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Abstract --We consider power and server allocation in a low levels of unfinished work in all of the queues.
multi-beam satellite downlink which transmits data to N We establish the capacity region of the system: the
different ground locations over N time-varying channels. multi-dimensional region of all arrival rate vectors
Packets destined for each ground location are stored in sep- (A1,....AN) Which admit a stabilizable system under some

arate queues, and the server rate for each quetiedepends . . S . .

on the power p;(t) allocated to that server and the channel power aIIocatl_on palicy. Stability in this region holds for .
statec(t) according to a concave rate-power curves (p;, ). general ergo_dlc channel and packet arrival processes. Itis
We establish the capacity region of all arrival rate vectors Shown that if the channel model and arrival rates are

(A1....AN) Which admit a stabilizable system. For the case known, any power allocation policy which stabilizes the
when channel states and arrivals areid from timeslot to ~ System--possibly by making use of special knowledge of
timeslot, we develop a particular power allocation policy future events--can be transformed into a stabilizing policy
which stabilizes the system whenever the rate vector lieswhich considers only the current channel state. We next
within the capacity region. Such stability is guaranteed even consider the case of a slotted time system when arrivals
if the channel model and the specific arrival rates are and channel state vectors vaigy from one timeslot to the
unknown. As a special case, this analysis verifies stability of next, but the channel model and the exact values of arrival

the  “"Choose-theK-Largest-Connected-Queues™ policy raiag .. A\) are unknown. A particular power alloca-
when channels can be in one of two states (ON or OFF) and

K servers are allocated at every timestepK<N). These tion policy is developed which stgbl_llzes the sys_tem
results are extended to treat a joint problem of routing and Whenever the ratesA{,...Ay) are within the capacity
power allocation, and a throughput maximizing algorithm  region. This result is extended to treat a joint routing and
for this joint problem is constructed. Finally, we address the power allocation problem, and a simple policy is devel-
issue of inter-channel interference, and develop a modified oped which maximizes throughput and ensures stability
policy when power vectors are constrained to feasible acti- whenever the system is stabilizable. Finally, we address
vation sets. Our analysis and problem formulation is also the jssue of interchannel interference due to bandwidth
applicable to power control for wireless applications. limitations, and develop a modified policy when power
| INTRODUCTION vectors are constrained to acti\_/ation sets. This analysis

_ _ o makes use of a Lyapunov function defined over the state
In this paper we consider power allocation in a satels ine queues.

lite which transmits data t& ground locations oveN Previous work on queue control problems for satellite
different downlink channels. Each channel is assumed4fq wireless applications is found in [1-6]. In [1] a paral-

be time varying (e.g., due to changing weather condk) queue system with a single server is examined, where

tions) and the overall channel state is described by tgsry timeslot the transmit channels of the queues vary

ergodic vector procesg(t) = (cy(t), ..., cy(t)) . Packetbetween ON and OFF states and the server selects a
destined for ground locatidgrarrive from an input stream queue to service from those that are ON. The capacity

X; and are placed in an output queue to await processiiggion of the system is developed when packet arrivals

(Fig. 1). The servers of each of tieoutput queues may and channel states aiiel Bernoulli processes, and sto-

be activated simultaneously at any timly assigning to  sateliite with onboard s
. 1(p1()), (V)

each a power levap(t), subject to the total power con- upLY dueues Xa(t) —-u, (1)
straint ' pi(t) <Py, . The transmission rate of each Ha(Pa(D), (1))

) Xo(t) —-| U, (t) —B>
serveri depends on the allocated powg(t) and on the :
current channel statg(t) according to a general concave : (0. (D)

— Un(Pn(), Oy

rate-power curve(p;, G). Aco.ntroller allgcatgs powgrto X () — U () N.N
each of theN queues at every instant of time in reaction to
channel state and queue backlog information. The goal of P1(t) + ... + Py (D) S Py
the controller is to stabilize the system and thereby

achieve maximum throughput and maintain acceptably Figure 1: A multi-beam satellite wittN time-varying
downlink channels and onboard output queues.



chastic coupling is used to show optimality of ttgefve- II. POWER AND SERVER ALLOCATION

the-Longest-Connected-Quéuymlicy in the symmetric Consider theN queue system of Fig. 1. Each time
situation that arrival and channel processes are identiGatying channei can be in one of a finite set of stat§s

for all queues (i.e.,A\; = ... = Ay ,p; = .. = py ). We represent the channel process by the channel vector
Such a server allocation problem can be viewed as a sgggt) = (c,(t), ..., cy(t)), Where T()0S x...xS, .

