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Abstract

We develop an approzimate model for analyzing in-
teracting queues. This new approzimation models an
N-dimensional infinite Markov chain by means of two
Markov chains, one being one-dimensional and infi-
nite and the other being N-dimensional and finite. The
transition probabilities of each chain are expressed in
terms of siatistics of the other chain. The two chains
are solved together iteratively to yield an approrima-
tion to the original N-dimensional infinite chain. We
use this approzimate model to analyze systems of de-
pendent queues which often arise in multiple a ccess
protocols. We show how this model can be used to an-
alyze the ALOHA multiple access protocol as well as
a broadcast algorithm for a mesh network which was
proposed in [2]. The resulls of our approzimation com-
pare very well with simulation.

1 Introduction

In this paper we present a new approximate model
for the analysis of systems of interacting queues which
often occur in various multiple access network proto-
cols. This new model is a refinement of an existing
model developed in [1] for the ALOHA multiple ac-
cess protocol. We begin by applying this model to the
analysis of a multiple-node broadcast algorithm for a
mesh network, which was developed in [3] and pre-
sented in [2]. We then show how our model can be
used to study the performance of the ALOHA multi-
ple access protocol.

A multiple-node broadcast is a common task in the
execution of parallel algorithms in a network of pro-
cessors where every processor may have a message to
be broadcast to all the other processors. In [3] an al-
gorithm was developed which performs periodic, syn-
chronized, broadcast cycles; where during each cycle
only a small number of nodes are allowed to broadcast
their message. Consider an N by N mesh, where each

Anthony Ephremides

Electrical Engineering Department
University of Maryland
College Park, MD 20742

node has exogenous packets arriving (to be broadcast)
independently according to a Poisson random process
and placed in infinite-capacity queues. The broadcast
algorithm works as follows: We partition the mesh
into N vertical rings, such that each node belongs to
exactly one ring. At the beginning of every. broadcast
cycle each ring selects, at random, up to d packets to
be broadcast throughout the mesh. The broadcast of
the d packets from each ring is performed and has a
fixed duration of (d + 1)(N — 1) time slots. Clearly,
the queues at the N nodes on each ring are highly de-
pendent on each other. In fact, the queue sizes of the
N nodes on each ring form an N-dimensional infinite
Markov chain. Obtaining analytic expressions for the
steady state behavior of such a system is very diffi-
cult. Even a numerical evaluation of such systems can
be computationly prohibitive [3]. A similar difficulty
arises in the analysis of the Aloha multiple access pro-
tocol and no exact analysis for packet delay is known
for that case either. Several approximate models have
been proposed for the analysis of ALOHA which may
be useful in analyzing this broadcast algorithm.

In [1], Ephremides and Saadawi developed an ap-
proximate model for a system of interacting queues
for analyzing the ALOHA protocol. In their model
they approximate a system of N infinite queues as a
single dimensional infinite Markov chain representing
the state of one user together with an N-dimensional
finite Markov chain representing the state of the rest
of the system. They use parameters from the solution
of one chain in analyzing the other and solve the two
chains together using an iterative algorithm. This two
chain approach tracks the interaction between the dif-
ferent users in a system model that can be analyzed.
We develop a similar approximate model for the sys-
tem of interacting queues in the mesh broadcast case.
Our new model is a refinement of the model in [1] and
is shown to perform much better when compared to
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simulation.

Since our refined model offers such an improve-
ment to the original model with a minimal additional
complexity, we were motivated to develop a similar
model for the ALOHA multiple access protocol. In
the ALOHA case the state of any single user can be
specified by its queue size and by the indication of
whether it is in the blocked or active states. A com-
plete description of a N-terminal system requires the
analysis of a 2N-dimensional infinite Markov chain.
Again, such chains are known to be very difficult to
analyze and require an approximation.

