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Abstract — This paper studies the interactions be-
tween protocols at different network layers. In par-
ticular, the system considered consists of two end
nodes communicating over a multi-hop network us-
ing a higher layer (HL) protocol and a lower layer
(LL) protocol. The HL at the two end nodes imple-
ments an Additive-Increase-Multiplicative-Decrease
(AIMD) congestion control mechanism, similar to the
operation of TCP; and the LL protocol implements a
link layer retransmission mechanism (ARQ) over the
error prone bottleneck link. Both Go-Back-N (GBN)
and Selective Repeat (SRP) ARQ protocols are con-
sidered. We examine the impact of packet losses due
to transmission errors as well as packet losses due
to congestion (i.e., buffer overflow). The throughput
of the system is derived using the theory of Markov
chain with rewards. Simple queuing models are de-
veloped for the LL ARQ. The numerical solutions for
the throughput as a function of different protocol and
packet loss parameters are also presented.

I. INTRODUCTION

Data networks employ a layered architecture where functions
to be performed by the network are divided among protocols
at the different layers. This division of responsibility simplifies
network implementation and allows for interoperability among
different networks. However, this division also introduces in-
efficiency into the network both because some functions are
inevitably duplicated and because protocols at different layers
may be incompatible. The goal of this research is to explore
the interaction between protocols at different layers; focusing
in particular on the transport and the link layers.

Typically in a data network, the link layer is responsible
for reliable transmission of packets across a single link in the
network. When operating over links with a high probability
of packet errors (e.g., satellite or wireless links), link layers
employ a packet retransmission protocol (ARQ) for recover-
ing from packet errors. Transport layers, on the other hand,
are responsible for transmission of messages end-to-end across
the network. Hence, they too often employ an error-recovery
protocol for recovering from end-to-end packet errors that are
not otherwise removed at the link layer (e.g., packet loss due
to buffer overflow).

Furthermore, transport layer protocols, such as TCP, also
employ congestion control mechanisms for reacting to conges-
tion in the network. For example, TCP’s congestion control
mechanism is triggered in reaction to packet losses that are
presumably due to congestion. TCP detects a packet loss us-
ing a timeout signal; in addition to retransmitting the lost

packet, TCP assumes that this loss is due to a buffer overflow
and reduces its window size (thereby reducing the transmis-
sion rate). It has been known that this behavior of TCP is
not appropriate over satellite or wireless links where packet
losses are more likely to be due to transmission errors than
to congestion. This problem can be overcome with an ARQ
protocol at the link layer. However, the presence of an ARQ
protocol can lead to other more subtle problems. In particu-
lar, the presence of a link layer ARQ protocol may introduce
a large variability in the round trip delay for sending a packet.
This variability, again, may result in a false time-out at the
higher layer leading to both unnecessary retransmissions and
unnecessarily triggering TCP’s congestion mechanism.

This phenomenon, in general, is not limited to the inter-
action between TCP at the transport layer and some ARQ
mechanisms at the link layer. It can occur at various lay-
ers that may use retransmission mechanisms. For example,
often application protocols may use a timeout mechanism to
retransmit a file or reload a web page. There again, retrans-
missions may be falsely triggered due to the lower layer ARQ.
Hence in exploring this problem we refer to the two layers as
the higher layer (HL) and lower layer (LL). Our goal is to un-
derstand this delicate interaction so that protocols at different
layers can be designed to work effectively together.

Recently a number of papers have examined system per-
formance with multi-layer protocols [1, 3, 5, 8, 10]. In [10]
several simple higher layer protocols are investigated when
the link layer implements ARQ. Also, [1] examines alternative
schemes designed to improve the TCP performance with lossy
links via simulation and suggests the use of a TCP-aware link
layer protocols. In addition, [3] also examines the TCP per-
formance with link layer FEC/ARQ via simulation, assuming
instant feedback. There are many papers on the analysis of
ARQ as well. In [7] queuing models are developed for the
GBN protocol, and [6] provides queuing models for both the
GBN and SRP protocols. Generally queuing models are used
as a tool to analyze the ARQ protocols for different channels
and network structures [9, 11].

