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Abstract—We consider a dynamic server control problem for
two parallel queues with randomly varying connectivity and server
switchover delay between the queues. At each time slot the server
decides either to stay with the current queue or switch to the
other queue based on the current connectivity and the queue
length information. The introduction of switchover time is a
new modeling component of this problem, which makes the
problem much more challenging. We develop a novel approach
to characterize the stability region of the system by using state-
action frequencies, which are stationary solutions to a Markov
Decision Process (MDP) formulation of the corresponding satu-
rated system. We characterize the stability region explicitly in
terms of the connectivity parameters and develop a frame-based
dynamic control (FBDC) policy that is shown to be throughput-
optimal. In fact, the FBDC policy provides a new framework
for developing throughput-optimal network control policies using
state-action frequencies. Furthermore, we develop simple Myopic
policies that achieve more than 96% of the stability region.
Finally, simulation results show that the Myopic policies may
achieve the full stability region and are more delay efficient than
the FBDC policy in most cases.

I. INTRODUCTION

Scheduling a dynamic server over randomly varying wire-

less channels is an important and well-studied problem which

provides useful mathematical models for many practical ap-

plications [8], [10], [11], [13]. However, to the best of our

knowledge, the joint effects of randomly varying connectivity

and server switchover delay have not been considered before.

In fact, switchover delay is a widespread phenomenon that

can be observed in many practical dynamic control systems.

In satellite systems where a mechanically steered antenna is

providing service to ground stations, the time to switch from

one station to another can be around 10ms [3]. Similarly,

the delay for electronic beamforming can be on the order of

10µs in wireless radio systems [3]. Furthermore, in optical

communication systems tuning delay for transceivers can take

significant time (µs-ms) [4].

We consider the dynamic server control problem for two

parallel queues with randomly varying connectivity and server

switchover delay as shown in Fig. 1. We consider a slotted

system where the slot length is equal to a single packet

transmission time and it takes one slot for the server to switch

from one queue to the other1. packet is successfully received

1In a slotted system, even a minimal switchover delay will lead to a loss
of a slot due to synchronization issues.
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Fig. 1: System model. Two queues with randomly varying connectivities (C1

and C2) and ts = 1 slot switchover time. The server is currently connected
to queue 1 and it takes 1 time slot to switch to queue 2.

from queue i if the server is currently at queue i, it decides

to stay at queue i, and queue i is connected. The server

dynamically decides to stay with the current queue or switch

to the other queue based on the connectivity and the queue

length information. Our goal is to study the impact of the

switchover time on system stability and optimal algorithms.

We show that as compared to the system without switchover

delay in [11], the stability region is significantly reduced and

the optimal policies take a different structure.

Optimal control of queuing systems and communication

networks has been a very active research topic over the past

two decades (e.g., [5], [8], [10], [11]). In the seminal papers

[10] and [11], Tassiulas and Ephremides characterized the

stability region of multihop wireless networks and parallel

queues with randomly varying connectivity. Later, these results

were extended to power allocation and routing, and delayed

or limited channel state information (e.g., [1], [5], [8], [13]).

These works do not consider the server switchover times.

While switchover delay has been studied in polling models in

the queuing theory community (e.g., [2], [12]) and in optical

networks in [4], random connectivity was not considered.

The main contribution of this paper is solving the scheduling

problem in parallel queues with randomly varying connec-

tivity and server switchover times for the first time. The

paper provides a novel framework for establishing throughput-

optimality in network control problems using the state-action

frequencies. In particular, we explicitly characterize the stabil-

ity region of the system using the state-action frequencies. We

develop a throughput-optimal dynamic control policy that is

applicable to systems with more than two queues, arbitrary

switchover times and general Markovian channels. Finally,

we propose simple and delay-efficient Myopic policies that

provably achieve almost the full stability region.

This paper is organized as follows. We introduce the system
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Fig. 2: Markov modulated ON/OFF channel process. We have ǫ ≤ 0.5 for
positive correlation.

model in Section II. The stability region characterization for

both uncorrelated and correlated channels are in Section III.

We prove the throughput-optimality of the FBDC policy in

Section IV, and analyze simple Myopic policies in Section V.

For brevity, all proofs are omitted and can be found in [6].

