On the Complexity and Distributed Construction of Energy-Efficient
Broadcast Trees in Static Ad Hoc Wireless Networks

Ashwinder Ahluwalia*and Eytan Modiano

MIT LIDS
Cambridge, MA 02139
ash@mit.edu, modiano@mit.edu

Abstract — We address the energy-efficient broad-
casting problem in ad hoc wireless networks. First
we show that finding the minimum energy broadcast
tree is NP-complete and develop an approximation
algorithm, which computes sub-optimal solutions in
polynomial time. We present a distributed algorithm
that computes all N possible broadcast trees simulta-
neously with O(N?) message complexity. We compare
our algorithm’s performance to the best known cen-
tralized algorithm, and show that it constructs trees
consuming, on average, only 18% more energy.

I. INTRODUCTION

Over the past decade, research interest in the area of ad hoc
networks has increased dramatically. An ad hoc network can
be described as a network that is built in the absence of pre-
existing infrastructure. Common examples include networks
for emergency response, sensor networks and various military
applications. In this paper, we are interested in the construc-
tion of energy-efficient broadcast trees in ad hoc networks, as
posed in [6]. Starting with a given source node s, the problem
is to find a broadcast tree that allows s to send a message to
all other nodes, using the minimum amount of energy.

We focus on a specific type of ad hoc network where all
nodes are stationary (usually referred to as a “static” ad hoc
network), and equipped with an omnidirectional transmitter.
We assume that the transmission range of the transmitter can
be adjusted from 0 up to a maximum range Ryq.. When the
omnidirectional transmitter sends a message at range r, all
nodes within distance r can receive the message, regardless of
their position. Naturally, when the node transmits a message
at a higher range, it consumes more power. In analyzing the
range-power tradeoff, we adopt a common communications
model, where the power required to transmit the message is
proportional to r* (typically a > 2).

Note that because each node can only transmit up to dis-
tance Ryuqz, it is possible that the source s cannot reach all
nodes in the network directly. Therefore, some nodes will
have the responsibility to forward messages on the behalf of
s. We can then rephrase the one-to-all problem as one of as-
signing each node, n;, a range r; at which to forward received
messages. The total cost of the broadcast tree can then be
expressed as Y rf.

This is a very atypical cost function for a graph connec-
tivity problems, in that cost is node weighted instead of edge

*The work of A. Ahluwalia was supported by a Fellowship from
Draper Laboratory.

Li Shu
Draper Laboratory
Cambridge, MA 02139
Ishu@draper.com

2 4
Figure 1: The Multicast Advantage

weighted. Consider the example shown in Figure 1. In this sit-
uation, we denote the cost incurred when node s transmits at
a distance just large enough to reach b as Power(s,b), and de-
fine Power(s,a) analogously. If s attempts to send a message
to node b, this message will not be received by node a because
a’s distance to s is larger than b’s distance to s (das > dps)-
However, s could optionally transmit at Power(s, a), in which
case the message would be received by both a and b (because
dps < dgs). By transmitting to a, s can get a transmission to
b for “free” because of each transmission’s omnidirectionality.
In [6], this was referred to as the “multicast advantage.” In
general, the power required for a node s to transmit a message
to a set of nodes N is mazneny Power(s,n). A transmission at
this power will be received by all nodes in V.

In the first part of this paper, we characterize the complex-
ity of this problem, and show it is NP-complete. We then
develop a distributed approximation algorithm, and show its
performance is comparable to the best known centralized al-
gorithm ([6]) in the average case.

II. PROBLEM FORMULATION

The ad hoc wireless broadcasting problem can be stated as
follows: We are given a set of nodes N and a function ¢ : N —
Z x Z, which gives us a set of coordinates for each node on
the two dimensional plane. Each of these nodes represents a
static (non-mobile) wireless-enabled device that is capable of
both transmitting and receiving messages from its neighbors.
Additionally, we are given a range ReZ™, which represents
the maximum distance any node can transmit a message, and
a constant o > 0. We construct the undirected graph G =
(V,E) where V = N and (i,j) e E <= d;; < R. Assuming
this graph is connected, the wireless broadcasting problem can
be stated as follows:

Given a source se N construct the minimum cost
directed tree T (rooted at s) that connects s to

every node in N — {s} via a directed path ac-
cording to the following cost function. Define
f(x) = max{ds; : (x,j)eT}. Then the cost of
T is defined as),y f(n).

