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Objective

We study the problem of enforcing probabilistic safety when sys-
tem dynamics are unknown and being learned from the samples,

min
uk

Task cost (xk,uk)
s.t. P( Safety |xk,uk) ≥ 1− risk tolerance (1)

Contributions

Matrix Variate Gaussian ProcessWe derive inference
equations for Matrix Variate Gaussian Processes that
preserve structure.

Safe-controller for higher relative degree systemsWe derive
Cantelli-inequality based safety bound for higher
relative degree systems and use it create QCQP based
safe controller.

Inter-triggering time safety analysisWe derive conditions to
ensure safety between control computation times.

Notation

Symbol Meaning
xk ∈ Rn System state at discrete time k
x(t) System state at cont. time t
u ∈ Rm Control signal
u , (1; u)
f (x) drift term of system dynamics
g(x) input gain term of system dynamics
F (x) , [f (x), g(x)]
vec(M) Column-major vectorization of a matrix M
h(x) Control barrier function defining the safety

region as h(x) ≥ 0
πε(x) Reference controller whose trajectory we want

to follow as close as possible

Problem formulation

For a control-affine system dynamics,

ẋ = f (x) + g(x)u = [f (x) + g(x)]
[

1
u

]
= F (x)u,

assume the system dynamics F (x) to be a Gaussian Process
vec(F (x)) ∼ GP(vec(M0(x)),K0(x,x′)), (2)

where vec(F (x)) is column-major vectorization of F (x). Design
a safe controller with safe probability pk,

min
uk∈U

‖uk − πε(xk)‖

s.t. P(safety at all times) ≥ pk (3)
where the safety condition can be simply ḣ(xk) > 0 or a Control
Barrier Condition [2], CBC(x,u) , ḣ(x) + αh(x) ≥ 0 with
α > 0.

Matrix Variate Gaussian Process

We define Matrix Variate Gaussian Process
MVGP(M(x),A,B(x,x′)) [4, 3].

vec(F (x)) ∼ GP(vec(M0(x)),B0(x,x′)⊗A)
⇔ F (x) ∼MVGP(M0(x),A,B0(x,x′)) (4)

Advantages to alternative approaches:
Fewer parameters Only (1 + m)2 + n2 parameters when learning

B0 and A as compared to (1 + m)2n2 parameters for K0.
(m is control dimensions, n is state dimensions)

Captures correlation across output dimensions As compared to
learning a GP per dimension, we capture correlation across
output dimensions without excessive computational cost:
O((1 + m)3k2) + O(k3) vs O((1 + m)k2) + O(k3) where k
is number of samples.

Preserves structure across inference Inference with k data
samples of {ẋi,xi,ui}ki=1, leads to another MVGP,

Fk(x∗) ∼MVGP(Mk(x∗),A,Bk(x∗,x∗)) (5)
where Mk and Bk can be computed from the data samples.

Stochastic Control Barrier Condition

We consider the safety condition for system of relative degree
r (defined as LgLr−1

f h(x) 6= 0, but LgLjfh(x) = 0 for all j =
{0, . . . , r−2}) as the exponential control barrier condition CBC(r)

defined as [1],
CBC(r)(x,u) := L(r)

f h(x) + LgL(r−1)
f h(x)u + k>αη(x),

where η(x) , (h(x);Lfh(x); . . . ;L(r−1)
f h(x)) (6)

We show that the mean and variance of CBC(r)(x,u) are affine
and quadratic in u.

E[CBC(r)] =
(
E[F (x)>∇L(r−1)

f h(x)] + E[[k>αη(x),0>]>]
)>

u
(7)

Var[CBC(r)] = u>Var
[
∇L(r−1)

f h(x)>F (x) + [k>αη(x),0>]
]

u
(8)

Hence the safety condition P(CBC(r)(xk,uk) ≥ ζ > 0) ≥ p̃k can
be written as quadratic constraints using Cantelli’s inequality
and the controller thus becomes,

min
uk∈U
‖uk − πε(xk)‖

s.t. (E[CBC(r)
k ]− ζ)2 ≥ p̃k

1− p̃k
Var[CBC(r)

k ]

E[CBC(r)
k ]− ζ ≥ 0 (9)

While we derive closed form expression for E[CBC(r)] and
Var[CBC(r)] for r = 1 and r = 2, in general for r ≥ 3 the mean
and variance can be estimated using Monte Carlo estimators.

Inter-triggering time safety analysis

We assume sample trajectories from Gaussian Process dynamics
are locally Lk-Lipchitz with large probability qk, then we establish
that
P(CBC(xk,uk) ≥ ζ > 0|xk,uk) ≥ p̃k

and τk ≤
1
Lk

ln(1 + Lkζ

(χkLk + Lα·h)‖ẋk‖
)

=⇒ P(CBC(x(t),uk) ≥ 0) ≥ pk = p̃kqk ∀t ∈ [tk, tk + τk)
(10)

Results

Figure 1:Bottom row: Learned vs true pendulum dynamics using matrix variate Gaussian Process regression

Experiment and Results

We evaluate the proposed approach on a pendulum with mass
m and length l with state x = [θ, ω] and control-affine dynamics
f (x) = [ω,−g

l sin(θ)] and g(x) = [0, 1
ml] as depicted in Fig 2. The

control barrier function is chosen as h(x) = cos(∆col)−cos(θ−θc).
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Figure 2:Top left: Pendulum simulation (left) with an unsafe (red) region.
Top right: The pendulum trajectory (middle) resulting from the application
of safe control inputs (right) is shown.

Conclusion and Ongoing work

•More experiments (closer to the Motivation).
•What if QCQP is non-convex?
•Entropy objective to pick optimal actions for reducing
uncertainity.
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