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Abstract

This paper addresses scheduling algorithms for message
transmissions over a satellite broadcast system. The system
is expected to deliver messages of widely varied length.
Our objective is to find a scheduling algorithm that exhibits
good delay performance for messages of all sizes. we
show that classical scheduling algorithms such as First-
Come-First-Serve and Round-Robin perform poorly in this
environment. We study two alternative schemes. The first,
gives preemptive priority to the message with the Shortest
Remaining Processing Time (SRPT). This scheme is
known to minimize overall average message delays, but
results in disproportionately large delays for long messages.
The second scheme, serves messages based on a dynamic
priority function, where a message’s priority varies based
on how long the message has been in the system as well as
its length. This scheme results in somewhat larger overall
average delays, but it is more fair to long messages.

I. Introduction

This paper addresses scheduling algorithms for message
transmissions over a satellite broadcast system.  This
problem is motivated by the need to design a message
transfer protocol for the Battlefield Awareness Data
Dissemination (BADD) system. BADD is an information
dissemination system that is being designed to efficiently
transfer battlefield information over the “one-way” Global
Broadcast Service (GBS). A view of the BADD-GBS
system is shown in figure 1. In this systemn, messages are
sent over the Defense Information Systems Network
(DISN) to the BADD/GBS transmit site, where they are
scheduled for transmission.. Once received at the
BADD/GBS receive site, they are disseminated to their
respective  destination. The scheduling algorithms
considered here focus exclusively on the transmission of
messages over the satellite which takes place at the
BADD/GBS transmit site.
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Figure 1. The BADD-GBS system.

Similar scheduling problems have been studied extensively
in the context of processor sharing. Much of the theory
behind scheduling algorithms has been developed in that
context and applies well to the problem of scheduling of
message transmissions. Our focus, here, however, is on
finding scheduling algorithms that are suited to the
BADD/GBS system. Therefore, in this paper we do not
attempt to derive optimality scheduling results, but rather to
describe and analyze, often through simulation, practical
scheduling schemes that are suited to the BADD/GBS
system.

The BADD system is expected to deliver messages of
widely varied length. Messages vary from the very short
(e.g., 100 bytes) to extremely long image files that exceed
several Gbits in length. It is this wide variability in
message lengths that makes message scheduling both very
important as well as a challenge. To illustrate the
significance of the problem, consider what happens when a
First-Come-First-Serve  (FCFS) service discipline  is
employed and a short packet arrives immediately after a
very long 1 Gbyte file. When operating over a 10 Mbps
channel, the short message (which may represent a short
status message or a protocol control packet) will have to
wait almost 15 minutes before it is delivered, at which point
it may be totally outdated. The situation depicted above
may be remedied by a simple priority scheduling where
these very short messages receive preemptive priority over
the long messages. However, while such a priority
mechanism may work well with just two file sizes of
extreme values it may not be easy to extend to more general



cases. For example, how would one handle a 100 Mbit file
when it arrives after a 1 Gbyte file; should it have to wait
the 15 minutes? If not, would it be fair to interrupt the long
file with for almost two minutes in order to transmit the
shorter file?

Scheduling algorithms can be measured against a number
of performance criteria. The most obvious is average delay;
both overall average delay as well as average delay offered
to different traffic classes. Another important performance
measure is “faimess”. As depicted in the previous
paragraph a FCFS scheduling policy would be unfair to
short files. While there is no universal definition for
fairness, a scheduling algorithm can be considered fair if the
service time received by a file is proportional to the length
of the file. Yet another, less obvious, performance measure
is the variability in delay between messages of similar size.
In this paper we describe a number of scheduling
algorithms and compare their performance using the
measures described above. A more comprehensive look at
these scheduling algorithms is presented in [1].

In addition, there are other considerations for a scheduling
algorithm. For example, certain messages may convey
timely information, such as protocol control information,
that must be delivered within certain time limits. In this
note we do not address this problem explicitly, but only
point out that such messages may be best served by giving
them higher priority over other messages.  Another
consideration for messages transmitted over military
communication resources is the military precedence class.
However, again, we do not address this issue explicitly but
rather only consider the problem of scheduling within a
precedence class.