cial case of our power allocation formulation, and in Se@hannels hold their state for timeslots of lengthwith
tion IV we verify stability of the ‘Serve-the-K-Longest-yansitions occurring on slot boundarisT. The chan-
Queues policy for symmetric and asymmetric systemgg| process is assumed to be ergodic and yields time

with multiple servers. babiliti ¢ h stat At
In [2] a wireless network of queues is analyzed whefi/€7age probabliitiest, or each sta ' every

input packets arrive according to memoryless procesé#geslot, the server transmission rates can be controlled
and have exponentially distributed length. A Lyapunddy  adjusting the  power allocation  vector
function is used to establish a stabilizing routing and(t) = (p,(t), ..., py(t)) subject to the total power con-
scheduling policy under network connectivity con- .
straints. Such a technique for proving stability has al&gramtz Pi(t) < Pio -
been used in the switching literature [7-10]. In [7] an For any given state; of downlink channel, there is
N x N packet switch with blocking is treated and inputd corresponding rate-power curyg(p;, ¢) which is
output matching strategies are developed to ensure 10Pfgreasing, concave, and continuous in the power param-
throughput whenever arrival rates are within the capaciyer (Fig. 2). This power curve could represent the loga-
region. In [9],[11] the method of Lyapunov stability analtithmic Shannon capacity curve of a Gaussian channel, or
ysis is improved upon and used to prove queues are gotild represent a rate curve for a specific set of coding
only stable but have finite backlog moments. schemes designed to achieve a sufficiently low probabil-
The main contribution in this paper is the formulaity of error in the given channel state. In general, any
tion of a general power control problem for multi-bearpractical set of power curves will have the concavity
satellites and the development of throughput maximizingoperty, reflecting diminishing returns in transmission
power and server allocation algorithms for the systemate with each incremental increase in signal power.
The method extends to other wireless networking prob- The continuity property is less practical. A real sys-
lems where power allocation and energy efficiency istam will rely on a finite databank of coding schemes, and
major issue. Recent work in [12] treats a problem of mithence actual rate/power curves restrict operation to a
imizing the total energy expended to transmit blocks dihite set of points. For such a system, we create a new,
data arriving to a single queue, and it is shown that powgftual power curvefi;(p;, c;) by a piecewise linear inter-
control can be effectively used to extend longevity of ne{B-

K el In 113 I ion f el olation of the operating points (see Fig. 3a). Such vir-
work elements. In [13] power allocation for wireless ne ual curves have the desired continuity and concavity

works is addressed. The authors consider ON/OFF type, o ies and are used as the true curves in our power
power allocation policies and observe that for randolf), ation algorithms. Clearly a virtual system which
networks, capacity regions are not extended much By, ates nower according to the virtual curves has a

mcludm_g more power quantization levels. Qur Ca'E.)"’l‘:'.%'apacity region which contains that of a system restricted
results in Section Il illustrate that the capacity region 1) "allocate power on the vertex points. However, the
often considerably extended if multiple power levels arceapacity regions are in fact the same, as any point on a

Ut'l'Ted :]or the satellite downlink prgblem.h ni\&'rtual curve can effectively be achieved by time-averag-
n the next section, we Introduce the power anfly yvo or more feasible rate-power points over many

server aIIoca_lt_lon problems. I_n Section 11l we develo_FLmeslots. Indeed, in Section IV we design a stabilizing
several stability results for single queue systems wit
/ui(p, %)

ergodic and non-ergodic processing rgi€3, and estab-

lish the capacity region of the satellite downlink with
power control. In Section IV a stabilizing power alloca-
tion policy is developed for systems witil inputs and

channel states. In Section V a joint routing and power
allocation policy is treated using similar analysis, and in
Section VI we extend the problem to treat channel inter-
ference issues.
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Figure 2: A set of concave power curyg;, G) for
channel states,, ¢, 3.



ratep;(p) e [1l. STABILITY AND THE DOWNLINK CAPACITY REGION
~ _ To understand the capacity region of the downlink
Lo system, we first develop a simple criterion for stability of
a single queue with an input streaft) and a time vary-
/ ing processing ratgu(t) (Fig. 4). We assume the input
/ stream is ergodic with rate. However, because an arbi-
@ |d|o - (/0 |1 > trary power control scheme could potentially yield a non-
(a) Werp (b) ergodic processing rate, we must consider general pro-
Figure 3: Virtual power curves for systems with a finite cessesi(t) which may or may not have well defined time
set of operating points. averages. We make the following definitions:

policy for any set of concave power curves which natu- X(t) = Total amount of bits that arrived during {D,

rally selects vertex points at every timeslot if power U(t) = Unprocessed bits in the queue at time
curves are piecewise linear. U(t) = Instantaneous bit processing rate in the server.
t

This power allocation formulation generalizes a sim- X(1) 1 & 2
pler problem of server allocation. Assume that there are A = lim ==, @ = liminf YI“(T) T
K servers, and every timeslot the servers are scheduled to 0
serveK of theN queuesKK<N). A given queue transmits The above limits exist with probability 1. We

data at a fixed ratg; whenever a server is allocated to itassume the processing rate is always bounded above by
and transmits nothing when no server is allocated. TlHeme maximum valuep(t) <p,,, for at) and hence
problem can be transformed into a power allocation prog< ;<1 . As a measure of the fraction of time the

lem by defining the virtual power constraifyf p(t) <K unfinished work in a queue is above a certain valljeve

and the virtual power curves: define the following “overflow” functiog(M):
i(py = WP, POLO] o
Hi(P) {“i , p>1. (2) g(M) = tl'I“wSUp{Jnl[U(rpM]dT 3)
0

Sucjh a virtual eurve contains .the feasible IOOIn%/‘T’/here the indicator functionglused above takes the
(P=0,1 =), (p=1,1 =) (see Fig. 3b).

value 1 whenever evehtis satisfied, and O otherwise.