Different from earlier work on the multi-layer protocols,
this paper provides an analytical framework to examines the
interactions between protocols of window flow control and
ARQ at different layers. The system investigated consists
of two end nodes communicating over a multi-hop network.
The bottleneck link of the system is also the error prone link.
This architecture corresponds to a hybrid network that in-
cludes a satellite link and some terrestrial links, where usually
the satellite link is the bottleneck link as well as the error
prone link. The LL over the error prone bottleneck link im-
plements the Go-Back-N (GBN) or Selective Repeat (SRP) re-
transmission mechanisms to recover the transmission errors.
The HL at the end nodes implements an Additive-Increase-



Multiplicative-Decrease (AIMD) window flow control mecha-
nism, similar to that of TCP. The losses considered include
both the transmission losses and the congestion losses. The
HL sends packets in batches (windows), and uses timeouts as
indications of packet losses. The batch size changes according
to the AIMD rule, which will be described in detail later.

This paper models the system as a finite state Markov chain
with reward functions associated with the number of success-
fully transmitted packets and the time taken for the transmis-
sions. Queuing models for the LL that implements the GBN
and SRP are also developed. The results are used to obtain
the transition probabilities and the reward functions of the
Markov chain, and the throughput of the system is derived by
the theory of Markov chain with reward functions.

The paper is organized as follows: Section 2 describes in
detail the system under consideration. Section 3 presents our
modeling process for the system and gives the expressions for
the throughput of the system. Section 4 provides the simple
queuing models for the ARQ protocols, whose results are used
to solve the system model. Section 5 discusses the numerical
results for different protocol and packet loss parameters. Fi-
nally, Section 6 gives our conclusion and directions for future
work.

II. SYSTEM DESCRIPTION

The system we considered consists of two end nodes commu-
nicating over a multi-hop network, as shown in Figure 1. The
two end nodes communicate using layered protocols where the
higher layer (HL) protocol is responsible for the functions of
transport protocols such as TCP, the medium layer (ML) is
responsible for the functions of routing protocols such as IP,
and the lower layer (LL) protocol is responsible for the func-
tions of a link layer. The sender has unlimited packets to
be transmitted to the receiver, and these packets have fixed
lengths. The bottleneck link between the two end nodes is also
error prone. As mentioned before, this system corresponds to
a hybrid network with one satellite link and some terrestrial
links. The LL for the error prone bottleneck link implements
an ARQ protocol, where both the GBN and SRP are consid-
ered. The other LLs do not employ ARQ. We call the LL that
employs the ARQ protocol the ARQ LL, and the correspond-
ing link the ARQ link. The time for the ARQ link to transmit
one packet is defined to be one time unit. In this way, the
time is divided into time slots, and the transmission of each
packet over the ARQ link takes one time slot. The round trip
time of one transmission over the ARQ link, defined to be the
interval between the time the ARQ link sender sends out a
packet and the time the sender receives the acknowledgment
of this transmission, is fixed to be d time slots. The remain-
ing time needed for the packets to go through the network is
assumed to be negligible.

We consider two types of packet losses: link losses and ran-
dom losses. The link losses refer to the losses caused by the
erroneous transmissions over the ARQ link, and the random
losses refer to losses caused by all other reasons, for example,
buffer overflow due to congestion and erroneous transmissions
over the other links that do not employ a LL ARQ. The link
losses can be recovered by the LL ARQ), and the random losses
can be recovered by the end-to-end HL retransmissions. Pack-
ets incur losses independently of each other. Each packet in-
curs a random loss with probability p;, and each transmission
over the ARQ link incurs a link loss with probability p.

HL (AIMD) random loss probability p; HL (AIMD)
buffer overflow buffer overflow
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Fig. 1: System with Two Nodes Communicating over a
Multi-hop Network

The HL sends packets in batches. The size of the batches
is the current window size of the HL. Once the HL receives
all the acknowledgments of its previous window of packets, it
sends out the next window of packets. The HL uses a timeout
value T'O for each packet. When the age of an unacknowledged
packet exceeds the timeout value 70O, a HL timeout occurs.
At this moment, the HL changes the window size according to
the AIMD algorithm, and restarts the transmission from the
packet that incurs the timeout.