Hereafter, we refer to the decision version of this problem,
where we are asked to determine whether there exists such a
tree with cost less than leZ™, as BCAST. Naturally, one is
interested in the complexity of the above problem. Unfortu-
nately, the first contribution of this paper, stated in Theorem
1 below, tells us that this problem is computationally difficult;
and a polynomial time solution is unlikely.

Theorem 1. BCAST is NP-complete.

Proof of this theorem is based on a reduction from the con-
nected node cover problem in planar graphs, and is included
in the appendix.

III. BROADCAST TREE ALGORITHMS

Work by Wieselthier, et. al. looked directly at the above
broadcast problem ([6]), and proposed a centralized algo-
rithm to construct energy efficient broadcast trees. They
showed that their algorithm, the Broadcast Incremental Pro-
tocol (BIP), performed well as compared to minimum span-
ning trees and shortest path trees. The BIP algorithm as-
sumes the same model for power-range tradeoff that we as-
sume in this paper, so it is particularly relevant. Additionally,
to our knowledge, BIP is the best known algorithm for this
problem ([7]). Consequently, we will use the performance of
BIP as a measuring stick in judging our distributed algorithm.

BIP is a greedy algorithm, that mimics Prim’s algorithm
([8]) for constructing MST’s. Throughout its execution, BIP
maintains a set of nodes T’ that denote the tree made so far
(initially, T = {s} and the power of s is set to 0). At each
step, BIP attempts to increase the power of a node in teT
to reach a node in ne N — T'. Specifically, BIP increases the
power of the node t that requires the least additional power
to reach a node in N — T. The node n is then added to
T, and the process is repeated until T = N. Once the tree is
constructed, a sweep algorithm is run on the tree to reduce the
power of nodes in specific cases where a node can be reached
by multiple transmitters.

Although BIP has already been shown to construct low cost
trees, it’s centralized nature requires one node to collect the
position information of every node in the graph, compute the
BIP tree, and distribute the solution to all other nodes in the
network (alternatively, each node can gather the information
and compute the tree independently). This can result in con-
siderable time, message complexity, and power consumption.
Additionally, this requires that the node performing the com-
putation also has considerable resources (energy, processor,
and memory). In the low cost, resource limited environment
that is typical in ad hoc networks, this may not always be feasi-
ble. These reasons motivate a need for a localized, distributed
algorithm that can compute broadcast trees efficiently. A lo-
calized algorithm is one in which nodes’ decisions are based
on network conditions within some limited distance.

In this section, we describe a localized, distributed algo-
rithm that computes broadcast trees. In the first portion of
the proposed distributed algorithm, nodes calculate a cluster-
ing on the graph. Then, the clusters are joined together using
a well known distributed algorithm for computing minimum
spanning trees in directed graphs.

A Distributed Construction of Broadcast Trees

At the beginning of the algorithm each node has the fol-
lowing information:

1. Each node 7 knows the distance to every node in i's
neighborhood. A node’s neighborhood is defined as the set
of nodes that are within distance R. Nodes that are in 4’s
neighborhood are referred to as neighbors of . 2. Each node
i also knows the distance of each neighbor to every node in the
neighbor’s neighborhood. We refer to the set of ¢’s neighbors,
and ¢’s neighbors’ neighbors as ¢’s two-hop neighborhood.

As an example, this information could be gathered by de-
termining pairwise node delay via timestamps. Notice that
each node only requires localized information about some small
portion of the network (the two hop neighborhood). This is a
key difference from previous algorithms that require each node
to have global network information. Also, note that this is
only meaningful in networks with limited range - if each node
had unlimited range, having two-hop neighborhood informa-
tion would be equivalent to having global information. In net-
works with limited range however, the two-hop neighborhood
may constitute a small fraction of the graph. Of course, this
also holds for networks in which the range of nodes is limited
for reasons other than inherent transmitter limitations (e.g.,
interference avoidance).

In our initial development of a distributed algorithm, we
assume that the network is synchronized via a global clock,
no messages are lost, and that there is no interference. We
then extend the algorithm to work without the benefit of a
global clock in networks where interference and packet loss is
possible.

A.1

In the first phase of the algorithm, a clustering is con-
structed on the nodes using the aforementioned distance in-
formation. Once this phase is complete, each node will be
assigned to at least one cluster, and each cluster will have one
“clusterhead” node. We define the cost of a particular cluster
as the power required for the clusterhead node to transmit to
all other nodes in the cluster (in one transmission). In addi-
tion, we consider the cost of a particular clustering to be the
sum of the costs of its clusters. Given this cost function, we
attempt to develop a minimum cost clustering.