Example Server Allocation AlgorithmOne might Definition: A single server queueing systenstsible
suspect the policy of serving th¢ fastest, non-empty .
gueues would maximize data output and achieve stability.

Hoyvev_er, we pro_wde the following coynterexample Notice that if steady state behavior exists and if sam-
which illustrates this is not the case. Consider a 3-queu

> . . p?é paths of unfinished work in the queue are ergodic, the
-server system with constant processing ratgs |(,, . o

. overflow functiong(M) is simply the steady state proba-
Ha) = (1, 1, 1/2). All arriving packets have lengtl and i that the unfinished work in the queue exceeds the
arrive accordingid Bernoulli processes with the packe{ajue M. Stability in this case is identical to the usual
arrival probabilities(p, po, P3) = (P, P, (1- p?)/2 +€), notion of stability defined in terms of a vanishing com-
wherep<1/2 ande>0. plementary occupancy distribution (see [2,7,11]).

Note that the policy of serving the two fastest queues

removes a server from queue 3 whenever there are simul- Lemmal: For the single queue system (Fig. 4) with
taneous arrivals at queues 1 and 2. This happens wg@@neral input and server rate proces¥¢y and p(t), a
probability p?, and hence the time average processiftfcessary condition for stability is<p . If the arrival
rate at queue 3 is no more than (/2 (where the factor ProcessX(t) and the rate processt) evolve according to
1/2 is due to the rate of server 3). This effective servi@ ergodic, finite state Markov chain, then a sufficient
rate cannot support the input rate, and hence queue 3 is X(t) (rateA) ()
unstable under this server allocation policy. However, the — U —>
sys_tem is clearly stabilizable: Thg policy of al\{ve_lys allo- Figure 4: A single queue system with input strext)
cating a server to queue 3 and using the remaining Server . time varying processing rat).
to process packets in queues 1 and 2 stabilizes all queuess:

1-Where thdim inf of a functiorf(t) is defined:
lim inf f(f) = tim [inf ()]
t 5 o0 t oo T2t



condition for stability is\ <p .

Proof: The sufficient condition for Markovian arriv-
als and linespeeds is well known (see large deviations _ slope =-1
results in [12]). The necessary condition is proven in
Appendix Al by showing that i >u , there exist arbi-

p- H1
trarily large timed; such that the average fraction of time Figure 5: A capacity region for 2 static channels.
the unfinished work is abovi! during [0, tj] is greater the region in (4) captures all input rates which yield sta-

than a fixed constant for any value\df (J ble systems.]

We use this single queue result to establish the capac- In the case when the channel does not vary but stays
ity region of the power constrained, multi-channel systefixed, we have one power curyg(p) for each queue,

of Fig. 1. We define the capacity region as the compagid the expression for the capacity region above can be

set of pointsQ 00, )" such that all queues of the sygreatly simplified: ' ' _
tem can be stabilized (with some power allocation policy) Corollary 1: For static channels, the capacity region

whenever the vector of input bit rat@s= Ay s Ay) igs the set of alh  vectors such that:
strictly in the interior ofQ, and, conversely, no stabilizing N _10\) b
N . )<
policy exists whenevek 0Q . (The system may or may i;u' et
not be stable ifA lies on the boundary of the capacityhere
region). -13 y = ( The smallesp such thaf(p)=A
Assume arrivals and channel states are modulated by Hi(A) { . ; !
o . " o if no suchp exists 0
an ergodic, finite state Markov chain, and transitions

occur on timeslots of duratioff. Let m, represent the !N Fig. 5 we illustrate a general capacity region for
N=2 channels with fixed channel states and concave

steady state probability that the channel vector is in St%SWer curvesi;(p) andi,(p). In this case of fixed chan-

C =(c,....Cp)- nel states, one might suspect the optimal solution to be
the one which maximizes the instantaneous output rate at
Theoem 1: The capacity region of the downlinkevery instant of time: allocate full power to one queue
channel of Fig. 1 with power constraif,,; and rate- whenever the other is empty, and allocate power to maxi-
mize the sum output rateii(p;)+Ho(p,) subject to

p; + P, < P, Whenever both queues are full. Doing this

such that there exist power levelp satisfyingsstricts the capacity region to linear combinations of the
N o three operating points, as illustrated in Fig. 5. The shaded
z P <Py, for all channel state§ , and such that:  regions in the figure represent the capacity gains obtained
i=1 by power allocation. Note that the region is restricted fur-
¢ ther if only ON/OFF allocations are considered.
A<y (P 6) (4) ) .
Corollary 2: For the K-server allocation problem

o . : . where the channel rate of queius py; when it is allocated
Proof: Using the stationary policy of allocating a i : .
a server (and 0 otherwise), the capacity region is the poly-

e e e .
ower vectorP~ = - whenever the system is
P (PL - Pr) y fope set of alk  vectors such that:

power curvegs(p, G) is the set of all input rate vectors

in channel stat&€ creates a Markov modulated process- N

ing rate;(t) for all queued, with an average rate given <K (%)

by the right hand side of inequality (4). Lemma 1 thus &M

ensures stability whenever the vector ~ satisfies (4) with A O[O0, ] for alli. (6)

strict inequality in all entries. Proof: Using the virtual power curves and constraints

