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Abstract -- We consider the problem of routing packets from an
arbitrary input stream X(t) over a collection of heterogeneous
queues in parallel. When the processing rates (µ1,..., µn) of the
queues are constant, a simple work conserving routing strategy
πWC is shown to hold total system backlog within a fixed upper
bound from the resulting backlog of any other policy. Similar
results apply to systems with time varying processing rates
(µ1(t),..., µn(t)) when routing decisions can be postponed by placing
packets in a pre-queue. For the case when routing decisions must
be made immediately upon arrival, we demonstrate that the non-
predictive policy of routing packets to the shortest queue ensures
system stability (and maintains low packet loss rates for finite
buffer systems) whenever the system is stabilizable. Finally, we
consider a joint problem of routing and power allocation where,
for each time varying channel state ci(t), the rate of each queue i
can be varied by adjusting a power parameter pi (subject to power
constraints) according to a rate-power curve µi(ci, pi). A through-
put maximizing algorithm is developed for this joint problem.

I. INTRODUCTION

This paper treats a problem of routing packets from an arbi-
trary input stream X(t) over a set of n heterogeneous queues in
parallel (Fig. 1). Routing decisions are made based upon the
current state of the queues, and the goal is to maintain an
acceptably low level of backlog for all time. Such a scenario
occurs, for example, in a satellite network where packets arrive
to a satellite and can reach the ground using one of several
downlink channels. Packet transmission rates along different
downlinks may vary as different channel codes are used to
adjust to fluctuations in channel conditions (e.g., due to
weather). Timescales of variation may be very long--in which
case a constant transmission rate model is appropriate--or very
short, in which case a time-varying channel model is used.
Here, both the cases of constant and time-varying rates are con-
sidered from a queueing perspective. The instantaneous trans-
mission rates are assumed to be known at the transmitter,
although in the time varying case future rates are unknown and
change according to arbitrary ergodic processes.

For constant processing rates, we develop a simple work con-
serving routing policy πWC that ensures no more than a fixed
amount of excess bits in the system above the amount there
would be under any other routing strategy. Similar results hold
when processing rates are time-varying and routing decisions
can be postponed by storing packets in a pre-queue.

When no such pre-queue is available and packets must be
routed immediately upon their arrival, it is impossible to bound
the number of packets or the amount of unprocessed bits in the
queues unless complete knowledge of future events is known.
However, we show that the simple, non-predictive strategy of
placing an arriving packet in the queue with the least back-
logged bits yields a stable system whenever the system is stabi-
lizable. A new notion of stability is developed for this analysis,
which is useful for addressing stability issues in general ergodic

systems. The analysis yields simple performance bounds on
queue occupancy and packet drop rates.

We extend these results to address a joint problem of routing
and power allocation. A constrained resource of power is allo-
cated to the multiple transmitters to control transmission rates
in response to packet backlog and/or varying channel condi-
tions. A throughput maximizing algorithm with performance
bounds is developed.

Previous work on routing and queue control policies in satel-
lite and wireless systems is found in [1-9]. In [1], stabilizing
power control algorithms are developed using Lyapunov tech-
niques for a multi-beam satellite downlink operating in discrete
time. In [2] a server scheduling problem is formulated where a
single server can be scheduled to serve one of n parallel queues,
each queue having iid packet arrivals and iid channel outage
states (ON or OFF) on each timeslot. In symmetric situations
when all queues have the same arrival and outage processes,
stochastic coupling is used to show optimality of the “serve-the-
longest-connected-queue” policy. An asymmetric situation of
packet routing over two heterogeneous queues is considered in
[3] when the arrival stream is Poisson, and an optimal threshold
policy for minimizing average occupancy is developed using
dynamic programming techniques. In [6] a Lyapunov function
is used to establish a stable routing policy in a wireless network
when arrivals are memoryless and packets have memoryless
service times. In [7] an exact analysis of the join-the-shortest-
queue policy for parallel queues is developed for M/M/1 sys-
tems. In [9] convexity properties of queueing systems with gen-
eral */* inputs are developed and used to establish optimal static
policies for routing multiple data streams over n parallel
queues.