Before describing our distributed clustering algorithm, we
first describe a centralized clustering scheme. Throughout the
execution of the centralized algorithm, each node ¢’s range is
referred to as r;, and each node is either unmarked or marked,
reflecting its membership in a cluster. The algorithm begins
with r; = 0 for all 4, and all nodes unmarked, and proceeds as
follows:

The formation of clusters

1. For each node 4, compute the function «;(r). If i was to
increase its range to 7, this function represents the average
cost induced per unmarked node within distance r of i. More
precisely,

ou(r) = Pt
ri<r<R

where P(z) = power to transmit at range x
Ui(z1,x2) = number of unmarked nodes in between
distances x1 and z2 of ¢
r; = node ¢’s present transmission range

2. For each node i, compute the range at which «;(r) is
minimized. This is the most cost efficient range increase (in a

greedy sense) for node i. Denote this range as rmin;, and the
value of « at this range as amin,.

3. Find the node j that has the smallest value of amin
- this is the node that (globally) has the most cost efficient
range increase. Increase r; to rmin;, and mark nodes j and
all nodes within distance rmin; of j.

4. Repeat steps 1-3 until all nodes are marked.

Once the above algorithm terminates, the final r; values
specify a clustering. Each node with nonzero r; is considered
a clusterhead, and all nodes within distance r; of ¢ are consid-
ered members of 4’s cluster (note that a particular node may
be a member of more than one cluster).

Interestingly, the greedy behavior of the above algorithm
can be implemented distributively, with one important differ-
ence. The distributed algorithm, for reasons stated earlier,
does not attempt to find a global minimum, but instead at-
tempts to find local minima. Although this may result in less
power efficient clusterings, such inefficiencies are inherent to
many localized algorithms.

Distributed Clustering Algorithm: As in the global
algorithm, each node ¢ maintains a range value r; initially set
to 0, and is initially unmarked. Additionally, we ensure that
each node 7 maintains up-to-date values of: 1) r; for all neigh-
bors j, and 2) MARKED status of all nodes in the two-hop
neighborhood. The algorithm we propose operates in stages.
During each stage, local minima are computed, and the ranges
of some nodes are consequently increased. Information about
the range increases are then propagated. Once this has been
completed, each node has updated its state information to
reflect the last stage’s changes, and the next stage begins.

Note that because we are assuming that all nodes are syn-

chronized, we describe the algorithm in stages and substages
where each stage and substage begin on predefined clock
boundaries. In each stage, each node executes the following
substages:
Substage 1. If node i is unmarked, it computes, for each
neighbor j, the minimum value of o (r) for r > distance(i, j).
That is, ¢ finds the most cost efficient range increase for j,
looking only at those ranges that would allow ¢ to be a mem-
ber of j’s cluster. Denote the value of the range and « found
through this computation as rmin;_; and amin;_;, respec-
tively.

Each node ¢ then finds the neighbor node k with minimum
value of amini_;, and sends k¥ a PREFERRED message con-
taining range value rming_,;. This message is sent at full
power, so that it can be heard by all of i’s neighbors.

In addition each node ¢ (marked or unmarked) executes the

following steps:
Substage 2. At this substage, ¢ has received all PRE-
FERRED messages from its unmarked neighbors. If ¢ re-
ceives a PREFERRED message with range value r’ from
all unmarked nodes within distance r’ (indicating that it is
a local minima), i increases r; to the value r’. Upon in-
crease, it transmits a RANGE_INCREASE message at max-
imum power, telling all neighbor nodes that ¢ has increased
its range to r’. If i is not already a member of a cluster, it
also broadcasts a MARKED_STATUS message to its two-hop
neighborhood, indicating that ¢ has been marked (by virtue
of becoming a clusterhead).

Substage 3. If i receives a RANGE_INCREASE message
from a neighbor j such that the distance from i to j is less than
the new value of r;, i is a member of j’s cluster. Consequently,

if ¢ is not already a member of another cluster, it broadcasts
MARKED_STATUS message to its two-hop neighborhood, in-
dicating that ¢ has been newly marked. Additionally, at this
substage, ¢ may receive a MARKED _STATUS message from
a neighbor that has just become a clusterhead (in the previ-
ous substage). It forwards this message at maximum power
(to ensure that it goes to all nodes two hops away from the
clusterhead).