The window-update-algorithm of the HL has two parame-
ters: current window size W and a threshold W;. The algo-
rithm works as follows:

e The initial window size is 1.

o After receiving all the acknowledgments of the last win-
dow:

— If W < W, the window size is doubled;
— If W > W, the window size is increased by 1.

e When a packet incurs a timeout, the window size is set
to be 1, and W is set to be half of the window size when
the timeout occurs.

One can see that this algorithm is an additive-increase-
multiplicative-decrease algorithm. It is similar to the TCP
window-update algorithm, except that there the window size
is updated upon each acknowledgment, while here the window
size is updated when a batch of acknowledgments is received.
Our batch assumption is used to make the analysis of the
protocols tractable.

The LL ARQ window size is no less than the round trip
delay d, so that its link capacity can be fully utilized and
the actual transmission rate over it is limited only by the HL
window size. Furthermore, negative acknowledgement (NAK)
signals are assumed to be used. (An equivalent protocol is
one where the LL does not use NAKs, but its timeout value
is d). That is, after d time slots, the sender knows whether
the transmission is successful or not. The order of the packet
transmissions follows the standard GBN or SRP rules [2].

Our goal is to develop a model for the system, obtain its
throughput as a function of the protocol and loss parameters,
and explore the interaction between the two protocols at the
two layers.

III. SYSTEM MODEL

In order to simplify the analysis, we assume that when
the HL timeout occurs, the system clears out all the packets
currently in the system. When the HL timeout occurs, the
future behavior of the system is completely determined by
the HL window size, or equivalently, by the current window



threshold W4, and is independent of its past. Thus, the system
can be modeled by a Markov chain, with the ending window
size (i.e., the window size when a TO occurs) as the states,
as shown in Figure 2. Moreover, since the HL timeout value
is fixed, there exists a maximum value of the window size,
denoted by W,,, such that at steady state, once the window
size reaches this value, a HL timeout must occur. Therefore,
the window size will never exceed the maximum value W,,,
and the system chain is a finite state Markov chain.

State: window size when the HL timeout happens;
Reward function V;j": number of successfully transmitted packets during transition i->j;

Reward function V,_“: time taken for the transition i->j.

Fig. 2: System Markov Chain

In order to obtain the throughput of the system, for each
transition of the Markov chain, we further define the following
two reward functions:

e V7. the expected number of successfully transmitted
packets during the transition from state i to state j.

° V,-’;-: the expected time taken for the transition from
state ¢ to state j.

The corresponding reward functions associated with state 4
are:

Wm Wi
v =Y ViPE and ol =Y VP, (1)
j=1 j=1

where Pg is the transition probability from state i to state j.
The superscript T denotes transition.
The steady state expected rewards per transition are thus:

Wm Wm
t t
" = E miv; and v’ = E vy, (2)
i=1 i=1

where 7; is the steady state distribution of the Markov chain.

By the theory of Markov chain with reward functions, given
the steady state expected rewards ™ and v*, the throughput
of the system can be shown to be the ratio of the two [4]:

,Un

We can now derive the transition probabilities of the
Markov chain as well as the reward functions. Then the

throughput of the system can be obtained using equation 3.

A Transition Probabilities

This subsection derives the transition probability of the
Markov chain. Consider the transition from state i to state j.
By the definition of the state of the system Markov chain, 7 is
the window size when the last HL timeout happens, and j is
the window size when the next HL timeout happens. More-
over, according to the HL window update algorithm, we know

exactly the number of successfully transmitted windows be-
tween these two timeouts. For example, when ¢ = 27, the
window threshold is set to W; = |i/2| = 13. The window size
then evolves as: 1, 2, 4, 8, 16, 17, 18, .... If j = 17, then the
number of successfully transmitted windows during this tran-
sition is 5, and the timeout that ends the transition happens
on the sixth window. Let N be the window number such that
when starting from state i, the Nth window has size j. Then
the problem of finding the transition probability Pg becomes
finding the probability that the next HL timeout happens on
the Nth window when the window threshold is W, = [i/2].