II. SYSTEM MODEL

Consider unit-length time slots that are equal to one packet

transmission time; t ∈ {0, 1, 2, ...}. It takes one slot for the

server to switch from one queue to the other. Let m(t) denote

the queue at which the server is present at slot t. Let the arrival

process Ai(t) with average arrival rate λi denote the number

of packets arriving to queue i at time slot t, where Ai(t) is

independently and identically distributed (i.i.d.) over time slots

and E[A2
i (t)] ≤ A2

max, i ∈ {1, 2}. Let C(t) = (C1(t), C2(t))
be the channel (connectivity) process at time slot t, where

Ci(t) = 0 for the OFF state (disconnected) and Ci(t) = 1
for the ON state (connected). We assume that the processes

A1(t), A2(t), C1(t) and C2(t) are independent.

The process Ci(t), i∈{1, 2}, is assumed to form the two-

state Markov chain with transition probabilityǫ≤0.5 as shown

in Fig. 2, i.e., the symmetric Gilbert-Elliot (G-E) channel

model [1], [14]. The steady state probability of each channel

state is equal to 0.5 in this model. Moreover, for ǫ=0.5,Ci(t)
is i.i.d. over time slots and takes the value 1 w.p. 0.5. We

refer to this case as uncorrelated channels. Our results and

algorithms are applicable to non-symmetric channel models,

but here we present the symmetric case for ease of exposition.

Let Q(t)=(Q1(t),Q2(t)) be the queue lengths at time slot

t. We assume that Q(t)and C(t)are known to the server at

the beginning of each time slot. Let at ∈ {0, 1} denote the

action taken at slot t, where at=1 if the server stays with the

current queue and at=0 otherwise. One packet is successfully

received from queue i at time slot t, if m(t) = i, at=1 and

Ci(t)=1.

A queue is called stable if lim supt→∞
1
t

∑t−1
τ=0 E[Q(τ)] <

∞ [8]. The system is called stable if both queues are stable.

The stability region Λ is the set of all arrival rate vectors

λ = (λ1, λ2) such that there exists a control algorithm that

stabilizes the system. The δ-stripped stability region is defined

for some δ > 0 as Λδ ,

{

(λ1, λ2)|(λ1 + δ, λ2 + δ) ∈ Λ
}

.

A policy is said to achieve γ-fraction of Λ, if it stabilizes the

system for all input rates inside γΛ.

III. STABILITY REGION

We explicitly characterize the stability region for both

uncorrelated and correlated channels and show that channel

correlation can be exploited to enlarge the stability region

significantly.
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Fig. 3: Stability region under uncorrelated (i.i.d.) and correlated (Markovian)
channels with and without switchover time.

A. Motivation-Uncorrelated Channels

We start by considering the case that the channel processes

are uncorrelated over time (i.e., ǫ = 0.5). The stability region

of the corresponding system with no-switchover time was

established in [11]: λ1, λ2 ∈ [0, 0.5] and λ1 + λ2 ≤ 0.75.

When the switchover time is zero, the stability region is the

same for both i.i.d. and Markovian channels, which is a special

case of the results in [8]. However, when the switchover time

is non-zero, the stability region is considerably reduced.

Theorem 1: For the system with i.i.d. channels

Λ = {(λ1, λ2)
∣

∣λ1 + λ2 ≤ 0.5, λ1, λ2 ≥ 0}. (1)

In addition,the simple Exhaustive policy is throughput-optimal.

The basic idea is that as soon as the server switches to queue i,
the time to ON state is a geometric random variable of mean 2

slots, which can be viewed as the service time. The Exhaustive

policy is throughput-optimal because under this policy, as the

arrival rates increase, the fraction of time the server spends on

switching decreases [12].

This reduced stability region is depicted in Fig. 3. When the

channels are always connected, the stability region is λ1, λ2 ≥
0, λ1+λ2 ≤ 1 and is not affected by the switchover delay [12].

It is the combination of random connectivity and switchover

delay that results in fundamental changes in stability.

Remark 1: These results hold for general systems with N
queues, arbitrary switchover times and i.i.d. channels with

probabilities pi [6]: Λ = {λ ≥ 0|∑N

i=1 λi/pi ≤ 1} .