As was stated earlier, in [1] an approximation was
developed which modeled an N-dimensional infinite
Markov chain as a one-dimensional infinite chain rep-
resenting the state of a single user together with a
N-dimensional finite chain representing the number of
blocked and active users in the entire system. In [5] an
improvement to the above model was proposed which
expanded the system chain to include the identity of
all N users. That expanded model was shown to per-
form far better than the model in [1}; however, the
expanded system chain contained 3V states and was
very difficult to analyze for all but very small values of
N. We therefore develop a new system chain, similar
to the one developed for the multiple-node broadcast
algorithm, which improves the performance of the ap-
proximation while keeping the computation complex-
ity of the approximate model low.

2 The Broadcast Algorithm

In this section we present an approximate model
for analyzing the multiple node broadcast algorithm
for a mesh presented in [2]. The algorithm is based
on performing “periodic broadcast cycles” and works
as follows: We partition the N x N mesh into N ver-
tical rings and N horizontal rings so that each node
is contained in exactly one vertical and one horizon-
tal ring, and proceed according to the following set of
steps which are repeated periodically:

Step 1) Every node broadcasts one packet along its
vertical ring, so that all nodes on the same vertical
ring possess N packet, one from each node on the
ring.

Step 2) Every ring selects, at random, d packets to
be further broadcast throughout the mesh. The
un-selected packets rejoin their node’s queues and
re-attempt transmission during the next cycle. (If
a ring has fewer than d packets then the remain-
ing slots are filled with null packets). Clearly, all
nodes on a given vertical ring have the same d
packets, to be broadcast through the mesh.

step 3) To complete the broadcast cycle all nodes
send the d “select” packets throughout their hor-
izontal rings.

The first step takes N-1 slots and the third step
takes an additional d(N-1) slots. Therefore, the broad-
cast cycle is repeated every S=(d+1)(N-1) slots. Since
there are N nodes on- the ring and up to d of them can
receive service during a cycle of duration (d+1)(N-1),
in order for the algorithm to be stable we must have
A < NS

We would like to compute the average delay in this
system. Because of the dependence between the N
queues, the queue sizes in a ring of N nodes form an
N-dimensional infinite Markov chain which is very dif-
ficult to analyze. Some approximate models have been
proposed for the analysis of the ALOHA system which
compare very well with simulation results. Because of
the similarity between the two problems we are lead to
consider similar approximations for our system. The
basic idea behind these models was to split the system
into two Markov chains. One single dimensional, infi-
nite, chain, termed the “user chain”, tracking the state
of a single user and the other an N-dimensional, finite,
Markov chain, termed the “system chain”, tracking
the state of the rest of the system. In [1] Saadawi
and Ephremides let the user chain represent the num-
ber of packet a particular user has in queue, and the
system chain represent the number of active and idle
nodes in the system. In [5] Zhu and Ephremides con-
sider an extension to the first approximation by hav-
ing the system state represent the identity and state of
every node (Idle, Active, or Blocked). Simulation re-
sults show that the latter approximation is better than
the former; however, having such .an expanded system
state is costly in that the system Markov chain be-
comes difficult to analyze. Numerical solution to the
system state in the first model require the solution
to a set of N linear equation where as for the second
model the solution of 3V linear equations.  In fact,
the solution to the second model is not much simpler
than to that of the original modél. In evaluating the
performance of their model Zhu and Ephremides are
restricted to very small values of N.

2.1 The Two-chain Model

The idea behind having two Markov chains, one for
a single user and the other for the rest of the nodes,
is that while a single infinite chain with N dimensions
is very difficult to analyze, each of the two smaller
chains are analyzable and when solved together pro-
vide an approximation to-the original chain. The one
dimensional infinite user chain represents the buffer
size and state for a single user and can be solved by
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Figure 1: The User Chain.

conditioning on the state of the system chain. In turn,
the system chain tracks the interaction between the
different users.

2.1.1 The User’s Markov Chain

The user’s Markov chain represents the queue size
for a single user. It is therefore an infinite chain. Ar-
rivals are Poisson and departures are geometrically
distributed with parameter P, representing the prob-
ability that a node is “selected” during a given cycle.
So the user chain is an M/G/1 with geometrically dis-
tributed service time. Figure 1 shows the user chain.