In Appendix A2 we show that restricting power congiven in Section II, we find that the region described by
trol to such stationary policies (which use only the cugs) and (6) contains the true capacity region. However,
rent channel stat€(t) when making power allocatidhe K-server problem is constrained to allocate rates only
decisions) does not restrict the capacity region, and herdethe vertex points of the capacity region (see Fig. 6).
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RS Theoem?2: For the given Lyapunov function(UJ)
vl

if there exists a compact regidd of 0" and a number

Hy o>0 such that:
e AN 1. E[L(O(t+ T))|0(t)] < forallO oM
}/ ¢ 2. E[L(D(t+ T))-L(O()|0®)] < —a
M . . o whenever0 0 Q
Figure 6: An example illustration of the capacity region for
theK-server allocation problem wit=3, K=2. then a steady state distribution on the vectbr  exists

Timesharing amongst vertex points, however, yields afglearly with the property thaPr[U;>u] - 0 as -

desired point within the polytopel] for all i) and hence the system is stable.

IV. A STABILIZING POWERALLOCATION ALGORITHM . . : .
Now consider the following power allocation policy:

Here we assume that channel state_\_/eotb_rs _ N@ry At the beginning of each timeslot, obsergt)  abd)
from timeslot to timeslot with probability dIStI’IbUtIOI’la d allocate a power vectoP(t) = (p,(t )
T . Likewise, assume that packets bring a new batch gEch that- P = (Palb e Py

B(t) = arg Max § 6,U. () (p. ¢
of an arrival vectorA = (a,, ...,a,) , with distribution ® 3 Pi<Pio; Z Yiltu(pe ) (8)

unfinished workiid from timeslot to timeslot in the form

f(ay,...,a) and expectatiofE[A] = AT . Note that entriesvhere {;} is any set of positive weights. This policy
of the channel state vector and the arrival vector may BRooses® to maximiz& 6.U,p;  subject E P <Py

cor.related within the same timeslot. We azssume that "Rdtice that the policy acts only through the current value
arrivals have bounded second momergiga] < of U(t) and C(t) without specific knowledge of the

Let U(t) = (Uy(1), ..., Un(1)) represent the vector of yrriva rate vectorh or the channel state probabilities.
unfinished work in each queue at timgvheret=kT). We  |ntuitively, we desire a policy that gives more power to
assume channel and queue state vectjts Gy  queues with currently high data rates (to achieve maxi-
are known at the beginning of each timeslot, and seeknwm throughput) as well as gives more power to queues
control policy which allocates power based on this infoith large backlog (to ensure these queues are stabi-
mation. Assuming this power allocatid¥(t) is held corﬁzed_)- The above policy does both by considering as a
stant during the full timeslot[t+T], the unfinished work metric the product of backlog and data rate for each
dynamics proceed according to the one-step equation:queue'

Ui(t+T) = max(U( D +ay(t) —p(pi(t), (1) T, 0). (7) Theoem3: The power allocation policy of choosing

Notice that for a given stationary power allocatiof€ power vectorP(t) = arg in;ax Zeiui(t)“i(pi'ci)
policy, the unfinished work vector at timestépT is 2 Pi=Por
independent of the past given the current value of unfistabilizes the system whenever the arrival rate vektor s
ished work. Hence, the system can be viewed as evolvimgerior to the capacity region given in (4).
according to a Markov chain on aN-dimensional, Proof: Consider the one-step drift in the Lyapunov func-

uncountably infinite state spak . For stability analysigon from Theorem 2. For ease of notation, lgt= U;(t),

we define the Lyapunov function(0) = ZGiUiz (for® = g(t), and lety; = p;(pi(t), ¢i(t)) . From (7), we have:

arbitrary positive weights§j}) and make use of a well Uiz(t +T)<(U; +4q —piT)2
developed theory of stability in Markov chains using neg- ) an. 2.2 2
ative Lyapunov drift (see [13], [2], [6], [9]). Below we =Ui _ZTUia*i _?IDJ“ TR TNC)

state a sufficient condition for the system to be stable and
have a well defined steady state distribution of unfinished , In [10,11] it is shown that if stronger conditions on the

work U . The statement below is new in that it involves ayapunov function are satisfied (such that the negative drift gets larger

Markov chain on an uncountably infinite state spacg,magnitude ag0| increases) the moments of unfinished work are
although the proof differs only cosmetically to that givennite and can be bounded.
in [15] and is omitted for brevity.