B. Correlated Channels

When switchover times are non-zero, channel correlation

can be exploited to improve the stability region considerably.

Moreover, as ǫ → 0, the stability region tends to that achieved

by the system with no-switchover time and for 0 < ǫ < 0.5 the

stability region lies between the stability regions corresponding

to the two extreme cases ǫ = 0.5 and ǫ → 0 as shown in Fig. 3.

We start by analyzing the corresponding system with sat-

urated queues, i.e., both queues are always non-empty. Let

Λs denote the set of all time average expected departure rates

that can be obtained from the two queues in the saturated

system under all possible policies. We will show that Λ = Λs.

We prove the necessary stability conditions in the following

Lemma and establish sufficiency in the next section.

Lemma 1:

Λ ⊆ Λs.



We omit the proof for brevity but an intuitive explanation is as

follows. Given a policy π for the system with random arrivals,

apply the same policy in the saturated system with the same

sample path of channel realizations. It is clear that the total

number of departures from each queue in the saturated system

is no less than that in the system with random arrivals.

Next, we establish the region Λs by formulating the system

dynamics as a Markov Decision Process (MDP). Let st =
(m(t), C1(t), C2(t)) ∈ S and at ∈ A = {0, 1} denote the

system state and the action taken at time t where S is the set

of all states and A is the set of all actions at each state. For

the saturated system, a policy is a mapping from the history of

the channel processes until time t to the set of all probability

distributions on actions at ∈ {0, 1}. A stationary policy is a

policy that depends only on the current state. In each time slot

t, the server observes the current state st and chooses an action

at. Then the next state j is realized according to the transition

probabilities P(j|s, a) which depend on the random channel

processes. Now, we define the reward functions as follows:

r1(s, a), 1 if s = (1, 1, 1) or s = (1, 1, 0), and a=1 (2)

r2(s, a), 1 if s = (2, 1, 1) or s = (2, 0, 1), and a=1, (3)

and r1(s, a)=r2(s, a), 0 otherwise. Given some α1, α2 ≥ 0,

define the system reward at time t as r(st, at) , α1r1(st, at)+
α2r2(st, at). The average reward of policy π is defined as

rπ , lim
K→∞

1

K
E
{

K
∑

t=1

r(st, a
π
t )
}

.

We are interested in the policy that achieves the maximum time

average expected reward r∗ , maxπ r
π . This optimization

problem is a discrete time MDP characterized by the state

transition probabilities P(j|s, a) with 8 states, 2 actions per

state and bounded rewards. Furthermore, any given pair of

states are accessible from each other (i.e., there exists a posi-

tive probability path between the states) under some stationary

deterministic policy. Therefore this MDP belongs to the class

of Weakly Communicating MDPs [9] 2. Therefore, there exists

a stationary deterministic optimal policy independent of the

initial state [9]. The feasible region of the Dual Linear Pro-

gramming approach to solving Dynamic Programs is called

the state-action polytope, X, that is the set of state-action

frequency vectors x that satisfy the balance equations

x(s; 1) + x(s; 0) =
∑

s
′

∑

a∈{0,1}

P
(

s|s′, a
)

x(s′; a), ∀ s ∈ S, (4)

the normalization condition
∑

s
x(s; 1) + x(s; 0) = 1, and the

nonnegativity constraints x(s; a) ≥ 0, for s ∈ S, a ∈ A. Note

that x(s; 1) can be interpreted as the stationary probability that

action stay is taken at state s. More precisely, a point x ∈ X

corresponds to a randomized stationary policy that takes action

2In fact, rather than the trivial suboptimal policy πs that decides to stay
with the current queue in all states, all stationry deterministic policies are
unichain, namely, they have a single recurrent class regardless of the initial
state. Hence, when πs is excluded, we have a Unichain MDP.

a ∈ {0, 1} at state s w.p.

P(action a at state s)=
x(s; a)

x(s; 1) + x(s; 0)
, a ∈ A, s ∈ Sx, (5)

where Sx is the set of recurrent states given by Sx ≡ {s ∈ S :
x(s; 1) + x(s; 0) > 0}, and actions are arbitrary for transient

states s ∈ S/Sx [7], [9]. Furthermore, every policy has a

corresponding limiting average state-action frequency vector

in X regardless of the initial state and every x ∈ X can be

achieved by a stationary randomized policy as in (5) [7], [9].