Furthermore, the HL sends out a new window of packets
only after it receives all the acknowledgements of the packets
of the previous window. Therefore, the HL timeout proba-
bility of each window is independent of each other. Starting
from state i, let QY be the probability that the HL timeout
does not happen on the nth window and P}¥ be the proba-
bility that the HL timeout happens on the nth window. Here
the superscript W denotes that the probability is related to
windows. Then, the transition probability Pg has a product
form as follows:

N-1
Pi?:(H QZVZ)PJ;VV (4)
n=1
and

There are two causes of the HL timeouts. One cause is the
random losses, which cannot be recovered by the LL ARQ.
Another cause is the possible long time taken by the retran-
simissions of the LL ARQ due to transmission errors. Since
the HL timeout signal is designed to recover the losses that
cannot be recovered by the LL, we call the HL timeout caused
by the second cause a false timeout. Note that in our system
these two causes are independent of each other.

Let QF, be the probability of no timeout on the first k
packets of the nth window, and let QZF be the probability of
no false timeout on the first k packets of the nth window. Here
the superscript P denotes that this probability is related to
packets. Let W,, be the window size of the nth window. Then,
since each packet incurs losses independent of each other, we
have:

Qui = Qmi (1= p1)", (6)
Qin = Quw,.- (7
Let PF, be the probability that the HL timeout happens on

the kth packet of the nth window. Then PJ, can be expressed
using QF, as follows:

Py = Qu(e—1) = Q- ®)

where the initial value Q7 = 1.
We obtain QFF from the LL queuing models, and equa-
tion 6, 7, 5 and 4 give us the transition probability PJ}.

B Reward Function V;;P

This subsection presents the derivation of the reward function
Vi Since the HL window size is updated according to a fixed
rule, the number of successfully transmitted packets during
one transition is simply the sum of the window sizes before the



timeout happens and the number of successfully transmitted
packets of the window that incurs the HL timeout, that is,
Z W + k — 1, where k is the packet within WlIldOW N
that i 1ncurs the HL timeout.

Moreover, by the definition of Q)Y and Pf,,, the probability
that the HL timeout happens on packet k of the Nth window
is Hi\:ll W . PL,. Therefore, the expected reward Vi is

ZV:]\;[(ZZ;E Wn + k— 1)(HN 11 in PNk)]

v 7
T ) R )
wN (k= 1)PY,

Here Pf, and P}¥ can be obtained from equation 8 and 5,
respectively. Equation 9 thus gives us the reward function V7.

C Reward Function V1§

We derive the reward function sz in this subsection. Let T}
be the time taken by one transition. Then T;; is the sum of the
time taken by the N — 1 windows that did not incur timeout
and the timeout value TO, that is:

N—1
Ti; = Z T, +TO,
n=1
where TV is the time taken by the nth window starting from
state 1.
Furthermore, the expected reward
of Tij, that is:

Vi is the expected value

TV +TO, (10)
where T;; is the expected value of T;; and T}V is the expected
value of T}V given no timeout happens on the nth window.
Here for simplicity, we did not indicate the condition on the
symbol. _

The LL queuing models will give us 77, which will be
derived in Section 4. Equation 10 thus gives us the reward
function Vé

IV. LL QUEUING MODELS

This section develops simple queuing models for the LL. ARQ
protocol with batch arrivals. The two quantities PF and
TW . which are needed for solving the system Markov chain,

are obtained from these queuing models.

A Queuing Model for the GBN

The GBN protocol in our model can be modeled as a queu-
ing system with independent geometrically distributed service
time [2] as follows:
Pr(Xy =md+1) =p"q,

where X}, is the service time of packet k and m is the number
of retransmissions of packet k before it is successfully acknowl-
edged.

Let’s first find the round trip time of one window, then the
two quantities Q) and T}V.

Since packets arrive at the LL in batches, the round trip
time of packet k (defined to be the interval between the time
packet k arrives at the LL queue and the time packet k leaves
the queue) is the sum of its service time and the service times
of the k — 1 previous packets within the same window. Since
the service times of packets are independent of each other,
the round trip time of packet k can be shown to be binomially
distributed and have the following distribution:

m+k—1

o > p"q", (11)

where RTT}, is the the round trip time of packet £ and m is
the total number of retransmissions of the first k packets in
the batch. Note that extra d — 1 slots are added for allowing
the ACK to come back to the sender after the packet leaves
that LL queue.

Moreover, since in GBN the packets are acknowledged in
order, the event of no timeout on the first k packets is equiv-
alent to the event that the round trip time of packet k is less
than the timeout value TO. Thus:

)pmqk, (12)

where M, = [T9=k=4+1] _ 1 js the maximum number of re-
transmissions of the first k packets without causing a timeout.