From (9) it is clear that property 1 of Theorem 2wve find from (18) that the Lyapunov drift is less than -

holds. Now define the foIIowing constants: wheneverd 0Q . 0O
p=max [T°you(p.c)] (10

C, z P = Piot Using the results of [10], it can be shown from the

strong negative drift condition in (18) that the steady state

B=p+ Ze E[a1] (11) unfinished work in all queues has a finite first moment

Taking conditional expectations of (9), scaling bynd SatISerSZG Ui < B/(2Te)

weights; and summing over aill we have: Note that the positive weights8{} can be chosen
E[L(O(t+ T))-L(O(t)|0(t)] < arbitrarily. Choosing weight8;=1 for alli yields a policy

which chooses a power vector that maximizisuiui at

N
B_ZTZ G‘Ui(E[““U(t)] —h) (12) every timestep. The following corollary makes use of a
=1 different set of weights.
where theiid nature of the packet arrivals has been used ~gnsider again theK-server allocation problem
] = ), . Now notice that the termwhere each queue has only 2 channel states, ON or OFF,
and these states vaiid over each timeslot as aN-
EG-U.E[pi‘O(t)] maximizes the value OfZe_U'yi dimensional vector. When a server is allocated to queue
while it is in the ON state, the server transmits data from

over all vectorsy = (yy,...,yy) in the capacity regionne queue at a rajg (the transmission rate is zero when
(4). To see this, note that for argy  in the capacity regioim the OFF state or when no server is allocated). Defining
the virtual rate-power curves as in Section Il, we have the
following corollary:

in the |dent|tyE[

there is a set ofﬁié } values such that:

N
z B;U z B;U; Z"@“i(picv c) (13) Corollary: For theK-server allocation problem with
i=1 i=1 ON/OFF channel states, the policy of allocating e
"cz o,U Hi(pié c) (14) servers to th& Ionges'g ON queues stabilizes the system
whenever the system is stabilizable.

=t Proof: Assume the system operates according to virtual

SZ max {Ze SRTH{ c)} (15)  power curves as in Section Il (eg. (1)), and define the
2 P=Pal Lyapunov function L(0) = Z(Uiz)/pi . With this
Ze UE[W|0M®)] | (16) Lyap.ur.10v function, we know that allocating power to
i=1 maximize z ((U; () )i (pis c) (where
Now, because the arrival rate vector  is assumed ¢pd { ON, OFF} ) stabilizes the system. Clearly the opti-

be strictly in the interior of the capacity region, we camization needs not place any power on queues in the
add a positive vectok = (g, ...,&) to produce anothePFF state, so the summation can be restricted to queues

vector (A +&) which is in the capacity region. Hencethat are ON:
(p:, C
EGiUiE[Ui\O(t)] > Z U;(A; +€), and we have: Maximize Ui(t)W subject toz p;<K.(19)
ilc;=ON :
ZeiUi(E[Hi\O]—Ai) = zeiUi(E[Hi\U] —(Aj+g) +e) However, notice that the above maximization effec-
S Ez 8., (17) .tlvely ghooses glrate. vectgr  within the pqutope capac-
ity region specified in (5) and (6). The optimal solution
Using (17) in (12), we find that for maximizing a linear function over a polytope will

always be a vertex point. Fortunately, such a vertex point

B B . corresponds to the feasible allocationkoservers (with
E[L(O(t+ T))-L(U(1)[U(t)] <B-2Te Z &iU,. (18) full power p;=1) to K queues. Considering (19), the opti-

Choose any numbea >0 and define the compa]r;%ev;?z;zedgt}?;)s 'SDtO choose the queues with the

i=1

region: Q = EUDDN\ZGU cBrad

O2Te Un° Using the same reasoning as in the proof above, it fol-



lows that the power allocation policy (8) naturally
chooses a vertex point for any set of piecewise linear

Satellite

H1(P1(D), c1(1)

. . . 1 —
power curves, such as the virtual curves described in Sec- ool oz(\t))\
tion Il It follows that optimization can be restricted to x(t) P G

searches over the vertex points without loss of optimality:
The above theorem uses tidt assumptions on packet
arrivals and channel states to establish the negative drift
condition for the Lyapunov function. We conjecture that
the same policy stabilizes the system for general Mark-
ovian arrival and channel processes whenever the arrival Yy, ;!

rate vectolr is in the capacity region.

Connected
V. JOINT ROUTING AND POWER ALLOCATION Ground Network

Consider now the following joint routing and power
allocation problem: A stream of packets enters the satel-
lite and the goal is to simply transmit all data to the
ground as soon as possible, without regard to the speciffigure 7: A joint routing/power allocation problem where the
ground location. Such a pr0b|em arises when the groun@p&ﬂ is to transmit the data to any node of the reliable ground net-
units are connected together via a reliable ground net¥o
work, and the wireless paths from satellite to grounslich thatA <, where we define the consfant

form the rate bottleneck (see Fig. 7). N
As expected, treating all input streaiXgt), X(1),..., peym max {Z wi(p, Ci)}
Xn(t) as an aggregate streaf(t) and exploiting the rout- 2 Pi=Prot i=1

ing options considerably expands the capacity region of Furthermore, any arrival rate>f  creates an unsta-
the system. This capacity gain is achieved by utilizing th#e system under any routing/power allocation policy.
extra bandwidth offered by the ground network.