This, of course, constitutes an approximation to the
real model because we assume that the probability of
a successful transmission is independent of the num-
ber of packets in the queue. The average delay for this
system can be easily computed using the well known
formulas for an M/G/1 and the first and second mo-
ments of the geometric distribution.

_ 8 A5(2-)S)
delay——2—+————2/\(Pa_,\S), (1)

where the % term accounts for the synchronization

delay.

So, this completes the analysis of the user chain.
The only missing ingredient, in order to compute the
delay, is P,. This is the one term that we will obtain
from the system chain. Before we turn our attention to
the system chain, there is one parameter from the user
chain which will be needed later for the analysis of the
system chain. We will need to know the probability
that there is exactly one packet in the queue. This is
easily derived as follows, let II(i) be the probability
that the user’s system is in state i. Then, II(0) =
1— A;/P; = 1— AS/P,. We can next express II(1) in
terms of II(0) by writing the steady state flow equation
out of state zero. So, II(0) = A(0)II(0) + A(0)P,II(1),
where A(0) is the probability of having no arrivals
during a slot, and is equal to exp(—A\S). So, II(1) =
(Ps = AS(1 - A(0)))/(A(0)P?) .

2.1.2 The System Markov Chain

All of our approximations for this system involv-
ing two Markov chains have the same user chain ana-
lyzed above; they, therefore, differ only in the system

chain model and how P; is computed using that sys-
tem chain. We consider three different models for the
system chains.

The first model is based on the Saadawi model
for approximating the ALOHA protocol and the sys-
tem chain simply represents the number of non-empty
nodes on one ring (the ring containing our node of in-
terest). Clearly, this chain consists of N+1 states. The
transition probabilities between these states can be ex-
pressed in terms of parameters from the user chain. If
we let S; denote the #* state of the system with i
non-empty and N-i empty nodes and P; denote the
steady state probability of S; then P, is expressed by
P, = (TS P+ d TiZan FR)/(1 - Po).

Since the system chain equations depend on pa-
rameters from the user’s chain and visa versa, the two
chains are solved together using an iterative algorithm
described in {3]. The results from our approximate
model compare reasonably well with simulation, par-
ticularly when arrival rates are low.

Our second system model is based on the Zhu model
for approximating ALOHA where the system chain in-
cludes the identity of the individual queues and their
status (empty or non-empty). This adjustment to the
system model proved to dramatically improve the per-
formance of the approximation. However, with this
change the system chain consists of 2V states and is
difficult to solve for all but very small values of N.

‘To overcome this shortcoming of the expended
model we limit the system chain, in our third model,
so that it merely represents the identity and state of
one user along with the number of non-empty nodes on
the ring. Having the system chain contain the state
of a single user allows us to more accurately derive
the probability of success for the user chain. This is
because the probability of success is defined to be the
probability that the user is chosen given that it is non-
empty. Therefore, when the system chain contains the
state of our user, we can compute the probability of
success by conditioning on the user state being non-
empty. It turns out that this new model is just as
accurate as the previous model (containing the iden-
tities of all of the users) but since this new chain has
only 2(N+1) states it is much easier to analyze.

The complete details of the first two system models
are presented in [3]. Here we focus our attention only
on the third model. Our new system chain will include
information on whether or not node x is empty as well
as the total number of empty nodes in the system.
Let the pair (S, D;) represent the state of the system,
where S equals the number of non-empty nodes and
D, is equal to zero if node x is empty and one other-
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Figure 2: The system chain.

wise. Clearly, there are a total of 2N possible states.
Figure 2 shows the system chain.

In order to express the transition probabilities for
this chain we define the following two quantities.

Let B; j)(k) be the probability that k empty nodes
become full given that we started in state (i,j) and,

C; j(k,1) be the probability that k full nodes be-
come empty, and that D, goes from j to 1.