The following linear transformation of the state-action

polytope X defines the reward polytope [7]: {(r1, r2)
∣

∣r1 =
x.r1, r2 = x.r2,x ∈ X}, where (.) denotes the vector inner

product and r1 and r2 are the vector of rewards defined in (2)

and (3). This polytope is the set of all time average expected

departure rate pairs that can be obtained in the saturated

system, i.e., it is the rate region Λs. Algorithm 1 explicitly

characterizes Λs.

Algorithm 1 Stability Region Characterization

1: Given α1, α2≥0, solve the following Linear Program (LP)

max
x

α1r1 + α2r2

subject to x ∈ X. (6)

2: For a given α2/α1 ratio, the optimal solution (r∗1, r
∗
2) of

the LP in (6) gives one of the corner points of Λs. Find all

possible corner points and take their convex combination.

Lemma 2 is useful for finding the solution of (6), [7], [9].

Lemma 2: The corner points of X have a one-to-one

corresspondence with the stationary deterministic policies.

The intuition behind this lemma is as follows. If x is a corner

point of X, it cannot be expressed as a convex combination of

any two other elements in X, therefore, for each state s only

one action has a nonzero probability. Therefore, the corners of

the rate polytopeΛs are given by stationary deterministic poli-

cies. There are a total of 28 stationary deterministic policies

since we have 8 states and 2 actions per state. Hence, finding

the rate pairs corresponding to the 256 deterministic policies

and taking their convex combination gives Λs. Fortunately, we

do not have to go through this tedious procedure. The fact that

at a vertex of (6) either x(s; 1) or x(s; 0) has to be zero for

each s ∈ S provides a useful guideline for analytically solving

this LP. The solution is lengthy and is omitted here.

We present the solution of this LP for all (α1, α2) pairs for

ǫ ≥ ǫc , 1−
√
2/2 in Fig. 4 (a) and for ǫ < ǫc in Fig. 4 (b). As

ǫ → 0.5, the stability region converges to that of the system

with i.i.d. channels with ON probability equal to 0.5. In this

regime, knowledge of the current channel state is of no value.

As ǫ → 0 the stability region converges to that for the system

with no-switchover time in [11]. In this regime, the channels

are likely to stay the same in many consecutive time slots,

therefore, the effect of switching delay is negligible.

Remark 2: The technique used for characterizing the stabil-

ity region in terms of the state-action frequencies can be used
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Fig. 4: Stability region under correlated channels with and without switchover
time for (a) ǫ = 0.25 < ǫc = 1−

√
2/2 and (b) ǫ = 0.40 ≥ ǫc.

to find the stability regions of systems with arbitrary number

of queues, switching times and channel states.

IV. FRAME-BASED DYNAMIC CONTROL (FBDC) POLICY

We propose a frame-based dynamic control policy inspired

by the state-action frequencies and prove that it is throughput-

optimal asymptotically in the frame length. The motivation

behind the FBDC policy is that an optimal policy π∗ that

achieves the maximization in (6) for given weights α1 and α2

for the saturated system should achieve a good performance

also in the original system when the queue sizes Q1 and Q2

are used as weights. Specifically, divide the time into equal-

size intervals of T slots and let Q1(jT ) and Q2(jT ) be the

queue lengths at the beginning of the jth interval. We find the

deterministic policy that optimally solves (6) when Q1(jT )
and Q2(jT ) are used as weights and then apply this policy in

each time slot of the frame. The FBDC policy is described in

Algorithm 2 in details.

Algorithm 2 FBDC POLICY

1: Find the optimal solution to the following Linear Program

max.{r1,r2} Q1(jT )r1 +Q2(jT )r2

subject to (r1, r2) ∈ Λs (7)

where Λs is the rate polytope derived in Section III-B.

2: The optimal solution (r∗1 , r
∗
2) in step 1 is a corner point

of Λs that corresponds to a stationary deterministic policy

denoted by π∗. Apply π∗ in each time slot of the frame.