A related NP-complete problem of batch packet arrivals is
considered in [10, 11] where the goal is to route packets to par-
allel queues to minimize the total delay for transmitting one
batch. In [12-14] an online job scheduling problem is consid-
ered where n identical servers work on k jobs which arrive ran-
domly over an interval of time [0, T]. Simple algorithms which
finish within twice the minimum possible completion time are
developed.

The main contribution in this paper is to treat stochastic
queueing systems and to provide tight, worst case bounds on
system performance for arbitrary input processes. Using sample
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Figure 1: Routing over a set of parallel queues
with time-varying processing speeds µi(t).



path techniques, we develop additive bounds on the amount of
unfinished work in the queues for the entire timeline t>0. For
finite buffer systems, we present additive bounds on packet
drops. Such bounds directly translate into statements about
queue stability and buffer requirements in the system. This
approach differs significantly from the dynamic programming
and Lyapunov function techniques which address systems with
particular types of input processes.

In the next section we introduce the routing problem by com-
paring two natural routing strategies: a greedy routing strategy
and a work conserving routing strategy. In Section III a simple
queueing inequality is developed for time-varying systems and
is used as a tool for comparing routing schemes and proving
performance bounds. In Sections IV and V we treat routing in
systems with a pre-queue and without a pre-queue, respectively,
and in Section VII we apply these results to a power allocation
problem.

II. THE GREEDY AND WORK CONSERVING ALGORITHMS

Consider the system of Fig. 1 with an arbitrary arrival stream
X(t) sending packets to be routed over the n queues. Assume all
processing rates (µ1,..., µn) are constant. The goal is to route
packets in a manner that ensures an acceptably low level of
unfinished work U(t) and number of packets N(t) in the system
for all time. It can be shown that a policy πgreedy (described
below) is optimal in minimizing N(t) at every instant of time if
all packets have fixed lengths and arrive in a single burst at time
zero. However, for general streams X(t) with arrivals occurring
over the timeline , it is not possible to minimize N(t)
or U(t) at every instant of time--even if the entire future is
known in advance. Here we seek a robust strategy, one whose
performance at each time t is sufficiently close to that of a sys-
tem optimized to minimize backlog at that particular time
instant.

Two natural routing strategies emerge, the greedy strategy
πgreedy and the work conserving strategy πWC:

1. The greedy strategy routes the current packet i to the queue
that allows it to exit first:

πgreedy: Choose queue k such that

(where Li is the length of the current packet i, and Uj(t) is the
unfinished work in queue j at time t).

2. The work conserving strategy routes to the queue which
will empty first:

πWC: Choose queue k such that .

Notice that policies πgreedy and πWC are identical if all server
speeds µj are the same, although they may differ considerably
under heterogeneous server rates. Because the greedy strategy
uses the length of the current packet when making a routing
decision, one would expect this policy to offer better perfor-
mance. However, for suitable choices of the linespeeds (µ1,...,
µn), a system under the greedy strategy can have arbitrarily
more unfinished work within it than the same system operating

under the work conserving strategy, as the following example
illustrates.

Suppose a burst of B packets arrive to the system at time 0.
After this initial burst, a single packet arrives periodically at
times {1, 2, 3,...}. Assume all packets have fixed lengths L=1,
and that (µ1, µ2,..., µn) = (1, ε,..., ε). Suppose that ε>0 is suffi-
ciently small to ensure that all packets from the initial burst as
well as all packets thereafter are routed to queue 1 under strat-
egy πgreedy. Thus, under the greedy strategy, there are always B

packets in the system.
Now consider a different set of routing decisions (which we

represent as policy π): route the B packets from the initial burst
amongst the n-1 queues of rate ε, and route all packets from the
periodic stream thereafter to queue 1. Under this policy, queue 1
always has exactly one packet within it. However, the B packets
from the initial burst eventually depart from queues {2, 3,..., n},
leaving these queues empty after some finite time T. Hence,
after time T the greedy strategy πgreedy results in B-1 more
packets in the system than policy π, where B-1 can be made
arbitrarily large. Alternatively, in Section III it is shown that the
work conserving strategy πWC is fundamental in that it never
produces more than n-1 extra packets in the system compared to
any other policy.