Substage 4. At this substage, each node i may receive a
MARKED_STATUS message from a newly marked neighbor
j. It retransmits this message at maximum power, to ensure
that it reaches j’s two hop neighborhood. At the next sub-
stage, all messages will have reached their intended receivers.
Therefore, in the next substage, each node ¢ will have up to
date information on r; for all neighbors j, and the MARKED
status of every node in the two hop neighborhood. After this
substage, a new stage begins.

The algorithm terminates once all nodes have been marked
(and hence no PREFERRED messages are being generated).
Because nodes only mark themselves when they have become
a member of a cluster, this also means that, upon termination,
the final values of r; produce a clustering. Note the following
properties of this algorithm:

A. The algorithm terminates in a linear number of
stages. Consider any stage of the algorithm where not all
nodes have been marked. We show that at least one new node
will be marked in this stage. Let amin; be the minimum
value of «a; for node 7. There must exist some node j for
which amin; is minimum over all nodes. Because this is the
global minimum, in the next stage, all unmarked nodes within
distance rmin; of j will send j a PREFERRED message with
range value rmin; (if not, amin; would not have been the
global minimum). Therefore, in the next stage, j will increase
its range, and some set of previously unmarked nodes will be
newly marked. This further implies that in every stage, at
least one node is marked, completing the proof.

B. The algorithm uses O(N?) messages. In each
stage, there is at most 1 PREFERRED message and 1
RANGE_INCREASE message per unmarked node, resulting
in O(IV) messages per node per stage, and O(N?) messages to-
tal. Additionally, each node transmits a MARKED_STATUS
message when it has been marked (this occurs once per node
throughout the algorithm). Because each node has two-hop
neighborhood information, it can compute a spanning tree
upon which to forward this MARKED_STATUS message.
Therefore, it takes at most O(N) messages to forward the
MARKED_STATUS message to the two-hop neighborhood.
Hence, we have at most O(N?) MARKED_STATUS messages,
and O(N?) PREFERRED/RANGE INCREASE messages.

A Clustering Sweep Procedure: Note that in the clus-
tering produced by the algorithm above, it is quite possible
that a node is simultaneously a member of more than one clus-
ter. That is, clusters may overlap. As in the BIP procedure,
there is a similar opportunity to implement a “sweep”-like al-
gorithm ([6]). This “sweep” goes through the clustering in a
distributed manner, and finds nodes whose range can be re-
duced, while still making sure every node is still a member
of at least one cluster. The ranges of these nodes are then
reduced to produce a lower power clustering.

Joining Clusters Together: After a clustering has been
found, we use a well known distributed algorithm for con-
structing directed minimum spanning trees (DMST) [5] to join

the clusters together. Specifically, we do the following:

1. Construct the directed graph G' = (V',E') were
V' = V, and the cost of each edge (i',j') is equal to
maz (0, P(distance(i’,j')) — P(r;)) where r; < R, and P(zx)
denotes the power to transmit at a range z. This represents
the incremental power required to establish a link from 4’ to
j' after the clustering has been performed.

2. Once the cost of each edge has been computed, we run
the algorithm for computing a directed minimum spanning
tree on G’ for source s. By definition of the directed spanning
tree, we will have constructed a broadcast tree rooted at s.

Our distributed algorithm first computes a clustering,
sweeps the clustering, and then runs the DMST algorithm to
join the clusters together. Note that the algorithm in [5] com-
putes the DMST rooted at every node with O(n?) message
complexity. Therefore, our algorithm computes the broadcast
tree rooted at every node simultaneously.

A.2 Implementation Considerations

Although this synchronous algorithm works fine when there
is a global clock and we assume no messages are lost or re-
ordered, this is not at all a reasonable expectation of real-
world environments. In practice, keeping global clocks up
to date requires considerable message complexity and node
coordination. Additionally, messages can be lost in wire-
less communication, requiring retransmissions that cause arbi-
trary message delays. Although the presentation in [5] demon-
strated that clusters can still be joined successfully under these
conditions, the clustering phase of our algorithm is of concern.