�� �0 T ′

1
(ǫ) T1(ǫ) 1 T2(ǫ) T ′

2
(ǫ)

corner b0corner b1corner b2corner b3

(1,1,1): switch

(1,1,0): switch
(1,0,1): switch (1,0,1): switch (1,0,1): switch

(1,0,0): switch (1,0,0): switch
(2,1,1): stay (2,1,1): stay (2,1,1): stay

(2,1,0): stay
(2,0,1): stay (2,0,1): stay

(2,0,0): stay

(1,1,1): stay (1,1,1): stay (1,1,1): stay
(1,1,0): stay (1,1,0): stay (1,1,0): stay

(2,1,0): switch (2,1,0): switch (2,1,0): switch

(1,0,0): stay

(2,0,0): switch

(1,0,1): stay

(2,1,1): switch

(2,0,1): switch
(2,0,0): stay

(2,0,1): stay

(2,0,0): switch

(1,0,0): stay

Q2

Q1

TABLE I: Mapping from the queue sizes to the corners of Λs, b0, b1, b2, b3
shown in Fig. 4 (b), for ǫ ≥ ǫc. For each state s = (m(t), C1(t), C2(t)) the
optimal action is specified. The thresholds on Q2/Q1 for the FBDC policy
are 0, T1 = 1/((1− ǫ)(3− 2ǫ)), 1, T2 = (1− ǫ)(3− 2ǫ) and for the OLM
policy are 0, T ′

1
= ǫ/(1 − ǫ), 1, T ′

2
= (1 − ǫ)/ǫ. For example corner b1

is chosen in the FBDC policy if 1 ≤ Q2/Q1 < T2, whereas in the OLM
policy if 1 ≤ Q2/Q1 < T ′

2
.

Theorem 2: The FBDC policy stabilizes the system as long

as the arrival rates are within the δ(T )-stripped stability

region Λ
δ(T )
s , where δ(T ) is a decreasing function of T .

The proof is omitted for brevity. It involves a drift analysis

using the standard quadratic Lyapunov function. However, it

is novel in utilizing an MDP framework in Lyapunov drift

arguments. The basic idea is that when the optimal policy

solving (7), π∗, is applied over a sufficiently long frame of T
slots, the average output rates of both the actual system and

the corresponding saturated system converge to r∗. For the

saturated system, the probability of a large difference between

the empirical rates and r∗ is essentially due to the mixing

time of the Markov chain induced by policy π∗, which decays

exponentially fast in T [7]. Therefore, for sufficiently large

queue lengths, the difference between the empirical rates in

the actual system and r∗ also decreases with T . This results in

a negative Lyapunov drift when λ is inside the δ(T )-stripped

stability region since from (7) we have Q(jT ).r∗ ≥ Q(jT ).λ.

The parameter δ(T ), capturing the difference between the

stability region of the FBDC policy and Λs, is related to the

mixing time of the system Markov chain and is a decreasing

function of T . This establishes that the FBDC policy is asymp-

totically throughput-optimal and that Λ = Λs. Moreover, δ(T )
is negligible even for relatively small values of T .

The FBDC policy is easy to implement since it does not

require the solution of the LP for each frame. Instead, we can

solve the LP for all relevant Q1(t), Q2(t) values only once in

advance and create a mapping from the Q2(t)/Q1(t) values

to the corner points of the stability region. Then, we can use

this mapping to find the corresponding optimal policy for each

frame. Such a mapping depends only on the slopes of the lines

in the stability region in Fig. 4 and is shown in Table I for the

case of ǫ ≥ ǫc. A similar mapping can be obtained for ǫ < ǫc.
Remark 3: The FBDC policy provides a new framework

for developing throughput-optimal policies for network control

problems by solving an LP of state-action frequencies and

applying this solution over a frame. In particular, the FBDC

policy can stabilize systems with more than two queues, arbi-

trary switchover times and complicated Markovian channels

as well as most of the classical network control systems such

as the ones in [1], [11] or [13].



V. MYOPIC CONTROL POLICIES

We investigate the performance of simple Myopic policies

that do not require the solution of an LP and achieve more

than 96% of the stability region, while providing better delay

performance than the FBDC policy in most cases. These

policies make scheduling/switching decisions according to

weight functions that are products of the queue lengths and the

channel predictions for a small number of slots into the future.