III. A MULTIPLEXING INEQUALITY

Here we develop a queueing inequality useful for establishing
performance bounds on routing policies. Let X(t) represent an
arbitrary packet arrival process on the interval . A partic-
ular X(t) sample path is a non-decreasing staircase function rep-
resenting the total number of bits that have arrived to the system
during [0, t]. Jumps in the X(t) function occur at packet arrival
epochs and have magnitudes equal to the length of the arriving
packet. We assume there is a maximum packet length Lmax.

Consider the single server and multi-server queueing systems
of Fig. 2. The linespeed processes µ(t) and {µi(t)} represent
instantaneous server processing rates (in units of bits per sec-
ond). Here we assume that the rate of the single server queue of
Fig. 2a is equal to the sum of the individual server rates in Fig.
2b, i.e., . Assume both systems of

Fig. 2 are initially empty and the same input process X(t) is
applied to each. Packets are immediately processed in the single
server system according to a non-idling service policy. How-
ever, in the multi-server system packets are routed to the n
queues using any conceivable routing mechanism. All buffers in
the queues and in the router device are assumed to be infinite, so
that no packets are lost. Let Usingle-server(t) represent the unfin-
ished work (in bits) in the single server queue, and let Umulti-

server(t) represent the total amount of unfinished bits in the
multi-queue system.

Lemma 1 (Multiplexing Inequality): For all time :

Proof: Let Dsingle-server(t) and Dmulti-server(t) represent the
amount of processed bits or “departures” from the single server
system and multi-server system, respectively, during [0, t].
Clearly we have Dsingle-server(t) = X(t) - Usingle-server(t) and
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Dmulti-server(t) = X(t) - Umulti-server(t), and it suffices to show that

. Notice that the departure
functions are both initially 0 at time t=0. Whenever the single-
server system is empty, Dsingle-server(t) = multi-server(t),

and hence the inequality is satisfied at such times. If the single-
server queue is not empty, then it is processing packets at the
instantaneous rate µ(t), which is greater than or equal to the
instantaneous departure rate of bits from the multi-server sys-
tem. Hence, the departures from the multi-server system can
never overtake the departures from the single-server queue. ❑

A finite buffer version of this statement is given in Section V.
This multiplexing inequality demonstrates that it is always bet-
ter to multiplex data streams from individual queues to a single
queue whose rate is equal to the sum of the individual process-
ing rates. It is useful to consider such a virtual single-server
queue to provide a baseline for measuring the performance of
routing policies. Strategies yielding unfinished work functions
close to the Usingle-server(t) lower bound are desirable.

Consider now a particular work conserving routing strategy
πWC that operates on the multi-queue system of Fig. 2b. The
policy πWC places all incoming packets in a shared buffer
device or “pre-queue.” Whenever any server becomes available,
the pre-queue instantaneously routes the next packet to that
server. If there is more than one server available, the choice is
made arbitrarily. Thus, the policy πWC is “work conserving” in
that no servers are idle whenever there are buffered packets
waiting to be processed. Let UWC(t) represent the total unfin-
ished work at time t in the multi-server system of Fig. 2b under
this policy.

Lemma 2 (Performance Tracking): At every instant of time t:

Proof: The first inequality is just a particular case of the mul-
tiplexing inequality (Lemma 1). To prove the second inequality,
we compare the departed bits DWC(t) and Dsingle_server(t). It suf-

fices to show that .

For simplicity, assume that for all i, so that departures

drain continuously from the queues. For the above departure
inequality to be violated, there must be some crossing time t*
such that Dsingle_server(t*) = DWC(t*) + (n-1)Lmax. If the single-
server system is empty at this time, the departure function
Dsingle_server(t) cannot increase, and hence t* cannot be a cross-
ing time. Otherwise, the multi-server system holds strictly more

than (n-1)Lmax bits, and hence contains at least n distinct pack-
ets. By the nature of the work conserving policy πWC, all serv-
ers of the multi-server system must be actively processing these
packets. The departure functions Dsingle_server(t) and DWC(t) are
thus increasing at the same rate at time t*, and the departures
from the single-server system cannot overtake the bound. ❑

Notice that the bounds of Lemma 2 imply that the work con-
serving routing strategy πWC is stable if and only if the single
queue system with the same inputs is stable. Stability issues are
addressed further in Section V.