Finally, as a matter of practical interest, the scheduling
algorithm has to be implemented at the BADD/GBS
transmit site. This approach is primarily dictated by the
need to be compatible with the current GBS system where
messages are first transferred to the GBS server and then
are scheduled for transmission. As a first design, we view
this scheduling protocol as a higher layer protocol (e.g.,
application layer), where the application, in this case the
BADD message transfer protocol, is responsible for
scheduling the message transmissions over a single GBS
link. In the fumre, it will be interesting to consider
scheduling algorithms that schedule messages at the
network layer, beginning at their source all the way to their
destination, rather then only over the GBS link.

II. Scheduling Algorithms

In this section we describe a number of scheduling
algorithms. These algorithms can schedule the messages
based on message characteristics such as length, the amount
of time that the message has been in the system and the
amount of service so far received by the message. The
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majority of algorithms that we consider schedule messages
once, when they arrive, based on message characteristics.
We call such scheduling algorithms “static” because the
priority of a message does not change in time. We also
consider scheduling algorithms that alter a message’s
priority value based on the amount of time that the message
has spent in the system, or the amount of service already
received by the message. We call these scheduling
algorithms “dynamic” for the obvious reason. Finally,
scheduling algorithms can be either preemptive where
message transmissions can be interrupted by higher priority
messages Or non-preemptive. We consider both
preemptive and non-preemptive algorithms.

A. First-Come-First-Serve

A simple and intuitive scheduling algorithm is a FCFS
algorithmn. FCFS is a non-preemptive, static algorithm. In
FCFS, messages are sorted based on their time of arrival
and are served, to completion, in order of arrival. As
discussed in the introduction, FCFS has the obvious
shortcoming of being unfair to short messages. This will
be shown explicitly in the next section. One interesting fact
about FCFS scheduling is the simplicity of the analysis.
FCES scheduling algorithm can be modeled using an
M/G/1 queueing system, for which closed form results on
average delays are readily available in closed form [2,3].
These FCFS results can be used as a basis of comparison
for the various algorithms. Eq.(1) gives the average
message delay for a system using FCFS scheduling.
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where X is the message service time (e.g., transmission
time), [ is the message arrival rate and r is the channel
utilization. Therefore the above expression gives the
average message delay in terms of the first and second
moments of the message transmission times. Of course,
the message transmission times are simply the message
length divided by the transmission rate of the channel.

B. Round-Robin

In a round-robin scheme messages are broken down into
small “cells” (e.g., ATM cells) and are served one cell at a
time in a round-robin fashion, rotating among the
messages. Inherently, round-robin schemes are
preemptive, though not based on some pre-defined priority.
A round-robin scheme overcomes the shortcoming of
FCFS because the short message would not have to wait
for the complete transmission of a long message.
However, round-robin has other shortcomings in that &
results in unnecessarily large delays in situations where
there are many messages in the system. More about the
performance of round robin will be said in the next section.



Just as with FCFS, average delay results for round-robin
scheduling are available in closed form [4]. Eq.(2) gives
the average delay for round-robin scheduling.  The
“fairmess” of round-robin scheduling can be immediately
seen from the equation where the average delay is clearly
proportional to the message length.
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where again p is the channel utilization and X is the message
transmission time.

C. Bucket scheduling

Bucket scheduling schemes are a variant of round-robin
schemes which attempt to rectify the problem that arises
when pure round-robin is used with a large number of files.
In bucket scheduling, messages are sorted into buckets
based on their size and the buckets are served in a round-
robin manner. Once again the messages are divided into
cells and the buckets are served a number of cells at a time.
The number of cells served from each bucket can vary
between buckets. A general bucket scheme is shown in
figure 2. Each of the buckets contains messages of a given
size or range of sizes and the server serves each bucket in a
round robin fashion; serving Di cells from bucket i
Bucket schemes are of particular interest because in the
preliminary GBS system a bucket scheme was employed.
That scheme used 3 buckets, one for urgent data, one for
messages smaller than 50Mbytes and one for messages
larger than 50Mbytes. The server dwelled on the urgent
bucket for up to 1000 cells and on the short and long
buckets for 2 and 1 cells respectively. This in effect gave
the urgent data almost preemptive priority over the rest of
the data.