Specifically, let the input streai(t) (with rateA) be We prove the theorem by developing a throughput
composed ofid packet arrivals every timesldt Channel maximizing strategy. The strategy is decoupled into a

states vary according to d@idl state vecto(t) as before.routing policy and a power allocation policy:
Power Allocation: For each timeslot, allocate a power

Every timeslot, we choose a power allocati¥t) . o
wygector P(t) = (py(t), ..., py(t)) that maximizes the sum

Additionally, for every packet that enters the system,
make a routing decision and route the packet to one of thetput ratez W (p;(t), c(t)) subject t{ P;(t) < Pyoy

EI gueuesaWe gssgmg Fhat all qugues gav_e Segdr'egﬁggting: Route every packet that arrives in a given
uffers and routing decisions must be made immediatgly,oqiot 1o the queué with the least unfinished work

upon packet arrival. Ui(t) at the beginning of the timeslot
In general, both the queue and channel state vecto é) g g '

O(t) and C(t)_ are important in both the routing ang ¢ of |nstability whenm\ >ji :Notice that the power
power allocation decisions. For example, clearly an

. 5¥|Iclocation maximizes the sum rate u(t)=
power allocated to an empty queue is wasted and shou i i

be re-allocated to improve processing rates amongst #iét) * - +Hn(t) at every instant of time. We make the
non-empty queues. Likewise, a router is inclined to plaéémple sample path observation that the unfinished work
packets in faster queues, especially if the rates of thd8e2 single-server queue with input strea(t) and time
queues are guaranteed to operate at high levels for on&a@jying processing ratg(t) is always less than or equal
more timeslots. However, below we show that the routirf§ the total unfinished work in a system bf parallel

and power allocation problem can Hecouplednto two queues with transmission ratgs(t),..., in(t) such that
policies: a routing policy which considers orlli(t) anaz B (t) <p(t) for all t (see [16]). From Lemma 1, we
a power allocation policy which considers or@yt) . Th&now that a single queue system with H is unstable.

resulting strategy maximizes total system throughput. Hence, the multi-queue system will also be unstable

) ] o _under any power allocation and routing policy whenever
Theoem4: The satellite downlink with joint routing A

and power allocation can stably support any arrival kate



Proof of stability wher\ <i Again define the Lyapunov when the parallel queues are physically aboard different
. B 2 satellites within a space constellation. In cases where a
function L(U_) - Zui - Let A(J_[)_ rep.res.ent the total shared buffer can be used and packets can be routed
amount of bits from packets arriving in timeslo{ £ T], immediately when the next server becomes empty, a
and let @y(t)...., ay(t)) represent the bit length of packetstronger stability result can be obtained: Allocating
routed to queuesI{1,...,N}  (whera(t) = Zai(t) Jower as before gnd using the shared buffer to employ
q B h — | this work conserving routing strategy ensures that the
and E[A] = AT ). Let_“i re.presjent the transmission ratgfinished work in the system is no more th&h X)L ax
Hi(pi(t), (1) of queud during timeslot{, t+T] under the bits in excess of any other routing and power allocation
specified power allocation policy. As in the proof of Thegtrategy, wherd. ., is the bit length of the maximum

orem 4, we have: size packet (see [16]).
U(t+T)<U2-2T UiHJi _ %E+ W’ +a’  for alli. A variation of this joint routing and power allocation
T (20) scenario restricts the routing options for each data
For a fixed power allocation policy, the values are stream. Traffic intended for a certain ground location can

the only variables dependent upon our routing decisiof€ routed to a subset of neighboring locations, but cannot

Define the constant: be routed to.g.roun(_j nodes o.utside of this subset (Fig. 8).
, , , Inputs are divided intdM traffic classesXy,...,Xy corre-
C=T ZE[M] +E[AT], (21) sponding toM disjoint queue cluster®;,...,Qy. Packets

from streanX; can be routed to any queue in clusper
_ _ _ Such a problem can be treated using the analysis and
expectations, and noting that> § a>  yields: - : : :
' Z i of this section as well as Section IV. Indeed, maximum
E[L(U(t+T)) -L(O(1)|0 ()] throughput can be achieved using the algorithms from
N these sections in a hierarchical manner. First, each queue
8
c-2T Z UiB]i—E{T
i=1

@(t)}m (22) clusterQ is treated as a single virtual queue with a rate-

. power curve defined as:

where fi; = E[y;] is the expected processing rate of f;(p. Cj) = max [é pi(pi,ci)}

serveri under the given power allocation policy and g} p<p i,

channel state probabilities. Now notice that the strategy PN

of routing all bits zai to the queuewith the smallest Where C; represents the vector of channel states for all
queues in cluste®);. It can be shown that the functions

U(t)} in the abovei:l]_(p,

Summing (20) over all O {1, ..., N} , taking conditional

g

value ofU; leads to a terrrz UiE{.T_

C;) are concave in the power varialje The first

- - - L - level of control decisions uses the power allocation pol-
inequality which minimizes the functiog(y) = § Uy, . . :

quality S0 Z Vi icy of Section IV to allocate powep,...,ay) (subject to
for all positive vectorsy subject ti\/@)\ CK<p o, p;<Py) to the M queue clusters to maximize

then there exists are>0  such thaX(gi—s)z)\

Hence, adding and subtracting thealues in the summa-
tion of (22), we find: unfinished work in queues from clustg}. For the sec-