We refer to a Myopic policy considering k future time slots as

the k-Lookahead Myopic policy. We implement these policies

over frames of length T time slots where during the jth frame,

the queue lengths at the beginning of the frame, Q1(jT )
and Q2(jT ), are used for weight calculations. The detailed

description of the 1-Lookahead Myopic policy is given below.

Algorithm 3 1-LOOKAHEAD MYOPIC POLICY

1: Assuming that the server is currently with queue 1 and the

system is at the jth frame, calculate the following weights

in each time slot of the current frame;

W1(t) = Q1(jT )
(

C1(t) + E
[

C1(t+ 1)|C1(t)
]

)

W2(t) = Q2(jT )E
[

C2(t+ 1)|C2(t)
]

. (8)

2: If W1(t) ≥ W2(t) stay with queue one, otherwise, switch

to the other queue. A similar rule applies for queue 2.

Next we establish a lower bound on the stability region of

the 1-Lookahead Myopic Policy by comparing its drift over a

frame to the drift of the FBDC policy.

Theorem 3: The 1-Lookahead Myopic policy achieves at

least γ-fraction of Λ asymptotically in T where γ ≥ 90%.

The proof is constructive and can be found in [6]. Here we

highlight the key steps. The basic idea is that the 1-Lookahead

Myopic (OLM) policy produces a mapping from the set of

queue sizes to the corners of the stability region. This mapping

is similar to that of the FBDC policy, however, the thresholds

on the queue size ratios Q2/Q1 are determined according to

(8): For ǫ ≥ ǫc, there are 4 corners in the stability region

denoted by b0, b1, b2 and b3 as shown in Fig. 4 (b). We

derive conditions on Q2/Q1 such that the OLM policy chooses

the deterministic actions that correspond to a given corner

point. For instance, from Table I, the deterministic actions

corresponding to corner b1 are as follows: At queue 1, stay

only if the channel states (C1, C2) are (1, 0) or (1, 1), and at

queue 2, switch only if the channel states are (1, 0). The most

limiting actions are switching at (C1, C2) = (1, 0) at queue

2, staying at (C1, C2) = (1, 1) at queue 1 and switching at

(C1, C2) = (0, 0) at queue 1. The conditions on Q2/Q1 for

the OLM policy to take these actions are Q1(1 − ǫ) > Q2ǫ,
Q1(2− ǫ) > Q2(1− ǫ) and Q1 ≤ Q2 respectively. Combining

these and noting that since ǫ ≥ ǫc we have 1−ǫ
ǫ

< 2−ǫ
1−ǫ

, we

obtain the intersection of all the conditions given by

1 ≤ Q2

Q1
<

1− ǫ

ǫ
.

We proceed similarly for the other corners and also for the

case ǫ < ǫc. In Table I the shaded regions are the regions

of Q2/Q1 in which the OLM and the FBDC policies apply

decisions for different corner points, denoted by rOLM and

r∗. The following lemma proved in [6] completes the proof by

establishing the 90% bound on the weighted average departure

rate of the OLM policy w.r.t. to that of the FBDC policy.

Lemma 3:

Ψ ,

∑

i Qi(t)r
OLM
i

∑

iQi(t)r∗i
≥ 90%. (9)

The k-Lookahead Myopic Policy uses the following weight

functions: Assuming the server is with queue 1 at time slot t,
W1(t) = Q1(jT )

(

C1(t) +
∑k

τ=1 E[C1(t+ τ)|C1(t)]
)

W2(t) = Q2(jT )
∑k

τ=1 E[C2(t+ τ)|C2(t)].
A similar analysis shows that the 2-Lookahead Myopic Policy

achieves at least 94% of Λ, while the 3-Lookahead Myopic

Policy achieves at least 96% of Λ.

Simulation experiments in [6] suggest that the OLM policy

may achieve the full stability region. For a frame size of T=10
and ǫ=0.4 the average delay under the OLM policy is no more

than that under the FBDC policy for 86% of all arrival rates

considered, while this delay improvement is 81% of all arrival

rates considered for T = 25 and ǫ = 0.25. These results show

that the OLM policy is not only simpler to implement than

the FBDC policy, but it can also be more delay efficient.
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