For the same reason, the time taken by each window is the
round trip time of its last packet, i.e., T}V = RTTw, . From
equation 11, which gives us the distribution of RTTw,, we
have:

PNRTE;:md+k+d—1):<

My,
+k—1
Qi = Pr(RTT, <TO) =Y ( m -

m=0

W = RTTw, = RTTw, |notimeout

M m + Wn -1 m n
ZmZ)ﬂ (md+Wy+d—1) < m )p qW
- . )
— [TO—W;"—d+1‘|

where Mw, = — 1 is the maximum allowed to-
tal number of retransmissions of all the packets in the window
so that no timeout occurs in this window.

Equation 12 and 13 give us the two quantities needed for
solving the system Markov chain for GBN.

B Queuing Model for the SRP

By definition, Q7 is the probability that the round trip times
of the first k packets are less than the timeout value T'O, i.e.:

k
wi = Pr([|RTTi < TO).
=1

(14)
For TV, note that TW is a non-negative integer valued

random variable. Thus, it can be shown that its expected
value is as follows:

™ = Z Pr(TY > z|no timeout)
2=0
TO-1
P T <
- TO— Z ’I" in Z)

an



&= Pr(N RTT,; < 2)
= TO- Z PF
2=0

nWn

(15)

Equation 14 and 15 show that once we know the two
probabilities Pr(ﬂle RTT, < TO) and Pr(ﬂ}i’i RTT, < 2),

the two quantities, Q%i and T}V, can be obtained. For the

two cases when k£ < d and k > d, the following subsections
use queuing models for SRP to obtain these two probabilities.

B.1 The Case of £ <d

When the LL employs the SRP protocol, the service times
of packets are geometrically distributed, independent of each
other, and independent of the waiting times of the packets.
Moreover, in the case of k < d, the waiting time for each
of the first k packets is fixed and thus independent of each
other as well. Since the round trip time of each packet is the
sum of its waiting time and service time, this means that the
round trip times are also independent of each other. Thus in
this case, both of the two probabilities, Pr(ﬂf:1 RTT, < TO)

and Pr( ;Z’i RTT; < z), have product forms. The details are
shown below.

Let R; be the waiting time of packet [ in the batch. Then, in
the first k slots, according to the SRP protocol, the LL sends
out the k packets in order and Ry = l—1forl=1,2,--- k, k <
d. Let X; be the service time of packet | and RTT; be the
round trip time of packet [, then RTT; = R, + X; for | =
1,2,---,k, and X; has the distribution of Pr(X; = (m+1)d) =
p™q, where m is the number of retransmissions before the
successful transmission of packet [.

Since RTT, are independent of each other,

k k
Pr([RTT: < TO) = [[ Pr(RTT: < TO) =
=1

=1

(1—pM*h

o

1

(16)
where M; = [T25141] — 2 is the maximum allowed total num-
ber of retransmissions of the packet ! such that packet [ will
not incur a timeout. Similarly,

Wy, Wn
Pr((RTT < 2) = [J(1 = p™*), (17)
=1 =1

where M., = | &=L |;
Equation 16 and 17 give us the two desired probabilities
when k£ < d.

B.2 The Case of £k >d

When k > d, the service times of packets are still geometrically
distributed and independent of each other. However the wait-
ing times are no longer fixed and independent of each other.
Nevertheless, the SRP protocol gives the following three facts.
First, given that the waiting time of packet k is Ry, before slot
Ry + 1, the LL was transmitting one of the first k — 1 packets
in each slot. Second, the transmission in slot Ry —d + 1 must
have been successful. Third, since the round trip time of one
transmission is d, the packets that the LL was transmitting in
the d —1 slots before slot Ry, + 1 are different from each other.
These packets were either transmitted for the first time, or
their previous transmissions are erroneous. These facts give
us the conclusion that during the first Ry — d + 1 slot, the

number of successfully transmitted packets is &k — d. Since
each transmission incurs error independently with probability
p, the waiting time distribution is thus given by:

re —d

k—d-1 (18)

Pr(Ry, =) = ( ) prr AL gh—d,

Another less insightful and more complicated, but more
straightforward approach to obtain Pr(R; = ri) is by us-
ing the Markov property of the waiting times of the packets,
that is, given the waiting time of packet [, the waiting time
of packet I + 1 is independent of the waiting times of those
packets ahead of packet I. This approach will give us the
same distribution as shown in equation 18. Here we omit the
details of this approach.