N ond level of the hierarchy, each queue cluster carries out

E[L(U(t+T)) -L(U()[0(®)] SC_ZTEZ Ui the joint power and routing algorithm specified in this

= . : g i
Defining anyo>0 and choosing the compact €&to section, using the Join-the-Shortest-Queue strategy for

be: X /D _ Hy(ppcy)
C+ad L Q NN

Q:EUDDNZU‘SDZTSDB o |

zﬁ(pj,é,—)oj(t), where U;(t) represents the total
]

ensures the negative drift condition of Theorem 3 when- -

evernQ . O Xm ](-:)M -
- /UN(pNv cn)
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each traffic strear; and queue clusted;. Such a hierar- (b) The policy of allocating a power vector
chical strategy stabilizes the system whenever it is stalpi=(p,,...,n) at each timestep to maximize the quantity
lizable. N

VI. CONNECTIVITY CONSTRAINTS .Zlui(t)ui(pi'ci(t)) (subject 10 POP = {Py ...Pg} )

1=

It has been assumed throughout that all transmit chan-, ... . .

. : . tabilizes the system whenever the  vector is in the inte-

nels can be activated simultaneously, subject only to tngr of the capacity region

total power constraint; pi(t) <Py, for all time. pactly region.
m

Hence, it is implicitly as ed that there is no interchan- . . e -
nel interference. Such an assumption is valid when there We note that the allocation policy specified in part (b)

is sufficient bandwidth to ensure potentially interferingf the theorem involves the non-convex constraint P
channels can transmit using different frequency bandaptimizing the given metric over individual activation
However, in bandwidth limited scenarios, power alloc&€tsP; is a convex optimization problem, although a com-
tion vectorsP(t) may be additionally restricted to charplete implementation of the given policy is non-trivial if
nel activation setsfinite setsP4,...Pg, Where each s&®; the number of activation sets is large.

is a convex set of points,...,A\) representing power However, the proof of parts (a) and (b) are simple
vectors which, when allocated, ensure interchannel intetensions of the analysis presented in Sections IIl and
ference is at an acceptable level. This use of activatitn

sets is similar to the treatment in [2], where activatiop,,qf of (a): To establish thak 0Q is a necessary con-

link sets for scheduling ON/OFF links in a wireless Nelition for stability. suppose the svstem is stable usin
work are considered. Here, the definition has been Y, supp y g

extended from sets of links to sets of power vectors 9™ Power allocation functior(t)  which satisfies
treat power control. P(t) 0P for all time. We thus know thak, < u forall

As an example of an activation set, consider the systg¢bmma 1), and the proof proceeds as the proof of Theo-

of Fig. 1 and suppose that downlink channels 1, 2, ang g, 1 (Appendix A2), where for any fixed>0 we can
can be activated simultaneously if all other transmitte{ﬁqd alarge imd  such that the following entrvwise vec-
are silent. Such an activation set can be represented: g 9 yw

tor inequality is satisfied:

3
O O
Pj = Py, P2, P3. 0., 0) 0 0"[p 20, ' p <P
0 i=1 O
Another type of system constraint is when power allo- The main difference from Theorem 1 is that the

cation is further restricted so that no more théartrans- ntearal is broken int doubl mmation "
mitters are active at any given time. Such a constral‘%l?ove Integral 1S broken into a double summation ove

Corresponds t%ﬁ% convex activation sets. intervals when the channel is in state and when the
power vector is in sek;. LetTc(f) represent the intervals
In the following, we assume that each activation set . . - o
incorporates the power constraiff p,<P,, . Considd time during[0.t] when the channelis in state , and
the downlink system of Fig. 1. Pactkets arrive accordingt Te (1) represent the subintervals of(t) ~ when the
to a random arrival vectorii§g on each timeslot) with
rates(A,, ..., Ay) , and channel statest) vdid/ every

timeslot with steady state probabilities . Each timesl%< as Z HTC Pj (f)H 1 AP, Ok + 2
=T t T '
; ] H c, 10T Pi ®

t
<ps %J'pl(P(T), S(1))dt + ¢
0

power functionP(t) is in activation sBf. We have:

a power allocation vectoP(t) is chosen such that it lies™ P (T)H
within one of the activation se®s{P,... Pg}.
Theoem5: (a) The capacity region of the system is HTC(E) 2 Pj(E)
< > :

0
g
the set of all arrival rate vectoks ~ such that: B t ZJ HTC(E)H Fﬂ‘T
- R
A DQ%ZHC Convex Hul p(P, C)\(F*)DPJ-)}‘]:E e o ) :
» . < S| §EELLdnp, L, ) | +Oe)
where addition and scalar multiplication of sets has been ] HTC“) o
used abové.

0
1 |
. P(t)dr,CO+¢
C’ PJ (t)H I ) (T) T §+
0 Té Pj(t)

i

P(r)dr .
10 TC’ P ®

wherep, , & —1—
3-For setsA, B and scalars, B, the set/A+B3B is P T 5 @)

defined asy|y=oaa#3b forsomeal A bOB }.