We can now write the probability of going from
state (i,j) to (i’,j’) as follows,

k=N

P((3,3),(,3") = Y, B j)(k)Cii(k — (i —i), 7).
k=0

The By; j)(k) term does not depend on the state of
node x and is simply the probability that k of the N-i
empty nodes receive packets. So,

ifk<N—-i

otherwise

N-i e
B(i,j)(k):{o( k )(I—A(o))kA(o)N k

The C; j(k,1) term does depend on the state of node
X. Also, it requires P., the probability that a node
empties upon receiving service. That probability can
be expressed in terms of the user chain steady-state
probabilities by P, = II(1)A(0)/(1 — I1(0)), where the
numerator is the probability that the node had one
packet in the queue and received no new packets while
the denominator represents the probability that the
queue was not empty (a necessary condition in order
for the node to receive service). Now the computation
of C; ;(k,1) is trivial, though cumbersome because it
depends on the values of the parameters and involves
many cases. The probabilities for all the different cases
are presented next without proof. Their derivation is
presented in [3].

Cioy(k,0) =
A0 ( ¢ YPra- Py itk<agi
A0 ( } ) PEA-PY* itk<i<d
0 ifj>dorj>i
Clroyki1) =

a-a0)( §)Pra-Py* itk<d<i
a-ao)( } )Pra-Py* itkgi<d
0 ifk>dork>i

Ciny(k,0) =

;:hp,( a1 )P:(l-P,)‘-l-* ifk<d<i
= P,(;)P:(x-P,)"-* ifk<i<d
0 ifk>dork>i

Clin(k, 1) =

H4lod p, ( N )P:(1-P¢)‘""+

_ +(1—P,)ﬁr( 41 )Pf(l—P,)““* fk<d<i
(J-P,)(,‘;)P:(L-Pe)‘-" ifrk<i<d
k>dork>i

These equations completely specify the transi-
tion probabilities for the system chain. Next
we need to compute P, the probability of node
x having a successful transmission with this sys-
tem chain. P, = (S35 Pia + YiZh N(@/( +
1))P;1)/(Xi=5 " Pi1). The term P, ; is the probabil-
ity of being in state (i,j). The top part of this fraction
represents the probability of success when the system
chain is in one of the states with node x full. The
bottom represents the probability of the system being
in one of these states.

We have now expressed the system chain in terms
of the user chain parameter P, and the user chain in
terms of the system chain parameter P,. The two
chains can now be solved together using an iterative
algorithm to obtain the results for the approximation.
2.2 Numerical Results

We have tested our approximate model, using the
three different system chains for many values of N, d
and A. In general the approximation works well for low
arrival rates and deteriorates when the arrival rate ap-
proaches saturation. Of the three system chains, the
first chain which included no information about the
user’s identity was the least accurate. The second sys-
tem model, tracking the state of every user produced
exactly the same results as the third model tracking
only the state of one user. This result was somewhat
surprising because it implies that having the state of
all the users in the chain provides no additional infor-
mation over having the state of only the one user. In
figure 3 we plot delay vs. A for N=4 and d=1. The line
labeled approxl represents the system model which
contained no information about the individual user’s
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Figure 3: Delay vs. A with N=4 and d=1.

identity and the line labeled approx2 represents the
other two system models which performed the same.
Plots for other values of N, d and X are available in

3].
3 The Multiple Access Protocol

The two Markov chain approximate model pro-
posed for the broadcast algorithm of the previous sec-
tion is based on a similar model originally used in [1]
to approximate the performance of the ALOHA multi-
ple access protocol. We showed in the previous section
that by altering the original model so that the system
chain also represents the identity and state of one user
the approximation improved substantially. In fact the
performance of our expended model was identical to
that of the model proposed in [5] where the system
chain included the identity of all the users. Of course,
our model had the advantage of being much easier to
solve for; while the model in [5] required the solution
of O(2") linear simultaneous equations our model re-
quired only O(N). In fact the model in [5] which was
first proposed to study the ALOHA protocol had as
its main drawback a high computation complexity and
was solvable only for a system with a few users while
our expanded model had a much lower computation
complexity and was easily solvable for systems with
many users. It is therefore of interest to develop a
similar model for ALOHA.