The difficulty in designing a bucket scheme 1is that there are
so many possibilities for the number of buckets, the range
of packet sizes that are input to the buckets and the dwell
times on the buckets. Also, unfortunately, bucket schemes
are difficult to analyze in closed form and their analysis
requires the use of simulation, further limiting our ability to
gain insight into the system. As will be discussed in the
next section we were able to obtain some idea about the
performance of bucket scheme by considering a limited
number of cases for which we could find the ideal bucket
scheme through the use of simulation.
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Figure 2. A bucket scheduling scheme with round-robin
Server.

D. Shorter Messages Preempt (SMP)

SMP is a simple preemptive priority scheme where shorter
messages receive preemptive priority over long messages.
In this scheme all messages are broken down into cells and
every cell is “tagged” with a priority value that is equal to
the length of the original message to which the cell belongs.
The server then serves the cells, one at a time, giving
highest priority to the cell with the smallest tag value. This,
in effect, amounts to giving shorter messages preemptive
priority over longer ones.

The performance of this scheme can be approximated with
that of a pure preemptive priority scheme. A pure
preemptive priority scheme is one where the shorter
messages would preempt longer ones as soon as they
arrive. This scheme is slightly - different because the
preemption occurs only at the end of transmission of a cell.
With cell sizes that are relatively small compared to the
message size the analysis of pure preemption provides a
good approximation to the cell based scheme. The delay
results for pure preemptive priority are given in [2,3].

Suppose that messages arrive in finite number of length’s
X,....X, and arrival rates [,,..,[, Also assume without loss
of generality that X; < X, <...< X, then it is clear that
packets of length X have higher priority than packets of
length X when i < j and lower priority when i > j . The
average delay, including service time, for messages of
length X, is given by,

_ X (A=-p —p)+R
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where p, = A.X, and R, = Z A, X} /2. In section Il we
will apply this result to the analysis of the SMP scheme.

E. Shortest remaining processing time (SRPT)

A slight variation on the SMP scheme which is known to
result in better performance, is a scheduling algorithm that
serves the message with the shortest remaining processing
(in this case transmission) time. With this scheme, if a



message is being served and a shorter message arrives, the
longer message will continue to receive service if the
amount of time remaining to completion is smaller than the
shorter message. It can be shown that this scheme
minimizes overall average delay for all scheduling schemes
[4]. However, since this scheme is very similar to SMP and
is known to result in smaller delays, we can use the results
of SMP scheduling to provide an upper-bound on the delay
for the SRPT scheme.

F. Dynamic scheduling

Dynamic scheduling schemes alter the message’s priority
value based on how long it has been in the system and how
much service it has received. The SRPT scheme described
above is a simple example of a dynamic scheme because a
message priority increases as it is being served. The
dynamic scheme that we consider here is slightly more
elaborate. A “priority” function is used to assign
messages their priority values. At each iteration of the
algorithm, the scheduler serves one cell from the highest
priority message and recalculates the priority of all of the
messages.

The difference between dynamic scheduling schemes is in
the structure of the priority function used. We examined
two priority function, both of which take into account the
length of the message and the amount of time that the
message has been in the system. The two priority functions
q,(t) and q,(t) are given by eq.(4) and eq.(5) respectively.
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where ¢ is the current time, t is the message arrival time, [ is
the message length and s is the amount of service already
received (all measured in cells). As can be seen eq.(4) and
€q.(5) both functions give higher priority to short messages
and increase the priority for messages that have been in the
system for a long time. In addition, the second function
also reduces the priority of messages that already have
received some service. A more complete description of
these dynamic scheduling schemes is given in [1].

Unfortunately, the performance of these schemes cannot be
easily computed analytically; as a result we resorted to
simulation to analyze the behavior of these schemes. In
section Il we summarize these performance results and
compare them to the performance of the static schemes.