Given the waiting time of each packet, let’s now find
PT(['];I“:1 RTT; < TO). For those packets that have already
been successfully transmitted before the first transmission of
packet k, RTT);, < TO guarantees that their round trip times
are less than TO. For the d packets (including packet k) that
are transmitted between slot Ry —d+ 2 and slot Ry + 1, their
round trip times are the sum of the time slots between slot
Ry —d+ 2 and slot Ry 4+ 1 when they are transmitted and the
residual times. Note that the residual times are also geometri-
cally distributed. Therefore, calculating the round trip times
of these packets is equivalent to calculating the round trip
times of packets with geometrically distributed service times
and the following waiting times:

R =Ry —d+1, forl=1,2,---.,d.

where [ means the lth packet of these d packets and Ry is its
equivalent waiting time.

Note that the above equivalence is consistent with the mem-
oriless property of the geometric distribution.

Similar to the case when k < d, the service time X; of
packet [ is independent of each other and the waiting times.
Thus given Ry, the round trip time of packet [ of these packets,
denoted by RTT} for packet I, is independent of each other.
Moreover,

M,
Pr(RTTf <TO|Rx =m) =Y p"g=1-p""*", (19)
m=0

where M; = [%] — 1 is the maximum allowed total

number of retransmissions of the packet [ without incurring a
timeout.
Therefore,

Pr(ﬂle RTTi <TO)
= Pr(ﬂ?:l RTT; <TO)
= ZTOidil(Hfﬂ Pr(RTTy <TO|Rk =ri))Pr(Ry = i)

re=k—1
TO—d—1 y1d
= Zrkzk—l 1=1(1 _PMZH)PT(Rk =) (20)
Here in the third equality, we use the fact that the minimum
waiting time for packet k is k — 1, which happens when the
first k — 1 packets were successfully transmitted on their first
transmissions, and the maximum waiting time of packet k in
order for its round trip time to be less than TO is TO —d — 1.
Similarly,



Pr(NY RTT, < 2)

= kao=7V[1/n—1 H;izl(]' _pMZIJrl)PT(RWn = rk)’ (21)
where M, = [%HJ

Equation 20 and 21 give us the two probabilities needed
when k > d.

In summary, the LL queuing models give us the probability
of no false timeout on the first £ packets of the nth window,
QFPF . and the expected window cycle given no timeout, v
(using equation 12 to 15). The transition probabilities and
the reward functions of the system chain can be obtained from
equation 4, 9 and 10. After having all the variables Pg,
V;; and Vi?; we can solve for the steady state distribution of
the Markov chain, and the throughput of the system can be
obtained using equations 1, 2 and 3.

V. NUMERICAL RESULTS AND DISCUSSIONS

Based on the model derived in the previous section, here we
present, for different protocol and packet loss parameters, the
numerical solutions for the throughput of the system. For
comparison purpose, when there are no random losses (i.e.,
pi = 0) and no HL protocol is employed, the throughput of
the system is also given. In this case the throughput of the
system is the efficiency of the ARQ employed. For ideal GBN,
this throughput is given by m, and for ideal SRP, it is
given by 1 — p.

When the ARQ LL implements the GBN, Figure 3 and
Figure 4 show the throughput with the change of the loss
parameter p, p; and the ARQ link round trip time d. When the
LL employs SRP, the curves, which we did not show here, are
similar except that the corresponding throughput for each case
is higher. Figure 5 and Figure 6 show the throughput with
the change of the HL timeout value 70O, when the ARQ LL
implements the GBN and the SRP, respectively. In Figure 3,
p > 0 and p; = 0 represents the case where there are no
random losses and the x-axis denotes the change of the link
loss probability p. Other lines can be explained similarly. Note
that the case when p = 0 and p; > 0 is equivalent to the case
when no ARQ is employed. Thus the curve corresponding to
this case serves as a comparison between two systems when
the ARQ is employed and is not employed.
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From figures 3 one can see that the throughput of the sys-
tem decreases when the erroneous transmission probability
p or the random loss probability p; increases, regardless of
whether the ARQ protocol is employed or not. This is consis-
tent with the system operation, since larger loss probability
means more retransmissions and longer delays. Notice that in
this case, a system with ARQ performs much better than one
without ARQ.

