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Abstract

We develop an on-line routing and wavelength assign-
ment (RWA) algorithm for a WDM bidirectional ring
with N nodes. The algorithm dynamically supports all
k-allowable traÆc matrices, where k denotes an arbi-
trary integer vector (k1; :::; kN ), and node i, 1 � i � N ,
can transmit at most ki wavelengths and receive at most
ki wavelengths. Our algorithm uses d

PN

i=1 ki=3e wave-
lengths in each ring direction to support all k-allowable
traÆc matrices in a rearrangeably nonblocking fashion.
Furthermore, our algorithm requires at most three light-
path rearrangements per new session request regardless
of the number of nodes N and the amount of traÆc k.
In a special case with ki = k for all i, 1 � i � N , the
algorithm uses dkN=3e wavelengths in each ring direc-
tion, which is shown in [1] to be the minimum number of
wavelengths required for any o�-line nonblocking RWA
algorithm.

1 Introduction

In a WDM network, the �ber bandwidth is divided
into multiple frequency bands often called wavelengths.
Without wavelength conversion, routing of traÆc ses-
sions is subjected to the wavelength continuity con-
straint, which dictates that the lightpath corresponding
to a given session must travel on the same wavelength
on all the links from the source node to the destination
node. Using wavelength converters allows a network to
support a larger set of traÆc. However, such converters
are presently not commercially available and are likely
to be very expensive. Hence, many researchers have fo-
cused on the problem of routing and wavelength assign-
ment (RWA) assuming no wavelength conversion. We
also focus on the same problem in this paper.

We model the traÆc as a session-by-session arrival and

departure process in which sessions arrive and depart one
at a time, and each session utilizes a full wavelength. It
is desirable to have an on-line RWA algorithm which re-
quires few rearrangements of existing lightpaths, if any,
in order to support each new session request. In this
paper, we design one such algorithm for WDM bidirec-
tional rings.
In section 2, we de�ne a set of k-allowable traÆc, for-

mulate the on-line RWA problem for k-allowable traÆc
in a WDM bidirectional ring, and point out some known
results. In section 3, we describe our on-line RWA al-
gorithm in detail and prove its correctness. Finally, we
summarize the results in section 4.

2 Problem Formulation and Re-

lated Works

We consider traÆc sessions each of which takes up a full
wavelength and therefore need not consider the problem
of traÆc grooming [2, 3]. We concentrate on a WDM
bidirectional ring with N nodes. Adjacent nodes are
connected by two �bers, one in each direction. Let k
denote an arbitrary N -dimensional nonnegative integer
vector (k1; :::; kN ). We assume that node i, 1 � i � N ,
is equipped with ki tunable transmitters and ki tunable
receivers. Therefore, at any time, each node i can trans-
mit at most ki wavelengths and can receive at most ki
wavelengths. Such a traÆc matrix is said to belong to a
set of k-allowable traÆc.
We model the traÆc as a session-by-session arrival and

departure process in which sessions arrive and depart one
at a time. Since the rate of each session is �xed to a full
wavelength, a session is fully described by its source-and-
destination pair. In addition, since each session can be
supported by either a clockwise lightpath or a counter-
clockwise lightpath on some wavelength, a lightpath is
described by its source/destination pair, its wavelength,



and its ring direction.
A new session request is said to be allowable if there

is a free transmitter at the source node and a free re-
ceiver at the destination node. In other words, a new
session request is allowable if the resultant traÆc ma-
trix is still in the set of k-allowable traÆc. An on-line
RWA algorithm is said to be rearrangeably nonblocking
if any allowable session request can be supported by a
lightpath after possibly some rearrangements of existing
lightpaths.
Our goal is to develop an on-line RWA algorithm for an

N -node bidirectional ring to support k-allowable traÆc
in a rearrangeably nonblocking fashion. It is desirable
to keep the number of wavelengths in each ring direction
and the number of lightpath rearrangements per new
session request to their minimum values.
LetWk;N denote the minimum number of wavelengths

in each ring direction for an N -node bidirectional ring to
support k-allowable traÆc in a rearrangeably nonblock-
ing fashion. In [1], it was shown that if the ki's are all
equal to k, then Wk;N = dkN=3e for N � 5. In addition,
an o�-line RWA algorithm that uses dkN=3e wavelengths
in each ring direction was developed.
On-line RWA algorithms for dynamic traÆc are pro-

vided in [4] for line, ring, and tree networks. However,
the set of traÆc considered in [4] is de�ned by the max-
imum link load. In addition, it is worth noting that [5]
provides some bounds on the minimum number of wave-
lengths in each �ber for any physical network topology
to support k-allowable traÆc where the ki's are all equal.