IV. SYSTEMS WITH PRE-QUEUES

The results of the previous section allow routing policy πWC--
which is implemented with a pre-queue--to be compared to any
other policy πwhich operates on the same multi-server system.
Here we show πWC is minimax optimal. Let UWC(t), NWC(t),

Uπ(t), and Nπ(t) represent the unfinished work and number of
packets in the multi-queue system of Fig. 2b under policies πWC

and some other (arbitrary) policy π, respectively.

A. Variable Packet Lengths: Here we treat systems with vari-
able length packets. All packets are bounded by a maximum
packet length Lmax. We show that the πWC routing strategy pro-
vides the best worst-case performance guarantee of all policies
for routing packets non-preemptively over multiple time vary-
ing servers.

A policy π is non-preemptive if it does not interrupt a packet
that has initiated processing at a server. If the policy does not
require knowledge of the future, we say it is non-predictive. If a
policy πhas full knowledge of future events, it can be designed
to minimize unfinished work at some particular time instant τ.
Let represent this minimum value of unfinished

work in a system with input stream X(t) and linespeeds (µi(t)).
Consider a game where a scheduler makes routing decisions

(according to some non-predictive policy π) while an adversary
dynamically creates an input stream X(t) and varies the
linespeeds µ1(t),..., µN(t) in order to maximize the difference

between Uπ(t) and . The goal of the scheduler is to

minimize the worst case deviation from optimality, i.e., mini-
mize the value of .

Theorem 1: (a) For all policies π (possibly predictive and pre-

emptive), we have:

(b) The work conserving policy πWC is the minimax optimal
non-predictive, non-preemptive routing strategy over the set of
all possible inputs and linespeed variations.

Proof: Part (a) follows immediately from Lemmas 1 and 2.
To establish that the policy πWC is minimax optimal, it suffices
to show that any non-predictive, non-preemptive policy π can
be forced to meet the (n-1)Lmax bound. The idea is for an adver-
sary to force policy π to route maximum length packets to dis-
tinct servers, and then to trap these packets by setting their
server rates to 0. Specifically, the adversary sends (n-1) maxi-
mum length packets at time 0. She then maintains a constant
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Figure 2: A single server queue and a set of multi-server queues
with an arbitrary router device. The sum of the time varying
server rates of the servers in (b) equals the rate µ(t) in (a).
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output rate of µi(t) = µ for all servers i that have no packets
within them. Whenever a packet is routed to a server under pol-
icy π, that server rate is set to 0. After (n-1)Lmax/µ seconds have
elapsed, there must be some server j that has remained empty
for the full time interval, with an unused processing rate
µj(t)=µ. Hence, an alternative routing scheme that sends all
packets to this server would have allowed the system to be
empty at this time, and so the (n-1)Lmax bound is met with
equality. ❑

B. Fixed Length Packets: In the case when all packets have
fixed lengths, a version of inequality (3) can be established in
terms of the number of packets N(t) in the system.

Theorem 2: If all packets have fixed lengths L, then:

Proof: Define a completely busy period as an interval of time
when all servers of the parallel queue system are busy. Because
πWC never buffers packets if a server is idle, the inequality holds
whenever t is not within a completely busy period. Suppose
now that t lies within a completely busy period, and let τB be the
beginning time of this period. We have:

where τ-
B represents the time just before the arrival initiating

the completely busy period, A(τB, t) is the number of arrivals
during the interval [τB, t], and DWC(τB, t), Dπ(τB, t) respectively
represent the number of packet departures from the πWC system
and the πsystem during this interval. The above departure func-

tions are composed of individual terms Di
WC and Di

π represent-
ing departures from queue i in the πWC and π systems:

During the time interval [τB, t], each queue of the πWC system
continuously processes fixed length packets. Thus,

for al0l queues i, and equality holds only if
there was a packet being processed by queue i under the π rout-

ing policy at time τ-
B. Suppose there are k such cases (where

). We thus have:

where (9) follows from (6), and (10) follows because the work
conserving strategy contains fewer than n packets just before
the completely busy period. ❑

A technique similar to the one used in the proof of Theorem 1
shows that this (n-1) bound is tight and is minimax optimal over
all non-predictive, non-preemptive strategies.