Figures 4 shows that the throughput of the system de-
creases as the round trip time d increases. This is also consis-
tent with the system operation, since longer round trip time
for one transmission means that longer time is needed for both
the end node HL sender and the ARQ LL sender to detect er-
rors and start retransmissions, which leads to a lower through-
put.

Figures 5 and 6 show the change of the throughput with the
HL timeout value TO. It can be seen that when the LLs do not
employ the ARQ protocol (the p = 0 and p; = 0.01 case), the
throughput of the system decreases when the timeout value
of the HL increases. This is because all of the errors in this
case are recovered by the HL retransmissions. The only way
for the HL to detect the losses is its timeout signal. Higher
timeout value makes the HL less responsive to the losses, thus
gives lower throughput.

On the other hand, when the ARQ protocol is employed
and there are no random losses (the p = 0.01 and p; = 0 case),
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the throughput of the system increases when the timeout value
of the HL increases. This is because the ARQ LL can recover
all of the losses in this case, and higher HL timeout value
allows more time for the LL to recover the losses and makes
the unneccessary false HL timeout less likely to happen.

When both types of losses exist (the p = 0.01 and p; =
0.001 case), the throughput of the system first increases when
the timeout value of the HL increases, then decreases. This is
because when the timeout value is low, although it increases,
the benefit of allowing the ARQ LL to recover the losses over-
come the drawback of less responsiveness of the HL, while
when the timeout value is high, the opposite happens. The
turning point changes with the relative value of the loss prob-
abilities p and p;.

Thus, when the system includes a lossy link and/or long
round trip time, if there are no random losses and all the
losses can be recovered be the LL. ARQ, or the random loss
probability is negligible, it is better to set a higher HL timeout
value to improve the throughput. But when there are random
losses, one has to be cautious with the choice for the timeout
value.

In the absence of random losses, all the figures show that
the system not employing the AIMD HL protocol has a much
higher throughput than the system with the HL protocol. This
is because in this case all the losses can be recovered by the
ARQ LL. But the retransmissions of the ARQ LL lead to the
variability of the round trip time seen by the HL. This vari-
ability results in false timeouts at the HL, which makes the HL
unnecessarily reset its window size. As a result, the through-
put is decreased. This would lead one to think that when
there are no random losses from which the LL ARQ cannot
recover, it is better not to employ the HL protocol; however,
the purpose of the HL. AIMD protocol is not to recover from
transmission losses, but rather to control congestion. Hence,
although it appears that the AIMD protocol only serves to
decrease performance, it has an important congestion control
function that cannot be understood in the context of a single
connection.

VI. CONCLUSION

In this paper we provide an analytical framework to study
the interactions between the protocols of window flow control
and ARQ at different network layers. Simple queuing models
are also developed for ARQ with batch arrivals. We analyze

a system with two end nodes communicating over a multi-
hop network whose packets incur both transmission errors and
random losses. The HL of the two end nodes implements the
AIMD congestion control mechanism and the LL over the error
prone bottleneck link implements an ARQ protocol, where
both the GBN and SRP are considered. This paper provides
a Markov model for this system. Simple queuing models are
used for the LL ARQ to obtain the transition probabilities
and the reward functions, and the throughput of the system is
derived by the theory of Markov chain with reward functions.

Numerical results for the throughput of the system show
that when the loss probabilities increases, the throughput al-
ways decreases regardless of whether the ARQ protocol is em-
ployed or not. The throughput also decreases when the round
trip time of the transmission increases. Moreover, increasing
the HL timeout value is beneficial when there are no losses
from which the LL cannot recover, that is, no random losses.
But when there are random losses from which the HL must
recover, increasing the timeout value beyond a certain value
lowers the system throughput.

Our work so far only considered a higher layer that im-
plements a window congestion control mechanism (AIMD).
Naturally, higher layers that must also recover from random
losses typically also implement some form of ARQ mechanism.
A natural extension of this work, on which we hope to report
in the near future, is to consider the interaction between the
retransmission mechanisms at the different layers.
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