3 On-Line RWA Algorithm for k-

Allowable TraÆc

In this section, we present our on-line RWA algorithm.
De�ne a directed wavelength as a wavelength in ei-
ther the clockwise or the counterclockwise ring direction.
Given w wavelengths in each ring direction, there are w
directed wavelengths in the clockwise ring direction, and
w directed wavelengths in the counterclockwise ring di-
rection. Two sessions are said to be adjacent if the desti-
nation node of one session is the source node of the other
session. The main idea behind our algorithm is to share
a directed wavelength between two adjacent sessions, as
suggested by the following known lemma [1].

Lemma 1 In a bidirectional ring, lightpaths correspond-

ing to any pair of adjacent sessions can share a directed

wavelength in either the clockwise or the counterclock-

wise ring direction.
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Figure 1: Lightpaths corresponding to a pair of adjacent
sessions (1,4) and (4,2) interfere in the clockwise ring di-
rection, but do not interfere in the counterclockwise ring
direction.

The proof of lemma 1 is immediate from �gure 1,
where if two lightpaths overlap in one direction, they
do not overlap in the other direction. In what follows,
when lightpaths associated with a pair of adjacent ses-
sions share a directed wavelength, we simply say that
the adjacent session pair share a directed wavelength.

In our algorithm, we maintain the following two RWA
conditions at all time: (i) only adjacent sessions share
a directed wavelength, and (ii) at most two adjacent
sessions share a directed wavelength. We now de-
scribe in detail the on-line RWA algorithm which uses
d(
PN

i=1 ki)=3e wavelengths in each ring direction and at
most three lightpath rearrangements per new session re-
quest.

Algorithm 1 Provide d(
PN

i=1 ki)=3e wavelengths in
each ring direction.

Session termination: When a session terminates,
simply remove its associated lightpath from the ring
without any further lightpath rearrangement.

Session arrival: When a session arrives and the resul-
tant traÆc matrix is still k-allowable, proceed as follows.

Step 1: If there is a nonsharing session, i.e. a session
which does not share its directed wavelength with any
session, and it is adjacent to and can share its directed
wavelength with the new session, assign the two sessions
to share that directed wavelength. In this case, no light-
path rearrangement is required. Otherwise, proceed to
step 2.

Step 2: If there is a free directed wavelength in either
ring direction, assign a free directed wavelength to the
new session. In this case, no lightpath rearrangement is
required. Otherwise, proceed to step 3.

Step 3: Among nonsharing sessions and the new session,
we claim that there must exist a pair of adjacent sessions.



Form such an adjacent session pair by searching through
all pairs of sessions in some order, e.g. from sessions
involving node 1 to sessions involving node N . Once an
adjacent session pair is found, there are two possibilities
for supporting the new session.

1. If the adjacent session pair can share the directed
wavelength of one session in the pair, assign the
adjacent session pair to share that directed wave-
length. In this case, the adjacent session pair does
not include the new session since step 1 would have
otherwise applied. Therefore, one existing session
had to be rearranged to form the new adjacent ses-
sion pair. Sharing of the directed wavelength by
the adjacent session pair will free one directed wave-
length on which the new session can be supported
with only one lightpath rearrangement.

2. If the adjacent session pair cannot share the directed
wavelength of either session in the pair, we claim
that there must exist a directed wavelength with a
nonsharing session in the opposite ring direction, i.e.
the ring direction in which the adjacent session pair
can share a directed wavelength. Remove the light-
path of that nonsharing session from its directed
wavelength, and assign the adjacent session pair to
share that directed wavelength. When the adjacent
session pair includes the new session, the new ses-
sion will by now be supported, and sharing of the
directed wavelength by the adjacent session pair will
free one directed wavelength on which the removed
nonsharing session can be supported. In this case,
a total of two lightpath rearrangements are made.
When the adjacent session pair does not include the
new session, sharing of the directed wavelength by
the adjacent session pair will free two directed wave-
lengths on which the removed nonsharing session
and the new session can be supported. In this case,
a total of three lightpath rearrangements are made.

Proof of algorithm correctness: From the algorithm
description, it is clear that we always keep the two de-
sired RWA conditions, i.e. (i) only adjacent sessions
share a directed wavelength, and (ii) at most two ad-
jacent sessions share a directed wavelength. In addition,
it is clear that at most three lightpath rearrangements
are made to support each new session request.
It remains to prove the two claims in step 3. Before

doing so, we prove one useful fact. Let p be the number of
adjacent session pairs which share a directed wavelength
before the new session request. Let q be the number of
nonsharing sessions before the new session request. Let

w be the number of wavelengths in use before the new
session request. Note that w = p + q. For convenience,
de�ne K =

PN

i=1 ki. We now show that, in step 3, p <
bK=3c. Since the total number of sessions is at most K
in k-allowable traÆc, we have that 2p + q < K before
the new session request. Thus, w is bounded by

w = p+ q < p+ (K � 2p) = K � p:

In step 3, since there is no free directed wavelength for
the new session, it follows that the number of wave-
lengths in use w is equal to the total number of di-
rected wavelengths 2dK=3e. Therefore, we have that
K � p > w = 2dK=3e, yielding the desired relation

p < K � 2dK=3e � bK=3c:

We now prove the �rst claim in step 3 that there al-
ways exists a new adjacent session pair. We proceed by
contradiction. Suppose that no new adjacent session pair
can be formed among nonsharing sessions and the new
session. We argue that q � b(K � p)=2c. To see this,
observe that node i, 1 � i � N , is equipped with ki tun-
able transmitter/receiver pairs. Overall, we have a total
of K transmitter/receiver pairs. Each pair of adjacent
sessions which share a directed wavelength utilizes one
transmitter/receiver pair at some node, one transmitter
at another node, and one receiver at yet another node.
Let pi be the number of adjacent sessions which share

a directed wavelength at node i. Let k0

i = ki� pi denote
the number of transmitter/receiver pairs which are not
used by those pi adjacent sessions at node i. In addition,
let kti and k

r
i denote the numbers of nonsharing sessions

transmitted and received at node i respectively. It is
clear that kti � k0

i and kri � k0

i.
In step 3, since no new adjacent session pair can be

formed among the nonsharing sessions, we have that, at
each node i, either kti = 0 or kri = 0. Thus, kti + kri � k0

i.
Because each nonsharing session uses one transmitter
and one receiver, it follows that

2q =

NX
i=1

(kti + kri ) �

NX
i=1

k0

i = K � p:

Since q is an integer, we have shown that q � b(K�p)=2c.

Since there is no free directed wavelength for the new
session in step 3, it follows that the number of wave-
lengths in use w is equal to the total number of directed
wavelengths 2dK=3e. Therefore, we have that

p+ b(K � p)=2c � p+ q = w = 2dK=3e:

It follows that

p � 2dK=3e � b(K � p)=2c � 2K=3� (K � p)=2;



or quivalently, p � K=3, which contradicts the above
established fact that p < bK=3c in step 3. Hence, we
have shown that a new adjacent session pair always exists
in step 3.

Finally, we prove the second claim in step 3 that if we
need to �nd a nonsharing session in the opposite ring
direction, i.e. the ring direction in which the new ad-
jacent session pair can share a directed wavelength, one
always exists. The claim is apparent from the fact that
p < bK=3c in step 3. In other words, the number of
sharing session pairs is less than the number of directed
wavelengths in each ring direction. Since step 2 was not
taken, all the other 2dK=3e� p directed wavelengths are
taken by nonsharing paths. It follows that, in either
ring direction, a directed wavelength with a nonsharing
session exists. 2

The construction of our on-line RWA algorithm im-
plies the following theorem.

Theorem 1 For a bidirectional ring with N nodes and

k-allowable traÆc, the required number of wavelengths in

each ring direction for rearrangeably nonblocking Wk;N

is bounded by

Wk;N �

&PN

i=1 ki
3

'
:

In addition, there exists, by construction, an on-line

RWA algorithm which uses d(
PN

i=1 ki)=3e wavelengths in
each ring direction and requires at most three lightpath

rearrangements per new session request.

When N � 5 and ki = k for all i, 1 � i � N , we have
from [1] that Wk;N � dkN=3e. In this case, the above
upper bound is tight. Otherwise, the above upper bound
is not necessarily tight and algorithm 1 may use more
thanWk;N wavelengths. An interesting example is anN -
node bidirectional ring which contains one hub node, say
node 1, with k1 = N�1, and the other N�1 nodes each
with ki = 1, 2 � i � N . It can be shown that Wk;N =
d(N � 1)=2e, which is less than the upper bound d2(N �
1)=3e from theorem 1. In addition, there exists an on-line
RWA algorithm which uses d(N�1)=2e wavelengths and
requires at most four lightpath rearrangements per new
session request. Therefore, for a �xed value of

PN

i=1 ki
equal to kN for some positive integer k, the case in which
the ki's are all equal yields the maximum value of Wk;N .

4 Conclusion

We developed an on-line RWA algorithm for dynamic k-
allowable traÆc in an N -node WDM bidirectional ring.
The algorithm uses d(

PN

i=1 ki)=3e wavelengths in each
ring direction, is rearrangeably nonblocking, and re-
quires at most three lightpath rearrangements per new
session request regardless of the number of nodes N and
the amount of traÆc k. Our algorithm also provides an
alternative derivation on the value of Wk;N given in [1]
when the ki's are all equal.
The developed algorithm implies the upper bound on

the minimum number of wavelengths for rearrangeable
nonblocking: Wk;N � d(

PN

i=1 ki)=3e. The bound is tight
for the case in which the ki's are all equal. In addition,
we observed that, for N � 5 and a �xed value of

PN

i=1 ki
equal to kN for some positive integer k, the case in which
the ki's are all equal yields the maximum value ofWk;N .
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