Similar routing problems have been treated in [3,4,5,16] for
systems with two heterogeneous servers (n=2) when packet

inputs are Poisson. With this stochastic formulation, it is possi-
ble to prove that the optimal routing strategy for minimizing
expected occupancy in the system has a threshold structure. A
complex dynamic program can be developed to calculate the
exact threshold function. However, here we find that--with arbi-
trary input processes X(t)--the simple work conserving strategy
πWC ensures no more than one extra packet in the system com-
pared to any other strategy at any time.

V. SYSTEMS WITHOUT A PRE-QUEUE

A. Constant Rate Servers: The implementation of the work
conserving policy πWC for time varying servers uses a pre-
queue to store packets until the next server becomes available.
In many systems it is undesirable or even impossible to imple-
ment a pre-queue. For example, in a satellite network, queues
might be aboard different satellites, which may require routing
decisions to be made immediately upon packet arrival. Here we
show that the same results can be obtained in systems without a
pre-queue if the server rates (µ1,...,µn) are known constants.

Observation: For constant server rates (µ1,...,µn), the strategy
of routing an incoming packet to the queue k with the smallest
value of Uk(t)/µk (the πWC strategy as described in Section II) is
the same as the πWC strategy described for time varying servers
in Section III. Thus, a pre-queue is not needed.

Proof: The strategy always routes a new packet to the queue
that will empty first. Thus, if there is ever an empty server i,
there can be no more than 1 packet in each of the (n-1) other
queues. ❑

Thus, the bounds in Theorems 1 and 2 apply to heteroge-
neous, constant rate servers when this routing method is used.

B. Time Varying Servers: Consider routing over a multi-
queue system with time-varying processing rates when no pre-
queue is available and all routing decisions are made immedi-
ately upon packet arrival. We examine the Join-the-Shortest-
Queue (JSQ) policy: route the current packet to the queue i
with the smallest value of Ui(t). Intuitively, this strategy is the
closest match to the work conserving strategy given that we
cannot predict future values of server rates.

We seek to prove that this strategy stabilizes the multi-queue
system whenever it is stabilizable. This is done for general
ergodic input sources and linespeed processes by introducing a
new notion of stability defined in terms of finite buffer systems.
Consider the single queue system of Fig. 3a with an ergodic
input process X(t) of bit rate λ, a linespeed process µ(t) with
ergodic rate µav, and assume this system has a finite buffer
capacity of M bits. We assume a full packet of size L is dropped

if it arrives when M-U(t)<L. Let GM(t) represent the total bits
dropped (or placed into the Garbage) during [0, t] when the
buffer size is M. Further let DR(M) represent the drop rate
(measured in bits) of the system as a function of buffer space M:

Definition: A system is loss rate stable if the drop rate can be
made arbitrarily small by increasing buffer capacity, i.e., if

 as .
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It can be shown that a necessary condition for loss rate stabil-
ity is . Furthermore, if the input stream and server rate

process evolve according to an underlying finite state Markov
chain, a sufficient condition for loss rate stability is .

This notion of stability is closely tied to the standard notion
defined in terms of a vanishing complementary occupancy dis-
tribution for infinite buffer capacity queues [6], [1].

Before analyzing the JSQ strategy, we present a finite buffer
version of the multiplexing inequality. Consider the two sys-
tems of Fig. 3. The server rates µ1(t),...,µn(t) of the multi-queue
system sum to the single-server linespeed µ(t). Suppose the sin-
gle queue system has buffer size M, while the multi-queue sys-
tem has buffer sizes M1,...,Mn. Let represent the total

bits dropped by the single server system during [0, t], and let
represent the bits dropped by the multi-server system

with the same inputs (using any arbitrary set of routing deci-
sions). Both systems are assumed empty at time 0.

Theorem 3 (Finite Buffer Multiplexing Inequality): For arbi-
trary inputs X(t), if , then for all t:

(a) Departures satisfy:

(b) Packet drops satisfy:

Proof: See Appendix. ❑

Thus, a single-queue system in which all buffer slots and
linespeeds are aggregated (with an additional buffer slot of size
Lmax) always outperforms the multi-queue system. We now
consider the particular routing strategy JSQ. Let DRJSQ(M) rep-
resent the drop rate of the multi-queue system (operating under
the JSQ policy) when all queues have finite buffer storage M.