III. Performance analysis
In this section we study the behavior of the different

scheduling schemes in terms of average delays. For three
of the five schemes we were able to obtain closed form
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expressions for delay. However, the bucket schemes and
the dynamic schemes were not analytically tractable. To
analyze those we resulted to simulation. The simulation
was written both in plain C code as well as using the Opnet
and BONES network simulation tools. The simulation was
performed in these different environments primarily to
compare the environments and evaluate available
commercial simulation products. Here we will just present
the simulation results.

All of the scheduling algorithms described in section II,
with the exception of the bucket scheme, can be analyzed
either in closed form expression (FCFS, SMP, RR) or
through simulation (Dynamic scheme). For the bucket
scheme the analysis is complicated by the choice of
parameters, such as the number of buckets and the dwell on
each bucket. In this simplified situation, with only two
traffic streams, an obvious choice is to use two buckets; one
for large messages and one for small messages.

Unfortunately, there is no simple way to determine the
optimal dwell setting on each bucket. Therefore we
simulated the bucket scheme with a number of different
dwell settings on the buckets in an effort to find the dwell
settings that achieves the best performance. What we
generally found was that the best dwell setting for a scheme
with two buckets is to dwell for much longer on the short
message bucket than on the long message bucket. A dwell
setting of 10:1 or 100:1 almost always yielded the best
results. One interesting observation is that dwelling on the
long message bucket for more than one cell almost always
yielded longer average delays. This is because it resulted in
larger delays for the short messages. In general, a
scheduling scheme that serves short messages first results
in better average delay. Essentially this is what we found
here as well. The results presented for the bucket scheme,
here, only show the performance with the best dwell setting
that we could find.

In Section IT we presented 2 possible priority functions for
use with the dynamic scheme. Our simulation results show
that the priority function of eq.(4) was generally superior to
that of eq.(5). Therefore here we only show the
performance of the dynamic scheme using the priority
function of eq.(5). The results of the simulation study of the
dynamic scheme with the two different priority functions
are presented in [1]. An interesting extension to this work
would be to study the performance of the dynamic scheme
with various other priority functions.

The primary objective of the analysis is to examine the
performance of the scheduling algorithms when the mix of
incoming traffic consists of messages of widely varied
sizes. To obtain insight into this behavior we start by
considering a situation where only two message sizes exist.
Small messages (consisting of one cell) and large messages
(consisting of 100 cells). We then proceeded to evaluate the



performance of the schemes under three channel loading
conditions; medium loading of 50%, high loading of 90%
and very high loading of 99%. Results for light loading
conditions are not presented because under light loading
conditions the delay at the server is minimal and therefore
the performance of the scheduling algorithm is of little
consequence. For each of the loading situation we
considered three traffic mixes. An even mixing where half
the load comes from small messages and half from large
messages; a mixing where most of the load is from small
and finally a mix where most of the load is from large
messages. In addition we considered a situation with an
80% load and files of 4 different sizes. All together this
amounts to 10 different loading combinations. The results
obtained for these different loading situations and their
interpretations are shown in figures 3 to 12.

Figures 3-5 compare the performance of the algorithms
under medium loading conditions (50% load). We see from
the figures that the SMP, bucket and dynamic schemes all
perform essentially the same. The RR and FCFS schemes
perform substantially worse. This is because in the latter
two schemes short messages, which dominate the load,
sometimes have to wait for long messages. This results in
longer average delays. Notice, however, that FCFS results
in substantially better delay results for long packets. Also,
results for FCFS are omitted in certain situations because
they are far worse than the other schemes and the large
delay numbers are far off the scale and cannot be displayed
on the graph.

Figures 6-8 compare the performance of the algorithms
under heavy loading conditions (90% load). The results are
very similar to those obtained under medium loading. The
SMP, bucket and dynamic schemes generally perform
better than the FCFS and RR schemes. The dynamic
scheme performed slightly worse for small packets when
there is a heavy load of large packets. This is because when
a large packet is in the buffer for a long time it may receive
priority over small packets, resulting in large delays for
small packets. FCFS performs best for long packets, but
has an overall high average delay. This is because it offers
essentially the same performance to small and large
messages and while this delay is good for the large
messages it is very high for short messages. Again, in
many instances we omit the FCFS results because the large
delay offered to short packets is way off the scale and
cannot be displayed on the graph.