To extend our clustering algorithm to work without global
synchronization and in the presence of arbitrary message de-
lays we can note the following. In each stage, three substages
occur: 1’) PREFERRED messages are sent, 2’) some nodes
increase their range and send a RANGE_INCREASE, and 3’)
MARKED states are propagated. If we ensure a node does
not go onto substage k + 1’ without receiving the messages of
substage k', the clustering developed will be identical to the
the synchronous case. For a node to make the same decision
as in the synchronous algorithm in a substage k + 1, it must
have received all messages destined to it, and sent off in any
previous substage (all state must be up to date). Viewed more
generally, we can tolerate reordering if the algorithm requires
nodes to wait for all messages to arrive.

We can do this as follows. Assume that every node
has up to date information from the previous stage In sub-
stage 1’, each unmarked node sends a PREFFERED mes-
sage as in the synchronous algorithm. Each node is not al-
lowed to enter a substage 2’ until it has received all PRE-
FERRED messages from its unmarked neighbors. Once
a node is allowed to enter substage 2’, it sends off a
RANGE_INCREASE message as in as in the synchronous al-
gorithm. If it will not increase its range, the node sends off
a NON_ACTION_RANGE_INCREASE message to indicate
this. As with substage 2’, no node is allowed to enter substage
3’ until a substage 2’ message is received from all neighbor
nodes. Once a node enters substage 3’, it sends off a STATUS
message only if it was unmarked in the last stage. Once a node
has received a STATUS message from every unmarked neigh-
bor, it composes and sends a STATUS_.SUMMARY message,
which lists out all nodes that have been marked in this stage
(this ensures that a MARKED update from a node travels two
hops). A node is then not allowed to enter the next stage un-

0.2

0.18 4

o o

[[

> =)
T T
I I

Relative Deviation from BIP
o
e
N
T
I

0.1 T

0.06 s ‘ ‘ ‘ s

o 50 100 150 200 250 300
Number of Nodes

Figure 2: Average case performance as simulated against BIP. All

nodes are restricted to the 1x1 unit square.

til a STATUS_SUMMARY message has been received from all
neighbors (note that once this is done, the node has received
all messages destined for it in this stage, and therefore has
up to date information). This algorithm ensures that no two
neighbor nodes are out of sync by more than one substage,
regardless of message delay.

Since the above algorithm tolerates messages delivered with
arbitrary delay, it can further be extended to tolerate networks
where messages can be lost through the use of a link-layer
retransmission protocol (ARQ). Such a protocol guarantees
the eventual delivery of packets, although the delivery time
of the packet may vary based on the need for retransmission.
However, since the above algorithm can tolerate packets that
are arbitrarily delayed, we are assured that it will terminate
successfully.

B Sitmulation Results

To gauge the performance of our algorithm against BIP,
we simulated the performance of BIP, and our distributed al-
gorithm, in networks restricted to the 1 by 1 unit square.
In simulating these algorithms at a particular network size,
we first constructed a set of 100 instances, each having the
same number of nodes. For each instance, nodes were ran-
domly placed (with uniformly distributed coordinates)in the
unit square, and one node was randomly chosen to be the
source. Each algorithm was then executed on each of the 100
instances. After a tree was computed, the appropriate sweep
procedure was executed on the tree. We compared the perfor-
mance of our algorithm to BIP for networks with between 10
and 300 nodes. The results, (shown in Figure 2), display the
relative performance of our algorithm as compared to BIP, av-
eraged over the 100 instances. As can be seen from the figure,
our distributed algorithm consumed, on average, 18% more
energy than the centralized BIP.

IV. CONCLUSION

In this paper, we have shown that the problem of form-
ing minimum energy broadcast trees is NP-complete. Addi-
tionally, we developed a distributed algorithm that computes
sub-optimal broadcast trees using O(N?) message complexity.
This algorithm computes all N possible broadcast trees (one

per each on N possible source nodes), and only consumes 18%
more power on average than trees produced by the centralized
BIP algorithm.

REFERENCES

[1] M. R. Garey, D. S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-completeness”, New York- Freeman,
1979.

[2] M. R. Garey, D. S. Johnson, “The Rectilinear Steiner Problem
is NP-complete”, SIAM Journal of Applied Math, 32 (4), June
1977.

[3] R. Tamassia, I. G. Tollis, “Planar Grid Embedding in Linear
Time”, IEEE Transactions on Circuits and Systems, 36 (9),
September 1989.

[4] B. N. Clark, C. J. Colbourn, D. S. Johnson, “Unit Disk
Graphs”, Discrete Mathematics, 86, pgs. 165-177, 1990.

[5] P. A. Humblet “A Distributed Algorithm for Minimum Weight
Directed Spanning Trees”, IEEE Transactions on Communica-
tions, 31 (6), June 1983.