Theorem 4:  For all buffer sizes M:

and hence a multi-queue system under the JSQ strategy with a
buffer size of M+nLmax in each queue drops fewer packets than
the single queue with buffer size M.

Proof: We prove a stronger result: for

all , where and respectively represent

the total bits dropped by the multi-queue system (under JSQ)
and the single queue system. Suppose this inequality is first vio-
lated at some time τ (we reach a contradiction). It follows that
an arriving packet must have been dropped by the JSQ system
at this time, and thus all servers of the multi-queue system are

busy. Let tB represent the start of this completely busy period,
so that bits depart from the JSQ system at the full service rate
during [tB, τ]. Let UJSQ(t) represent the unfinished work in the
JSQ system at time t. Further define:

a = Arrivals during [tB, τ]
dJSQ = Bits processed by the JSQ system during [tB, τ]
gJSQ = Bits dropped by the JSQ system during [tB, τ]

Define dsingle, gsingle, and Usingle(t) similarly for the single
queue system. Note that gJSQ > gsingle because the packet drop

inequality is first violated at time τ. The

following bit-conservation equalities hold:

Just before the completely busy period, at least one queue of
the multi-server system is empty, and hence:

Because a packet is dropped by the JSQ system at time τ, all
queues must have more than [M+(n-1)Lmax] unfinished work
within them, and hence:

Using (14) and (15) in (12), we have:

The unfinished work in the single queue can thus be bounded:

where (17) follows from (13), (18) follows because the JSQ
system processes packets at the full rate µ(t) during [tB, τ], and
(19) follows from (16). Now, because of the finite buffer con-
straint, , and hence (19) yields gJSQ<gsingle, a

contradiction. ❑

Theorems 3 and 4 imply that the multi-queue system under
the JSQ routing strategy is stable if and only if the correspond-
ing single queue system is stable. Furthermore, (11) provides a
simple and useful bound on the packet drop rate in the multi-
queue system in terms of a single queue with a finite buffer.

VI. JOINT ROUTING AND POWER ALLOCATION

Suppose that the transmission rates (µ1,...,µn) of the system
can be controlled by adjusting power levels pi allocated to each

server. Specifically, suppose that each channel
has an associated channel state ci which takes values on a finite

set of states ( ). Let µi(pi, ci) represent a

concave rate-power curve for each channel state (see Fig. 4).
We assume that the individual queues belong to a collection of J

sub-units, and let Vj represent the set of queues

λ µav≤

λ µav<

G glesin t( )

Gmulti t( )

X(t)
M X(t)

(a) (b)

Figure 3: A single stage system with a finite buffer of
size M and an aggregated server processing rate µ(t)
compared to a multi-queue system with finite buffers.
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belonging to sub-unit j. The sub-units could represent distinct
satellites of a satellite network, or different basestations in a
wireless network. Each sub-unit j has its own power resource

with total power .

Let represent the vector of

channel states at time t, and assume that varies according
to a discrete time Markov chain with timeslots of length T. As
before, packets enter the system according to an input process
X(t) and routing decisions are made immediately upon arrival.
In addition to making routing decisions, a controller must

choose a power allocation = (p1(t),..., pn(t)) for each
instant of time, subject to the total power constraints of each

sub-unit: for all . The problem

is to design a joint routing and power allocation strategy that
maximizes throughput and stabilizes the system whenever the
system is stabilizable. Such a policy makes decisions using the

observable system state vectors  and .

In general, both state vectors and are important in
both the routing and power allocation decisions. For example,
clearly any power allocated to an empty queue is wasted and
should be re-allocated to improve processing rates amongst the
non-empty queues. Likewise, a router is inclined to place pack-
ets in faster queues, especially if the rates of those queues are
guaranteed to operate at high levels for one or more timeslots.
However, below we show that the routing and power allocation
problem can be decoupled into two policies: a routing policy

which considers only , and a power allocation policy

which considers only . The power allocation policy is dis-
tributed, so that each sub-unit makes independent control deci-
sions using only the local channel state information for each
queue it contains. The resulting strategy maximizes total system
throughput even when the underlying Markov chain describing

 is unknown.

Let represent the steady-state probability that the channel

vector is in state . Define the following rate :

The value of is the average total rate offered by the system

when power is allocated to maximize total rate at every instant
of time. Assume that the input process X(t) generates packets
according to a fine state, ergodic Markov chain, and let λ repre-
sent the total bit rate.