In an ALOHA system, a number of users share a
single channel over which they wish to transmit in-
formation. The channel is available to any terminal

whenever it has a packet ready for transmission. A
transmission is successful if and only if no other termi-
nal attempts transmission during that same time slot.
Sometimes, however, two or more terminals attempt
transmission during the same slot. In such cases all of
the colliding packets will have to be retransmitted dur-
ing a later slot. Clearly, if all of these terminals were
to attempt retransmission in the next slot they will
collide again. We therefore need a method to schedule
retransmissions so that collisions can be avoided. In
the ALOHA system, after a collision a retransmission
takes place in each of the subsequent slots with some
probability, until the transmission is successful.

The terminal for a single user consists of an infinite
buffer and a retransmission unit. Each user has pack-
ets arriving independently according to a Bernoulli
random process. If a terminal is empty (has no pack-
ets), a newly arrived packet is transmitted immedi-
ately. The transmission is successful if and only if no
other user attempts transmission during the same slot,
otherwise a collision occurs and the terminal enters the
blocked state, the colliding packets do not rejoin their
queues but rather enter the retransmission unit where
they await retransmission. When in the blocked state,
the terminal attempts retransmission with probability
p. In case of success the terminal becomes unblocked.
An unblocked terminal can be in one of two states; idle
(when its queue is empty), or active (when its queue
is not empty). An active terminal transmits a packet
with probability one.

The state of any single user can be specified by its
queue size and by the indication of whether it is in
the blocked or active states. A complete description
of a N-terminal system requires the analysis of a 2N-
dimensional infinite Markov chain. Again, such chains
are known to be very difficult to analyze.

3.1 The Two-chain Model

As was stated earlier, in [1] an approximation was
developed which modeled an N-dimensional infinite
Markov chain as a one-dimensional infinite chain rep-
resenting the state of a single user together with a
N-dimensional finite chain representing the number of
blocked and active users in the entire system. In [5] an
improvement to the above model was proposed which
expanded the system chain to include the identity of
all N users. That expanded model was shown to per-
form far better than the model in [1]; however, the
expanded system chain contained 3" states and was
very difficult to analyze for all but very small values of
N. We therefore develop a new system chain, similar
to the one developed for the multiple-node broadcast
algorithm, which includes the state of only one user
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Figure 4: The User Chain

together with the number of active and blocked users
in the entire system.
3.1.1 The User Markov Chain

The state of a single user can be characterized by
the size of its buffer content and by the indication of
whether it is blocked or unblocked. We denote the
user state by the pair (i,j) where i is 0 if the terminal
is blocked and 1 if it is unblocked (idle or active) and
j is the number of packets in the buffer. Note that
when both i and j are specified one can also determine
whether the user is idle or active. Figure 4 shows the
user chain.

Let 7;; be the steady-state probability of the state
(i,j) and let

00
Gi(z) = Zm,nz_", i=0,1.
=0

In order to express the transition probabilities of the
user Markov chain we define the following quantities:

r = Pr[successful transmission/user is blocked]

¢1 = Prfcollision/user is idle]

g2 = Pr[collision/user is active].

In the next section we will derive expressions for
these quantities in terms of the system Markov chain
steady-state probabilities. We can now express the
following quantities relating the statistics of the user
chain, and some of which will later be used to deter-
mine the transition probabilities of the system Markov
chain.