[6] J.E. Wieselthier, G.D. Nguyen, A. Ephremides. “On the Con-
struction of Energy-Efficient Broadcast and Multicast Trees in
Wireless Networks”, In Proceedings of IEEE Infocom 2000, New
York, March 2000.

[7] P.-J. Wan, G. Calinescu, X.-Y. Li., O. Frieder. “Minimum-
energy broadcast routing in static ad hoc wireless networks”
, INFOCOM 2001. Proceedings. IEEE , Volume: 2 , 2001,
Page(s): 1162 -1171.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction
to algorithms”, The MIT Press, 1991.

A. ProoF OF NP-COMPLETENESS

Before presenting the proof of Theorem 1, we start by going
over the theorems, algorithms and definitions that we use to
prove BC' AST’s NP-completeness.

Node Cover: Given an undirected graph G = (V, E), a
node cover is a set of nodes S C V such that for every edge
(i,j)eE,ieSor jeS.

Connected Node Cover: A connected node cover of
a graph G = (V,E) is a node cover S such that the graph
induced by S on G is connected.

Connected Dominating Set: A dominating set of a
graph G = (V, E) is a subset S C V such that every node in V'
is either in S or is a neighbor of a member of S. A connected
dominating set is a set S such that the subgraph induced
by S is connected, and S is a dominating set.

B

A C

D
Figure 3: The set {B, D} is a node cover of this graph G. {A, D}
is a connected node cover of G. G also has a connected dominating
set {C}.

Planar Graph: A planar graph G = (V, E) is a graph
that can be drawn in the plane without any edges overlapping.
In other words, there exists a function m; : V' — R x R such
that if we draw a point at 71 (v) for all veV, and then draw
a straight line segment from 71 (i) to m1(j) in the plane for
all (i,7) € E, no line segments will cross. The function 7 is
referred to as a planar embedding of the planar graph G.

3+ B
2T C
A
1+ D
I — X
1 2 3

Figure 4: G is also a planar graph. This demonstrates a planar
embedding for the graph G.

Planar Orthogonal Grid Drawing: Given a planar
graph G = (V,E), a planar orthogonal grid drawing
(POGD) of G is a drawing on a grid such that each vertex is
mapped to a grid point via some function 2 : V = Z X Z,
and each edge is mapped to a sequence of horizontal and ver-
tical grid segments, such that no two edges ever cross.

y
18
B
12+ A
C
6 i .
D
I I I X
6 12 18

Figure 5: A POGD for the graph G.

Unit Disk Graph: A graph G = (V, E) is considered a
unit disk graph if there exists a mapping 73 : V—-Q x Q
to points on the two dimensional grid such that (i,) € E ws(4)
and m3(j) are less than distance 1 apart.

y
+ oA
15+
1+ B® @D
05—
-+ ®cC
| | | | | | |

05 1 15

Figure 6: An example showing G is also a unit disk graph. This is
a demonstration of 3.

Having defined the terms above, we are now in a position
to present the results of other papers used in our proof:

Theorem 2. - NP completeness of Planar Connected
Node Cover Given a planar graph G = (V, E) of mazimum
degree less than or equal to 4, determining the ezistence of a
connected node cover V* C V of G such that |V*| < k, for

B B
A —= A ®
A C
C
Figure 7: Constructing the POGD in Step 1 of the reduction.
y y
3T B 18 B
27T A — 12— A
1—r C 61 C
1 1 1 X 1 1 1 X
1 2 3 6 12 18

Figure 8: Multiplying the grid size in Step 2 of the reduction.

some given keZ™, is NP-complete. Proved in [2]. Hereafter,
we refer to this decision problem as PLANAR.

Theorem 3. - Orthogonal Grid Drawings of Planar
Graphs Given a planar graph G = (V, E) of mazimum de-
gree less than or equal to 4, an orthogonal grid drawing of this
graph can be drawn in polynomial time, such that the size of
the grid is polynomial in |V'|. Proved in [3].

Theorem 4. - Connected Domination in Unit Disk
Graphs Finding a minimum sized connected dominating set
of a unit disk graph is NP-complete. We refer to the decision
version of the connected dominating set problem (i.e. “does
there exist a connected dominating set of size mo more that
k?”) as CDSUDG. We reproduce the reduction used in the
proof of this theorem (from [4]) below.

