃( )
---------------------------- µ P τ( ) C,( ) τ ε+d

τ T
C P j,

t̃( )∈
∫

P j
∑

C
∑≤ ≤

T
C

t̃( )

t̃
--------------------

T
C P j,

t̃( )

T
C

t̃( )
----------------------------µ 1

T
C P j,

t̃( )
---------------------------- P τ( ) τd

τ T
C P j,

t̃( )∈
∫ C,

 
 
 
 
 

ε+

P j
∑

C
∑≤

π
C

T
C Pj,

t̃( )

T
C

t̃( )
----------------------------µ PC P j, C,( )

P j
∑ O ε( )+

C

∑≤

P
C P j,

1
T

C P j,
t̃( )

---------------------------- P τ( ) τd

τ T
C P j,

t̃( )∈
∫=
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Note that any point in the convex hull of a collec-
tion of convex sets can be written as a linear combination
of points ,..., in the sets:

where and . Letting αj =

, we see the inequality above indicates

that is arbitrarily close to a point in the capacity region

Ω, and hence .
The sufficiency condition is implied by part (b).❑

Proof of (b): Define the Lyapunov function

. The proof of Theorem 3 can literally be

repeated up to eq. (12):

From this point, negative drift of the Lyapunov func-
tion can be established by again noting that the value of

maximizes over all vectors within

the capacity region. To see this, note that any in the
capacity region can be written:

for some vectors , and some scalar values

such that for all channel states .

The result follows by an argument similar to (13)-(16).❑

VII. CONCLUSIONS

We have treated data transmission over multiple
time-varying channels in a satellite downlink using
power control. Processing rates for each channeli were
assumed to be determined by concave rate-power curves
µi(pi,ci), and the capacity region of all stabilizable arrival

rate vectors was established. This capacity region is
valid for general Markovian input streams, and inputs

with arrival rates in the interior of the capacity region
can be stabilized with a power allocation policy which

only considers the current channel state . In the case

when arrival rates and channel probabilities and are

unknown but packet arrivals and channel state transitions
are iid every timeslot, a stabilizing policy which consid-
ers both current state and current queue backlog was
developed. Intuitively, the policy favors queues with large
backlogs and better channels by allocating power to max-

imize  at every timeslot.

The power control formulation was shown to conta
the special case of a server allocation problem, and an
ysis verified stability of the “Serve-the-K-Largest-Con-
nected-Queue” policy. In the case of interchann
interference, modified power allocation policies we
developed when power vectors are constrained to a fin
collection of activation sets. A stabilizing policy wa
developed, although the policy is difficult to implement
the number of activation sets is large.

A joint routing and power allocation scenario wa
also considered, and a throughput maximizing algorith
was developed. Stability properties of these systems w
established by demonstrating negative drift of
Lyapunov function defined over the current state
unfinished work in the queues. Theiid assumptions for
packet arrivals and channel transitions were needed
establish the negative drift condition. We conjecture th
the same policies also stabilize the system for gene

Markovian arrival and channel processes whenever
in the capacity region.

Our focus was power control for a satellite downlink
although the results extend to other wireless communi
tion scenarios where power allocation and energy e
ciency is a major issue. The use of power control c
considerably extend the throughput and performan
properties of such systems.

APPENDIXA:
A1. Lemma 1b:If an input streamX(t) to a single queue

system is rate-ergodic of input rateλ, a necessary condition for
queue stability is .

Proof: Suppose and choose such tha

>0. The limits in (2) ensure that, with probability 1

we can find a set of times {ti} ( ) where

with increasingi, and such that for allti:

However, it is clear that

From (23) and (24), it follows that

for all ti. Define , and letTi represent the extra

time it takes the unfinished work in the queue to empty below
threshold valueM, starting at valueU(ti) at time ti. Clearly

, and hence at any timeti+Ti, the empiri-

cal fraction of time the unfinished work in the queue exceed
the valueM is greater than or equal toTi/(ti+Ti), which is
greater than or equal to(αti - M)/(µmaxti + αti - M). Taking lim-

γ

γ1 γ N γ α1γ1 … αNγ N+ +=

α j 0≥ α j 1≤∑
T

C P j,
t̃( ) T

C
t̃( )⁄

λ

λ Ω∈

L U( ) Ui
2∑=

E L U t T+( )( ) L U t( )( )– U t( )[ ] ≤

B 2T θiUi E µi U t( )[ ] λi–( )
i 1=

N

∑–

E µi U t( )[ ] Uiγ i∑ γ

γ

γ π
C

α
C P j, µ PC P j, C,( )

P j
∑

C

∑=

PC P j, P j∈

α
C P j, 0≥ α

C P j, 1≤
P j

∑ C

λ

λ

C t( )

λ π
C

Uiµi∑

λ

λ µ≤

λ µ> ε 0>

λ µ– 2ε–

i 1 2 …, ,{ }∈ ti ∞→

X ti( )
ti

------------ λ ε–≥
1
ti
--- µ τ( ) τ µ ε–≥d

0

ti

∫, . (23)

U ti( ) X ti( ) µ τ( ) τd

0

ti

∫–≥ (24)

U ti( ) λ µ– 2ε–( )ti≥

α λ µ– 2ε–=

Ti αti M–( ) µmax⁄≥
10
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its as reveals that for allM, and

hence the system is unstable.❑
A2. Theorem 1b:A necessary condition for stability of the

downlink channel of Fig. 1 is  for alli.

Proof: Suppose all queues of the downlink channel can be sta-

bilized with some power control function which meets
the power constraints--perhaps a function derived from a pol-
icy which knows future events. From the necessary condition
of Lemma 1 we know that thelim inf of the resulting rate pro-
cess satisfies  for all queues .

We upper bound as follows. Let represent the

subintervals of [0,t] during which the channel is in state ,

and let denote the total length of these subintervals.

Fix ε>0, and let represent the total number of channel
states of the system. Because the channel process is ergodic,
and because there are a finite number of queues and channel

states, there exists a time such that the time average fraction
of time in each channel state and the time average processing
rate of all queues are simultaneously withinε of their limiting
values:

Thus, under power decisions , we have for all i:

where (28) follows from concavity of theµi(p, ci) functions
with respect to the power variablep, and (29) follows from

(25). We define for all states  and queuesi::

Hence, from (29) and (30):

whereµmax is defined as the maximum processing rate of a
queue (maximized over all queues and channel states) when it
is allocated the full powerPtot.

Because the original power function satisfies the pow

constraint for all timest, from (30) it is clear

that the values satisfy the constraint for a

channel states . Thus, (31) indicates that the arrival vector
is arbitrarily close to a point in the region specified by (4

Because the region (4) is closed, it must contain , and he
(4) represents the capacity region of the system.❑
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