_ r(l-0)-oq
m,0= r(l—0)—o0(q2—q1) ®
B (1-o)oq
Go(1) = r(l1—0)—o{g2—q1) @
_ _ r(l—0)—oq;
G =t - e -y ¥
m,1 = 1 zgm"“ ©
" oq1 (6)

0= o(l-g2)+r(l-0) .0

Figure 5: The System Chain.

and Q, the average queue size in the buffer is expressed
by

(1 - o)1
= .7
M O B e ) R
Finally, the average delay can be expressed by
D=W+S (8)

where W is the average waiting time in the queue and
S is the average service time. The average waiting time
in the queue can be expressed using littles result and
is equal to @/o. The average service time is expressed
according to the following equation

o Blrgis o2
)

All of the above equations were computed in [1] and
for bravity are omitted here.
3.1.2 The System Chain

The system chain in [1] was described by the num-
ber of terminals that are in each of the three states,
blocked, active, and idle. Here we extend the system
chain to include the identity and state of a single arbi-
trary user, x. So we let the state of the system, S, be
the tuple (S, n,n1), where S; is the state of node x
and is either blocked (2), active (1), or idle (0) ; nis the
number of blocked terminals and takes values between
0 and N-1; and n; is the number of active terminals
and that can be at most 1, since we can not have more
than one active terminals at a time. Clearly, the num-
ber of idle terminals is equal to N-1-(n+n;). Figure 5
shows the system chain.

Gl(l) bt 1l’1'0
Gi(1)
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We can now express the quantities r,q;, g2, in terms
of the system chain’s steady-state probabilities. For
simplicity we denote the steady-state probability of
the system chain being in state S by Pr[S). The fol-
lowing quantities are trivial to arrive at and therefore
their derivations are omitted.

_ pEIS Pr[(2,4,0))(1 ~ ) (1 = )N
Yt Pri(2,4,0)]+ M52 Pri(2,4,1))

where the numerator represents the probability that
the blocked user (user x) attempts transmission and
no other user transmits and the denominator is the
probability that user x is blocked.

Similarly,

(10)

TN Pr(0,i, 0] — pF (1 — )N 1)
T PO 01+ L PO

=

and

o= 1 DH Pri(L6,0))0 = pF(1 = o)1
i Pri(1,5,0)] :
(12)

We are now ready to derive the state transition
probabilities for the system chain. For simplicity we
break down our expressions according to the state of
node x. We denote the transition probability from
state S1 to S2 by P(S1,52).

Let E be the probability that the buffer is empty
given that the user is blocked. It can be shown that
E is also equal to the probability that the buffer size
equals one given that the user is active [1]. There-
fore, E = WQQ/G()(].) = 1l’11/(G1(1) - 7l’10). E is the
one quantity from the user chain that will be used in
expressing the transition probabilities for the system
chain.

Let Bj(n) be the probability that j of n blocked
nodes attempt transmission and I;(n) the probabil-
ity that j of the N-1-n idle nodes attempt transmis-

sion. Then, clearly, Bj(n) = ( '; )pJ(l —p)*~J and

hw=(Njo
quantities will be very useful in expressing the tran-
sition probabilities for the system chain. These tran-
sition probabilities are presented next without proof.
Their derivation is trivial and can be verified by the
reader.

o9 (1—o)N-1-n=i  These two

P(("l"l”l)v(h"’ﬂ’i)) =0
P((ornvnl)) (2,!1',!1;)) =

o(1 = Bo(n))lp(n) ifn=n'ny=nj=0

o(I,i_n(n) ifn<n’,ng=ni=0

= (Ipi_po1(n+1) ifn+1<n’ ng =1,n3 =0
olg(n + 1) ifn'=n+l,n=1,n=0
0 otherwise

P((0,n,n1),(0,n',n})) =

(1= oMpy_n(n) ifn'>n+1,n3=n]=0
(1 = o)I1(n)(1 — Bo(n)) n=n+l,n=n]=0
(1= o)o(n)(1 — Bi(m)+
+I3(m)Bo(n)]+
+alg(n)Bo(n) n'=nn=n}=0
_ (1 - a)Ig(n)B1(n)E n=n-1n;=n]=0
=9 (1 - 0)Ig(n)By(n)(1 ~ E) n=n-1n3= O,ni =1
(1 = o)(1 = Bo(n))o(n + 1) n'=n+1,n; =1,n; =0
(A=oMpy_p_1(n+1) n'>n+lnyg=1n1=0
(1 - ¢)Bo(n)lo(n + 1)E n'=n,n = ,n’} =0
(1-0)Bo(n)o(n+1)(1-E) n'=nnj=1,n;=1
0 otherwise