Given an instance of PLANAR, with graph G = (V, E),
maximum node cover size k e Z*, we convert it to an instance
of the CDSUDG problem as follows.

1. We first construct the POGD of G using the algorithm
mentioned in Theorem 3 (this is done on an example graph in
Figure 7).

2. We then multiply the size of the grid by 6 so that each
line segment of length one is mapped to a segment of length 6.
At this point, we set 7 = 1 grid length (hereafter we also refer
to a node transmitting at range r as using 1 unit of power).
This illustrated in Figure 8.

3. Place a node at every grid point in the POGD, and
denote this set of nodes as P (For example, if the line seg-
ment from (0,0) to (0,2) is in the orthogonal grid drawing, P
contains nodes at positions (0,0), (0,1), and (0,2)). Note that
each vertex v eV in the instance of PLAN AR maps to a node
in pe P such that m2(v) = p (where 7 is the function in the
definition of a POGD). For each pe P such that m2(v) = p for
some v eV, we refer to p and all nodes in P that are within 1
grid length of p as the node region of v. Those nodes that
are in the node region by virtue of being within 1 grid length
of p are called the end nodes of that node region. The other
node (the one that is mapped to from V via m3) is referred to
as the center node of this node region. See Figure 9.

4. We then construct the set P; as follows. Construct the
subset P’ C P, which contains all nodes in P that are not
in node regions. Also, for future reference, we denote the set

H node region of A

07T pi_2(B)
y - 0000000
- [] []
- [] []
18 B 15 [J [)
T [I8 [
- N []
12 A —_— T [3
—+ °
101 [3
6 C - []]
T H H

X 1 pi_2(A) eee000e® bi_2(0)

6 12 18 ST =
e x
5 10 15 20

Figure 9: Step 3 of the reduction. P is the set of nodes in the graph
on the right. The end nodes in A’s node region are at (6,11) and
(6,13).

<
<

207 207

[le)

15 15

Q0000

L B
>
000000100000
Q00
o000

10 10

.........+£w

O

Oc® OO0
@
O

i
T

L B
>
00000 | 00000

|
5 10 15 5 10 15 20
Figure 10: Step 4 of the reduction. Black nodes are nodes in P’,
and P, nodes are white. Nodes denoted with a “+” are in node
regions.

P"” C P as the set of nodes in P that are not center nodes.
P, is then constructed such that 1) each P, node is placed at a
grid point, 2) for each node in P’ there is exactly one node in
P, located one grid length away, 3) for each node in P, there
is exactly one node in P’ located one grid length away, and 4)
no node in P, is within one grid length of any node in P — P’.
This operation effectively creates a “layer” of nodes around
the original POGD'’s edges, which is why we use the subscript
0).

To complete the reduction, we construct a unit disk graph
so that every node in P U P; corresponds to a node in the
unit disk graph, and edge (4, j) exists in the unit disk graph
iff ¢ and j’s corresponding nodes are within distance 1 of each
other.

Denote |V as the total number of nodes in the original
PLANAR instance, and |E| as the total number of edges. In
the last step of the reduction in [4], the following lemma was
proved:

Lemma 1. There is a verter cover of size no more than k in
the original PLAN AR instance iff there is a connected domi-
nating set in the corresponding unit disk graph of size no more
than |V| — |E| — 1+ k + |P"|.

A Proof of Theorem 1

We construct a reduction from PLANAR to BCAST in-
spired by the reduction used in [4], showing that we can con-
vert any instance of PLAN AR into an appropriate instance
of BCAST in polynomial time. We confirm the correctness
of our transformation by showing that every positive instance
of PLANAR maps to a positive instance of BCAST, and

<
<

20 20

[J
[J
[J
[]
@

15

l P
a
[o]elelele]

10

.........+¢

>
00000 00000

R

L e s e s B L e s s P

5 10 15 5 10 15 20
Figure 11: Step 4 of the reduction, with a box around the nodes n1
through n4. Black nodes are nodes in P’, and P, nodes are white.
Nodes denoted with a “4” are in node regions.

that every negative instance of PLAN AR maps to a negative
instance of BCAST. This demonstrates that BCAST is NP-
hard. We go on to prove that it is NP-complete by showing
BCASTeNP.

The reduction In proving the NP-hardness of BCAST),
we can extend the reduction in [4] and use some of the prop-
erties derived there to prove the correctness of our reduction.