Figures 9-11 compare the algorithms under very heavy
loading (99% load). Under extremely heavy loading
conditions overall delays are relatively large. However, the
results obtained are still interesting because they give us
insight into the behavior of the system at a time when the
system is generally busy. Under these circumstances the
difference between scheduling schemes is more noticeable.
What we see from the figures is that RR and FCES yield an
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overall poor performance. Again the SMP, bucket and
dynamic schemes perform similarly and the dynamic
scheme, while overall is sub-optimal, offers a compromise
between a SMP scheme which is biased toward small
messages and a FCFS which is biased toward large
messages. Finally figure 12 compares the performance of
the algorithm with four different message sizes (1,10,100,
and 1000 cell messages) and an 80% load evenly divided
between the messages. For all messages except the largest,
the SMP scheme performed best. The bucket scheme was
almost as good, but we note that finding an optimal dwell
setting was non trivial. In this case a dwell setting of 100
on the small bucket, 4 on the bucket of 10 cell messages, 2
on the bucket of 100 cell messages and a single dwell on
the 1000 cell messages bucket.  This setting was
determined by simulating a large number of alternative
settings. . Another interesting observation is that the
dynamic scheme, although not optimal in overall delay,
offers faimess in the sense that all messages receive a
similar transfer rate. This fairness is also present in the RR
scheme, but there the overall performance is very poor.
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Figure 3. Delay vs. packet size for a load of 50%,
dominated by small messages. The dwell setting for the
bucket scheme is shown in the legend as (10:1)
representing a dwell of 10 cells on the small message
bucket and 1 cell on the large message bucket.
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Figure 4. Delay vs. packet size for a load of 50%,
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Figure 5. Delay vs. packet size for a load of 50%, evenly
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Figure 7. Delay vs. packet size for a load of 90%,
dominated by large messages.
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Figure 8. Delay vs. packet size for a load of 90%, evenly
divided between small and large messages.
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Figure 10. Delay vs. packet size for a load of 99%,
dominated by large messages.
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Figure 11. Delay vs. packet size for a load of 99%, evenly
divided between small and large messages.
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Figure 12. Delay vs. packet size for a load of 80%, evenly
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IV. Conclusion

We evaluated a number of scheduling schemes. Of those,
Short-Message-Preempt (SMP) generally offered the best
average delays. A simple variation of SMP that is known
to improve on the performance of SMP is one that always
serves the message with the shortest remaining processing
time (SRPT). The SRPT scheme is known to minimize
overall average delays over all possible scheduling
schemes.

The problem with both SMP and SRPT is that they can be
unfair to the larger messages. However, none of the other
schemes that we analyzed was able to improve performance
for long messages without significantly increasing overall
average delays. Furthermore, in network traffic, it is likely
that short messages contain timely control information or
interactive traffic; and therefore, reducing the short message
delay can have added benefits in terms of network
performance. We therefore believe that the SRPT scheme
should be considered for scheduling messages over the
BADD/GBS system.
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The dynamic priority scheme has the potential of yielding
good results for all traffic types. However, as it is defined
now, itis clearly sub-optimal. It may be possible to make
improvements to the dynamic scheme by altering the
priority function. One possible alteration to the priority
function is to account for cells already served. Another
possibility is to change the slope of the function. Further
work in this area would be needed in order to make the
dynamic scheme an attractive alternative to the SMP
scheme.

Other scheduling schemes that were examined were either
inferior in terms of performance or not practical. Both
First-Come-First-Serve and Round-Robin scheduling result
in very large average delays. The Bucket scheme generally
resulted in good delay performance, as long as the optimal
number of buckets and dwell settings were used. However,
we know of no practical mechanism for determining these
values, which makes an efficient implementation of the
scheme impractical,

An interested extension of this work to a multi-hop packet
switched network is presented in [5] where it is shown that
giving priority in a packet switch to packets belonging to
shorter messages over those belonging to larger messages
can significantly reduce average end-to-end message
transmission delays.
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