P((1,n,n1),(0,n’,n})) =

- Bo(n)Ip(n)E ifn = 1'1',n1 =ni=0
0 otherwise

P((1,n,n1),(1,n',n})) =

- { Bo(m)o(m)(1 - F)

ifn:n’,nlznizﬂ
otherwise

P((l,ﬂ,nl),(z,n’,ﬂ;)) =
Io(n)(1 — Bo(n)) ifn=n'ny=nj=0
= nf—n (1) n<n',ny=ny=0
otherwise

P((2,n,n1), (01"1)";)) =

= { PEIo(n)Bo(n) ifn= r_n', np=nj=0
0 otherwise

P((2'"r"l)l(lvn’-nll)) =

_J p(1 - E)Ip(n)Bo(n) ifn=n'ny=n]=0
- 0 otherwise

P((2,n,n1),(2,n",n])) =

( I _.(n) ifn'>n+1,n;=n1=0
(1= p)1(n)(1 = Bo(n))+
+pI1(n) n=nt+ln=n]=0
(1 = p)lIo(n)(1 - B1(n))+
+I3(m)Bo(m)+
+plp(n)(1 — By(n)) n‘=nmny=n;=0
_ (1 = p)Io(n)B1(n)E n=n-1,n1=n;=0
=\ (1= p)o(n)Ba(n)(1 - E) n=n-ln;=0mnf=1
(1= p)(1 = Bo(m))lo(n + 1)+
+plo(n +1) n'=n+1,n1=1,n’):0
A=-pMpy_p1(n+1) n’>n4+l,n=1n =0
(1 = p)Bo(n)Io(n + 1)E n'=n,n; = l,n'} =0
(1=-p)Bo(n)lo(n+1)1-E) n'=nn;=1n=1
\ © otherwise

As can be seen from figure 5 the system chain con-
sists of 5N-2 states. The state transition matrix for
this chain can be expressed in terms of E, a user chain
parameter, using the above equations. Similarly the
user chain can be solved in terms of system chain pa-
rameters according to equations (3)-(7). As before,
the two chains can now be solved together using an
iterative algorithm to obtain results for the approxi-
mate model.
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Figure 6: Results for approx model with N=3 and
p=0.3.

3.2 Numerical Results

Again we evaluated our model for many values of
N and p, and compared our results to those obtained
via the Zhu expended model as well as simulation.
In general both approximations worked well when the
arrival probability was low. When that probability
approached saturation the performance of both mod-
els deteriorated significantly. Consistent throughout
our results is that our refined model did not perform
as well as the Zhu model this time. This, of course,
is disappointing because it was our hope that the two
model would give the same results, as was the case in
the broadcast algorithm model. In figure 6 we plot
Delay vs. o with N=3 and p=0.3 for this model as
well as for the Zhu model and simulation. Plots for
other values of N, p and o are available in [3].

4 Conclusion

We present a new model for evaluating the per-
formance of dependent queues. Our model is a re-
finement of existing models used in the evaluation of
the ALOHA multiple access protocol and proved to
be extremely useful in evaluating the performance of
a broadcast algorithm for a mesh network. We be-
lieve that this model may prove to be useful in many
other systems of interacting queues and in particular
for multiple access schemes such as the two presented
in this paper. It is of interest to find other systems
with dependent queues, not necessarily involving mul-
tiple access, for whose analysis this model, or a two
chain model in general, may prove to be useful.

Additionally, further modifications to this two
chain model may also prove useful; although they may
increase its computational complexity. One possible
modification will expand the system chain to include
the buffer size for one of the users. Of course, in or-
der to keep the chain finite, this quantity will have
to be truncated. With the additional information in
the system chain, it would then be possible to derive
transition probabilities for the user chain which take
its buffer size into account. This additional refine-
ment should further improve the performance of the
approximation.
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