To extend the reduction in [4], we construct the BCAST

instance from PLAN AR instance as follows. First, we per-
form the reduction in [4] to an instance of CDSUDG. We
then modify this reduction as follows:
Choose an arbitrary magnified POGD edge segment such that
one end of the segment corresponds to a center node position
(note that the POGD is magnified six times, so it must be 6
grid units long, and contain 6 nodes). Denote the first four
nodes in P along this POGD segment (starting from the cen-
ter node) as ni, n2, ng and n4. Hence, n; corresponds to
a center node, and n» to an end node. Adjust the P, nodes
corresponding to n3 and n4 so that they are not within one
grid length of each other. Note that this adjustment to the
CDSUDG instance can be done for any P;, while still satis-
fying the other conditions required of nodes in P;. Therefore,
the CDSUDG instance is still valid after this adjustment has
been made, and all proofs concerning the CDSUDG instance
([4]) still hold for this modified reduction.

1. The nodes of the BCAST instance are the same as
those in the generated CDSUDG instance (note that this is
valid because each node in the generated CDSUDG instance
is located at integer coordinates).

2. Set the source node of the BCAST instance, s, to be
ng from above. This is demonstrated in Figure 11, where the
source is chosen to be at (12, 8).

3. The range of each BCAST node is set to 1 grid length.

Note that even with the addition of these steps, the total
time for the reduction is still polynomial.

Proving NP-hardness from this reduction Assume
that we have taken a PLANAR instance and converted it
to an instance of CDSUDG, and extended the CDSUDG
instance as noted above to construct an instance of BCAST.
Then the following lemma holds:

Lemma 2. There exists a BCAST tree of power no more
than |V| — |E| — 1 + k + |P"| iff there emists a connected
node cover of size no more than k in the original instance
of PLANAR.

Proof: Note the following observations about the BCAST
instance constructed:

Observation 1: All neighbors of a node in the instance
of CDSUDG are at distance ezactly 1. Because the range of
each node in the BCAST instance is 1, this implies that in
any BCAST tree, a given node is either using 1 unit of power
or 0 units of power. Therefore, we can consider a node in the
BCAST instance as either being “on” or “off”.

Observation 2: The source node must be included in
any connected dominating set in the generated instance of
CDSUDG (because it is the sole node within one grid length
of its corresponding P, node).

Observation 3: Any connected dominating set CDS for
the instance of CDSUDG can be mapped to a valid tree in
the matching BC AST problem. To do so, turn on only those
nodes in the BC AST instance that are in C'DS. This is a valid
BC AST tree because it includes the source s as turned “on”
(by Observation 2), and for a given node, n, in the BCAST
instance there is a path from s to that node via “on” nodes
(by virtue of CDS being a connected dominating set). Addi-
tionally, the number of elements in C'DS is equal to the power
used in the BCAST instance (by Observation 1). Therefore,
every solution to the generated CDSUDG instance maps to a
corresponding BC AST solution. We can also prove the con-
verse statement. To prove this, note that the “on” nodes in
a BCAST solution must constitute a dominating set (other-
wise, there is a node which cannot be reached by the source
in the BCAST solution, implying it is invalid). Additionally,
in any valid BCAST tree, there is a path from the source to
every “on” node. This implies the set of “on” nodes is also
connected. Therefore, we can map a BCAST solution to a
CDS in the matching CDSUDG problem by selecting the set
of “on” nodes. Note that the power used in the BC AST so-
lution is exactly equal to the cardinality of the CDS that it
maps to.

Observation 3 implies that there exists a connected domi-
nating set of size no more than .J in the CDSUDG instance iff
the corresponding instance of BC AST contains a broadcast
tree of power no more than J. This statement, taken together
with Lemma 1, implies Lemma 2. B

Lemmas 1 and 2 imply that we can map every instance
of PLANAR to an instance of BCAST in polynomial time,
proving that BC AST is indeed NP-hard. Also, note that the
coordinates of each BC AST node generated this way have
size that is at most a polynomial function in the number of
nodes (because in [3], the size of the POGD is polynomial in
the number of nodes). This fact further implies that BCAST
is strongly NP-hard. For problems in which a value is a pa-
rameter (in this case the value is node coordinates), a strongly
NP-complete problem is one that remains NP-complete even
if the parameters are restricted to be polynomially bounded
by the size of the problem instance ([1]).

In order to complete our proof, we must show that
BCAST e NP. This is clearly true because verifying the cor-
rectness of a broadcast tree can be done in polynomial time.