Note that any poiny in the convex hull of a collec- The power control formulation was shown to contain
tion of convex sets can be written as a linear combinatide special case of a server allocation problem, and anal-
of points ¥, ,..yx in the setsy = oy, +... +ayyy VSIS verified stablllty of the “Serve-thlé-Largest-Con-

nected-Queue” policy. In the case of interchannel
where a;20  and ZG,- <1 . Letting o = jnterference, modified power allocation policies were
HTC P_(f) /HTC(;) , we see the inequality above indicategevelo_ped When_power vectors are cc_)ns_trained_ to a finite
A collection of activation sets. A stabilizing policy was
thatA is arbitrarily close to a point in the capacity regiotleveloped, although the policy is difficult to implement if
Q andhenc& 0Q . the number of activation sets is large.

A joint routing and power allocation scenario was
also considered, and a throughput maximizing algorithm
) _ was developed. Stability properties of these systems were
L(O) = ZUi - The proof of Theorem 3 can literally beggiaplished by demonstrating negative drift of a
repeated up to eq. (12): Lyapunov function defined over the current state of

E[L(O(t+ T)) = L(O(1))|0(t)] < unfinished_work in the queues. Thd assumptions for
packet arrivals and channel transitions were needed to
establish the negative drift condition. We conjecture that
the same policies also stabilize the system for general

The sufficiency condition is implied by part (B).
Proof of (b): Define the Lyapunov function

N
B-2T 6,U;(E[w|U(®] -A)
i=1
From this point, negative drift of the Lyapunov funcMarkovian arrival and channel processes whenever is
tion can be established by again noting that the valueiofthe capacity region.
Elw| o] maximizesz Uy, over all vectorg within Our focus was power control for a _satelllte downlln_k,
_ ) _ ~although the results extend to other wireless communica-
the capacity region. To see this, note that gny  in thgn scenarios where power allocation and energy effi-

capacity region can be written: ciency is a major issue. The use of power control can
y = ZHCZ% ijl('jc Pjyc) considgrably extend the throughput and performance
T ’ properties of such systems.
for some vectorsPs ,; 0P; , and some scalar values APPENDIXA:
Op 520 such thatz a1 forall channel stat€s . Al Lemma 1bif an input streamX(t) to a single queue
’ - system is rate-ergodic of input ratea necessary condition for

]
The result follows by an argument similar to (13)-(16). queue stability i\ < .

Proof: Suppose A >p and choose >0 such that
VII. CONCLUSIONS -

We have treated data transmission over multipf‘e
time-varying channels in a satellite downlink usingve can find a set of timest (i 0 {1, 2 ...}) where t; — o
power control. Processing rates for each chamwetre with increasing, and such that for atj:
assumed to be determined by concave rate-power curves t
1(p;,G), and the capacity region of all stabilizable arrival X(t;) She t-l_J'u(T)dT sp-e. (23)

I
0

—H—2¢>0. The limits in (2) ensure that, with probability 1,

rate vectorsk was established. This capacity region is !
valid for general Markovian input streams, and inputs However, it is clear that

g
with arrival ratesk in the interior of the capacity region
. . . . . U(t) = X(t) - d 24
can be stabilized with a power allocation policy which (t) 2 X(t) I“(T) ' (24)
0

only considers the current channel statg) . Inthe case grom (23) and (24), it follows that (t,) = (A — u — 2€)t;

when arrival rates and channel probabilitfes Wad W&t all t;. Definea = A —p—2¢e , and leT; represent the extra

unknown but packet arrivals and channel state transitiofifie it takes the unfinished work in the queue to empty below a
areiid every timeslot, a stabilizing policy which considthreshold valueM, starting at valueU(t;) at timet;. Clearly
ers both currer_1t_ state and _current gqueue bac_klog WRS: (at, — M)/ I, @nd hence at any tinte+T;, the empiri-
developed. Intuitively, the policy favors queues with larg

€ : . - .
. | fract ft th finished k in th ded
backlogs and better channels by allocating power to m i | acton oF fime e Lnfinisned Work In e queus exceeds

o _ e valueM is greater than or equal t&/(tj+T;), which is
imize Z U, at every timeslot. greater than or equal (@t; - M)/(Umali + Otj - M). Taking lim-

10



its ast; — o reveals thag(M) = o/ (0 + ) for ail, and Because the original power function satisfies the power

hence the system is unstalle. constraintz pi(t) <P, for all timeg, from (30) it is clear
A2. Theorem 1bA necessary condition for stability of the

-~ . ~ ~C
that the p,” values satisfy the constrai <P for all
downlink channel of Fig. 1 i < chui(pic, c) forall P fy z Pi = Ftot

g]_annel state€ . Thus, (31) indicates that the arrival vector

» . i . is arbitrarily close to a point in the region specified by (4).
bilized with some power control functioR(t)  which meets

the power constraints—-perhaps a function derived from a p&&cause the region (4) is_ close_d, it must contain , and hence
icy which knows future events. From the necessary conditiéfy represents the capacity region of the system.
of Lemma 1 we know that thiém inf of the resulting rate pro-

cess satisfiey; <y, forall queues {1, ..., N}

Proof: Suppose all queues of the downlink channel can be s
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