Theorem 5: The capacity of the multi-queue system with

joint routing and power allocation is , i.e., a necessary condi-

tion for stability is , and a sufficient condition is .

The fact that is necessary follows by application of
Theorems 3 and 4. Indeed, suppose a stabilizing algorithm
exists, and let {pi(t)} represent the stabilizing power functions.
(Note that these functions are not necessarily ergodic). The sum
rate of all servers in the multi-queue system is hence

. The system

is stable if and only if a single queue system with the same

inputs and server rate µ(t) is stable. But for all t,

where is the result when power is allocated to maximize
total instantaneous rate. Thus, a system with input X(t) and

server process is also stable. But X(t) is ergodic with rate

λ and  is ergodic with rate , so  must hold.
Sufficiency is established by design of the following decou-

pled policy π* which stabilizes the system whenever :

Power Allocation: At every new timeslot, each sub-unit j

observes the entries of the channel state vector corre-
sponding to the queues it contains (given by the set Vj). The

sub-unit then allocates power (for ) to maximize

subject to . This power alloca-

tion is held constant until the next timeslot.
Routing: Whenever a new packet enters the system, we

observe the value of and route to

the shortest queue.

Note that this strategy is simply an application of JSQ routing
in reaction to the rates determined by the power allocation deci-
sions. Thus, from Theorem 4 we know that the multi-queue sys-
tem is stable whenever the single queue system is stable, which
is ensured when . This establishes Theorem 5.

VII. CONCLUSIONS

The problem of routing packets from an arbitrary stream over
a set of parallel queues has been considered in the context of
constant and time-varying processing rates. Using sample path
analysis, a simple work conserving strategy was developed to
provide fundamental performance bounds on the unfinished
work in the system at any instant of time. In time varying sys-
tems, this strategy can be implemented with a pre-queue and
guarantees that performance closely follows the performance of
a superior single-queue system with an aggregated data rate.

The pre-queue was shown to be unnecessary when service
rates are constant. In the case of time-varying rates, removing
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the pre-queue precludes the design of a routing strategy which
meets the tight performance bounds on unfinished work guaran-
teed by a work conserving policy. However, a general stability
result was established for the Join-the-Shortest-Queue policy,
and the result was extended to treat a joint problem of routing
and power allocation. This analysis was performed using a new
and useful notion of stability defined in terms of finite buffer
systems. Performance bounds for the JSQ strategy were given
by showing that if all queues have buffer size M+nLmax, the
drop rate is less than or equal to the drop rate of a single queue
with an aggregate rate and buffer size M.

Our approach differs significantly from other approaches in
that we provide tight, worst case bounds on system performance
with arbitrary input and linespeed processes, rather than analyz-
ing systems with particular stochastic inputs and linespeeds. We
believe this approach can be applied to more complex queueing
structures in satellite and wireless networks to provide perfor-
mance bounds and stability guarantees for systems with very
general input processes and control laws.

APPENDIX:

Here we prove the finite buffer multiplexing inequality.
Theorem 3: For arbitrary inputs X(t), if:

, then for all time t:

(a) Departures satisfy: .

(b) Packet drops satisfy: .

Proof: The single-queue and multi-queue systems satisfy the
following bit conservation equalities for all time:

Claim 1: If for all for some

time t*, then  on the same interval.

Pf: It suffices to check times t when the single-server system
loses a packet, and the multi-server system retains that same
packet (otherwise, cannot increase). At

such times, , and +M2+

...+ . Furthermore, we have:

which proves the claim. ❑

Claim 2:  for all time .

Pf: For simplicity, assume so that packets drain
continuously from the queues. The departure inequality is true
at time 0. If it is ever violated, there must be some first crossing

time t* where . At such a time, from

(21) and (22) we have:

However, from Claim 1, we know ,

and hence . Thus, if the single-server

system is empty at time t*, the multi-server system is also
empty, no bits are being processed, and the departure function
cannot overtake the bound. Otherwise, the single-server system
is busy and departures are draining from it at the fastest possible
rate µ(t*)--so again the departure function for the multi-server

system cannot cross the  bound. ❑
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